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Abstract

Chromatin in cancer undergoes chemical and structural changes that alter gene
expression patterns. One of the chemical modifications that impacts gene regulation
is 5-hydroxymethylcytosine (5hmC), also called DNA hydroxymethylation. 5hmC is
a stable mark that is commonly associated with transcriptional activation. In cancer,
the global loss of 5hmC is a hallmark. In addition, the deregulation of 5hmC in
specific regions of the genome, such as enhancers, promoters, and body of the gene,
alters the expression of genes in cancer. These alterations have been detected by the
improvement in the mapping of 5hmC at genomic scale, which has allowed us to
evaluate the sites where 5hmC alterations occur and the genes that are affected. In
this chapter, the recent knowledge about the status of 5hmC in genome specific sites
of human solid cancers, the relationship with enzymes ten-eleven translocation
(TET) and isocitrate dehydrogenase (IDH) involved in the dynamic regulation of
5hmC levels, and the impact of the 5hmC aberrant changes on the genic expression
in these malignances is reviewed.

Keywords: DNA hydroxymethylation, 5hmC, cytosine modifications,
DNA demethylation, epigenetics, chromatin, gene expression, cancer

1. Introduction

In carcinogenesis, genetic alterations are necessary along with the deregulation
of the epigenetic phenomena. Epigenetics could be defined as the study of the
mechanisms that control gene expression without modifying the DNA sequence [1].
In cancer, epigenetic changes can be used to identify the site of origin of the tumor,
detect malignant tumors in the earliest stages, and also allow the identification of
more aggressive tumors and predict the response to drug therapy [2, 3]. On the
other hand, they can be used as therapeutic targets in epigenetic therapy [4].

DNA methylation is a widely studied epigenetic phenomenon, and it occurs
predominantly (80%) in a CpG context, where cytosine (C) is methylated in carbon
5, generating 5-methylcytosine (5mC). 5mC constitutes approximately 1% of all
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DNA bases [5] and is associated with the regulation of gene expression, recruitment
of transcription factors, nucleosome positioning, splicing, and imprinting. Specifi-
cally, in cancer, the overall decrease of 5mC is a general brand and is enriched in
specific areas such as the promoter and the first exon, which generates gene silenc-
ing and is associated with the development of cancer [6]. Although 5mC is a stable
mark, 5mC was shown to oxidize to 5-hydroxymethylcytosine (5hmC). In mam-
mals, the conversion of 5mC to 5hmC is catalyzed by members of the ten-eleven
translocation family (TET1, TET2, and TET3), α-ketoglutarate (αKG), and Fe2+-
dependent dioxygenases. TET enzymes also oxidize 5hmC to 5-formylcytosine
(5fC) and 5-carboxycytosine (5cC) [7].

Currently, it is reported that DNA hydroxymethylation is a stable epigenetic
mark that the cells can inherit to its daughter’s cells rather than just a transition state
[8]. This mark represents the second most abundant C variant in the mammalian
genome, always at levels below 5mC, but on the other hand, the 5hmC is 10–100
times higher than the 5fC and 5cC [9, 10].

In mammals, 5hmC occurs almost always (99.89%) in a CpG context [11] and,
interestingly, is more enriched in distal regulatory elements of the promoter
(46.4%), the body of the gene, and near the cis elements of transcription factors
and is less abundant in the promoter region [9–11], suggesting that the
hydroxymethylation of DNA has an extensive function in gene regulation. In
addition, the enrichment of 5hmC in the different functional elements has been
associated with gene transcriptional activation [9].

In humans, the presence of 5hmC would vary significantly between tissues: in
the brain (0.67%), rectum (0.57%), liver (0.46%), colon (0.45%), and kidney
(0.38%), the 5hmC levels are high, while in the lung (0.14%), they are relatively
low and very low in the heart (0.05%), breast (0.05%), and placenta (0.06%) [12].
Compared to normal tissue, many solid neoplasms (e.g., breast, colon, prostate,
and melanoma) are characterized by the overall loss of 5hmC. In some isolated
cases of cancer, it was reported that 5hmC usually increases; however, the general
trend is a global decrease of 5hmC in carcinogenesis [13]. Importantly, hypo-5hmC
in cancer occurs in the body of the gene, enhancers, and near cis elements of
transcription factors, altering gene expression [14, 15]. However, so far, the role of
hydroxymethylation of DNA in cancer biology is not completely clear, and more
studies are needed that provide deeper information on functions or potential
applications as biomarkers. The purpose of this chapter is to provide current
knowledge of the deregulation of 5hmC in genome specific sites, the relationship
with enzymes ten-eleven translocation (TET) and isocitrate dehydrogenase
(IDH) involved in the dynamic regulation of 5hmC levels, and its impact on gene
expression in different human cancers.

2. 5hmC status in solid cancer

2.1 5hmC status in melanoma

Melanoma is a type of melanocyte neoplasm that is considered highly aggressive
[16]. As one of the most aggressive human tumors, it can perform distal and lethal
metastases despite the volume of the tumor being 1 mm3 [17].

Melanoma is a complex disease influenced by genetic and epigenetic alterations.
Importantly, epigenetic phenomena in this tumor include hypermethylation of the
phosphatase and tensin homolog (PTEN) promoter and p16ink4, which is associated
with the silencing of tumor suppressor genes [18, 19]. In addition, repressive chro-
matin marks that silence the TGF-pathway have been reported [20]. On the other
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hand, the increase in chromatin-modifying enzymes, such as Ezh2 methyltransferase,
has been published [21]. A significant decrease inmembers of the TET enzyme family
has been reported, which correlates with low global levels of 5hmC [17–22]. Thus,
altered patterns of 5hmC in melanomas have been observed, and in this sense, the
analysis of 5hmC in melanomas showed a hypo-hydroxymethylation in the body of
the Ras-related C3 botulinum toxin substrate 3 (RAC3) gene, the type 1 insulin-like
growth factor receptor (IGF1R), and tissue inhibitor of metalloproteinases 2
(TIMP2) (Table 1). However, the effect at the expression level was not determined.
In two studies published independently, they reported that in melanoma the
expression levels of IGF1R and TIMP2 are high [23, 24], suggesting that hypo-5hmC
in the body of the gene probably contributes to the high expression of the IGF1R
and TIMP2 gene. On the other hand, it has been observed that the overexpression of
TIMP2 in B16F10 melanoma cells reduces invasion and angiogenesis and inhibits
apoptosis [24].

2.2 5hmC status in glioma cancer

Gliomas are the most common brain tumors, being classified by grades (I–IV),
based on differentiation status, malignant potential, response to treatment, and
patient survival rate. Grades III and IV are referred as high-grade glioma and have
the worst prognosis with a median survival for grade III of 2–3 years, while grade
IV, named glioblastoma (GBM), has approximately 15 months [45]. In 2016, the

Name of gene 5hmC status 5hmC variable

position

Effect Target cancer Refs.

RAC3, IGF1R, TIMP2 Hypo-5hmC Gene body ND Melanoma [17]

SOX2-OT, CHD2 Hyper-5hmC TSS1500 Activation Glioma [25]

LSMEM1 Hyper-5hmC 50UTR Activation Glioma [25]

v-myc, FAM49A, DDX1, IL-2, IL-

15, PRC2

Hyper-5hmC ND Activation Neuroblastoma [26, 27]

PTEN, hMLH1, IRX1 Hypo-5hmC Promoter Repression Gastric [28]

GATA6, MMP11, VAV2, LATS2 Hyper-5hmC Promoter and

gene body

Activation Pancreas [29]

TBX15 Hyper-5hmC Promoter Activation HCC [30]

COMT, FMO3, LCAT Hypo-5hmC Promoter Repression HCC [30]

CCNY, CDK16 Hyper-5hmC Loci and

promoter

Activation HuRCSC [31]

VHL, SETD2 Hypo-5hmC Gene body Repression ccRCC [14]

CA2, FMN2, PDCD4, PKIB,

SLC26A2, ALOX15*, GHRHR*,

TFP12*, TKTL1*

Hypo-5hmC Loci, promoter Repression Colon [32–42]

TESC, TGFBI, BMP7, NKD2 Hyper-5hmC Loci Activation Colon [32]

GLO1 Hyper-5hmC Promoter Activation Endometrial [43]

LZTS1 Hypo-5hmC Loci Repression Breast [44]

*The effect of 5hmC was not determined in these genes. 5hmC, 5-hydroxymethylcytosine; TSS1500, 1500 bases upstream
transcription start site; 50 UTR, 50 untranslated region; HCC, Hepatocellular carcinoma; HuRCSS, Kidney renal stem cells;
ccRCC, Clear cell renal cell carcinoma; ND, not determined.

Table 1.

Genes with aberrant 5hmC in different solid human neoplasms.
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World Health Organization (WHO) introduced a new classification where molecu-
lar markers were taken into account. In this classification glioma are divided into
subtypes based on the isocitrate dehydrogenase 1 (IDH1) gene mutation status [46].
IDH can affect DNA hypermethylation at certain promoter regions, resulting in a
glioma CpG island methylator phenotype [47]. In glioma, it has been described as
an aberrant 5mC status in CpG island shores and is 5hmC-dependent, and it corre-
lates with disease progression [15]. Moreover, in a previous report, the 5hmC
patterns were analyzed in GBM samples. They observed a 3.5 reduction in the total
5hmC content and of what was present, localized primarily in super-enhancers and
cis elements of transcription factors associated with proliferation. Also, they
observed a significant enrichment of 5hmC sites in active transcribed genes in GBM.
They reported a total of 2121 active transcribed genes of which 146 have the highest
proportion of 5hmC.

As an example, genes with hyper-5hmC in 1500 bases upstream of the tran-
scription star site (TSS1500) that are transcriptionally active are SOX2 overlapping
transcript (SOX-OT) and chromodomain-helicase-DNA-binding protein 2
(CHD2) (Table 1). Additionally, the gene that encodes the leucine-rich single-pass
membrane protein 1 (LSMEM1, also called C7orf53) is transcriptionally active and
also presented elevated levels of 5hmC in the 50 untranslated region (50UTR)
(Table 1) [25].

2.3 5hmC status in pediatric embryonal tumors

The pediatric embryonal tumors are a rare type of childhood cancers that derive
from neuroectodermal tissue and share related histopathological features despite
distinct anatomical locations and diverse clinical outcomes [48]. These tumors can
originate in many parts of the body, the ones that are derived from the sympathetic
nervous system are called neuroblastoma, and the ones that are derived in the brain
are called medulloblastoma [49].

2.3.1 Medulloblastoma

Medulloblastoma (MB) is the most common malignant brain tumor of child-
hood, the overall 5-year disease-free survival remains low (36%) for patients with
dissemination, and prognosis remains poor for patients with recurrent MB [50]. In
addition, majority of survivors exhibit long-term neurocognitive and neuroendo-
crine complication as a result of therapy [51, 52].

The analysis of the 5hmC levels in MB showed a reduction, in comparison to
non-neoplastic cerebellum [53]. This finding agrees with other reports where the
loss of 5hmC is a common event in other brain tumors as well as tumors of different
origins [54]. With this discovery, the expression of TET1, TET2, TET3, IDH1, and
IDH2 was analyzed, but the profile could not explain the reduction of 5hmC [53],
although the difference in expression of this genes did correlate with the different
MB molecular subgroups, suggesting a possible role for TET and IDH genes in the
control of specifically developmental pathways activated in MB subgroups. This
inability to associate the overall reduction of 5hmC levels and the expression of TET
and IDH genes could be due to the method of selection of the 5hmC screening and
the lack of analysis of the genomic distribution of 5hmC.

2.3.2 Neuroblastoma

Neuroblastoma is accountable for more than 7% of malignancies in patients
younger than 15 years and is responsible for 15% of all pediatric oncology deaths.

4

DNA Methylation Mechanism



Risk assessment based on several clinical and biological features, including age,
stage, avian myelocytomastosis viral oncogene (v-myc) status, ploidy, and histol-
ogy, classified the patients into three groups, low-risk (LR), intermediate-risk (IR),
and high-risk (HR) disease [26]. Comparison of the 5hmC profile in LR vs. HR
permitted the identification of 3320 genes with differential 5hmC levels between
the groups. In the LR group, genes with 5hmC enrichment and increased expression
were v-myc, family with sequence similarity 49 member A (FAM49A), and DEAD-
box helicase 1 (DDX1) (Table 1). Regarding the HR group, the genes with hyper-
5hmC and high expression include genes involved in inflammation (IL-2 and IL-15)
and in the polycomb repressive complex 2 (PRC2) [27].

2.4 5hmC status in parathyroid cancer

Parathyroid cancer is a rare, indolent, and slowly progressive tumor, being the
rarest cause of primary hyperparathyroidism. Surgery is the option of treatment;
thus the early identification in the preoperative period is vital [55]. Clinical charac-
teristics of parathyroid cancer can overlap with benign parathyroid disease [55, 56].
Barazeghi E. et al. showed reduced global levels of 5hmC in samples of parathyroid
carcinoma compared with samples of normal tissues as well as benign parathyroid
adenomas; thus, it was suggested that 5hmC level could be a marker to differentiate
between benign and malign tumors [56]. Analysis of TET protein expression indi-
cated variable expression of TET1 in parathyroid adenomas and carcinomas, and
additionally reduced or absent expression of TET2 was observed in parathyroid
carcinomas as compared with normal parathyroid tissue in concordance with the
reduced levels of 5hmC reported in parathyroid carcinoma [56, 57]. Furthermore,
increased levels of methylation in promoter CpG islands from TET2 were reported
[57]. Analysis of genes regulated by hydroxymethylation on this cancer has not been
reported, yet.

2.5 5hmC status in thyroid cancer

Thyroid cancer is the most common tumor of the endocrine organs, accounting
for 90% of endocrine tumors. In general, thyroid cancer is originated of follicular
cells being divided in papillary thyroid carcinoma and follicular thyroid carcinoma;
a reduced percent of thyroid cancers is generated from parafollicular C cells being
classified as medullary thyroid carcinomas [58]. The information about 5hmC status
is extremely limited, but it has been observed that levels of 5hmC are reduced in
papillary thyroid carcinomas as compared with control tissue [59]. However, infor-
mation about expression of TET proteins and regulation by hydroxymethylation or
target genes in this cancer or its subtypes is absent.

2.6 5hmC status in oral cancer

Cancer of the oral cavity is the most common tumor worldwide, the squamous
cell carcinoma being the most common histopathology type [60]. A decreased
expression of TET2 and a reduction of 5mhC levels in samples of oral squamous
cell carcinomas have been reported compared with healthy oral tissues by immu-
nohistochemistry [61]. Also, 5hmC levels decreased progressively from benign
oral mucosal lesions to oral squamous cell carcinoma [62]. Expression analysis of
target genes regulated by 5hmC or mechanisms implicated have not been
reported yet.
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2.7 5hmC status in gastric cancer

Gastric cancer is the third cause of cancer death. Environment factors, infec-
tions, and genetic and epigenetic alterations are related with development of this
cancer [63]. Decreased expression of TET1 mRNA and protein has been reported in
gastric cancer, while the expression of TET2 and TET3 did not show differences in
expression compared with control tissue. In addition, diminished expression of
TET1 has been associated with decreased levels of 5hmC in the promoter of PTEN,
human mutL homolog 1 (hMLH1), and iroquois homeobox 1 (IRX1), correlating
with their reduced expression levels (Table 1) [28]. Thus, reduced expression of
TET1 and decreased levels of 5hmC in gastric cancer could be related with the
decreased expression of suppressor tumors genes. An in-depth analysis of genes
regulated by hydroxymethylation on this cancer could allow new therapeutic
strategies.

2.8 5hmC status in pancreatic cancer

Pancreatic cancer is a disease with high mortality rate, being the fourth cause of
cancer-related deaths in the United States and most developed countries. Different
types of pancreatic cancer can rise; however, the subtype termed pancreatic ductal
adenocarcinoma (PDAC) is the most common, which accounts for about 85–90% of
cases [64, 65]. The absence of early detection methods, delay in diagnosis, and
unsuccessful treatments contribute to the high mortality of this cancer [65].

Low global levels of 5hmC have been reported in pancreatic cancer cell lines and
in samples of human tumors compared with healthy pancreatic cells [29]. The
reduced levels of 5hmC in samples of human pancreatic tumor tissues correlated
with the decreased expression of TET1 [66]. A redistribution of 5hmCs was
observed in pancreatic cancer, with enrichment in genomic specific regions as pro-
moters and gene body, particularly of the transcriptional factor GATA6, matrix
metallopeptidase 11 (MMP11), vav guanine nucleotide exchange factor 2 (VAV2),
and large tumor suppressor kinase 2. The enrichment of 5hmC in this genes is in
accordance with the increased expression in human samples of pancreatic cancer
[29]. Additionally, it has been suggested that pancreatic cancer patients with high
GATA6 survive longer so that GATA6 was proposed as a prognosis marker [67]. On
the other hand, high levels of MMP11 were associated with poor prognosis of
pancreatic cancer patients [68].

2.9 5hmC status in hepatocellular cancer

Globally, hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and
the third leading cause of cancer-related death, estimated to cause the death of
500,000–600,000 people per year [69]. The factors that contribute to mortality in
HCC are the 5-year recurrence rates standing at 70% after tumor resection and
15–30% posttransplant [70].

Hepatic B virus (HBV) and hepatitis C (HCV) are the main cause of HCC. For
HCC related to HBV, epigenetic alterations play vital roles in hepatocarcinogenesis
through direct and indirect mechanisms initiated by HBV [69].

Low global levels of 5hmC have been reported in HCC [69]. A redistribution of
5hmCs was observed in HCC, with an enrichment in specific genomic region as
promoters. In this same report, a decrease in the levels of hydroxymethylation was
observed in the promoter of different genes, this catechol-O-methyltransferase
(COMT), the flavin-containing monooxygenase 3 (FMO3), and lecithin-cholesterol
acyltransferase (LCAT) [30] (Table 1). The gene T-Box transcription factor 15
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(TBX15) with enrichment in the 5hmC promoter region was associated with tran-
scriptional activation, while those that presented a decrease of 5hmC were low [30].

2.10 5hmC status in renal cell carcinoma (RCC)

RCC is the most common parenchymal neoplasm in adults. Among urogenital
tumors, it is the second with the highest incidence, which represents 2 to 3% of
cancer in humans and 80 to 90% of kidney neoplasms. The most common subtypes
of RCC are clear cell carcinoma (ccRCC) and papillary carcinoma [31].

Recently, it was reported that kidney cancer and ccRCC have global decreased
levels of 5hmC with respect to normal tissue [14]. Paradoxically in kidney renal
stem cells (HuRCSC), hyper-5hmC patterns were detected in specific regions such
as the cyclin Y (CCNY) promoter and loci and cyclin-dependent kinase-16 (CDK16)
(Table 1), which was associated with a transcriptional activation. Likewise, the
increased levels of TET1 in HuRCSC were detected, which probably explains the
increase of 5hmC in HuRCSC [31].

In another study in which ccRCC was analyzed, it was shown that low levels of
5hmC in the body of the von Hippel–Lindau gene (VHL) and SETD2
methyltransferase are associated with low expression [14] (Table 1). In ccRCC loss
of SETD2 is associated with genomic instability, aberrant transcriptional program,
RNA processing defects, and impacts on cell proliferation, differentiation, and cell
death [71]. Additionally, it has been observed that the IDH1 enzyme was signifi-
cantly downregulated in ccRCC compared to normal kidney cells. Thus, in ccRCC
the reduction of IDH1 can be a mechanism for the loss of 5hmC through the
downregulation of 2-keto glutarate [14].

2.11 5hmC status in colon cancer

The colon cancer or colorectal cancer is the third most common cancer in the
world with more incidence in developed countries [72, 73].

Decreased levels of global hydroxymethylation has been reported in colon can-
cer [32]. In accordance, decreased expression of TET1 has been reported in samples
of human colorectal cancer tissue [33]. Moreover, loss of nuclear expression of
TET2 has been observed in colorectal cancer tissue [34]. Thus, aberrant patterns of
hydroxymethylation in colorectal cancer has been observed. In this sense, analysis
of 5hmC status in colon cancer tissues showed hypo-hydroxymethylation in the
promoter region of genes such as:

• Carbonic anhydrase 2 (CA2), which belongs to a group of zinc-binding
enzymes, which catalyzes the reversible hydration of CO2 to bicarbonate, that
is important for maintenance of pH [32–35]

• Formin 2 (FMN2), involved in cell polarity and cytoskeleton organization and
prevents degradation of p21, promoting cell cycle arrest [32–36]

• Programmed cell death 4 (PDCD4), considered a tumor suppressor in
colorectal cancer, which can inhibit proliferation and invasion, preventing
AP-1 transcription and inhibiting mTOR/Akt [37]

• cAMP-dependent protein kinase inhibitor beta (PKIB), which promotes
activation of Akt, contributing to cell growth and proliferation (however, the
function of PKIB in colon cancer remains to be determined) [32–39]
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• Solute carrier family 26 member 2 (SLC26A2) (low expression of this protein
promotes proliferation in vitro observed in colon cancer cell lines) [32–41]

• Arachidonate 15-lipoxygenase (ALOX15)

• Growth hormone-releasing hormone (GHRHR)

• Inhibitor of the tissular factor pathway 2 (TFPI2)

• Transketolase-like protein 1 (TKTL1) (Table 1).

Related to 5hmC status and expression, in some cases, the decreased levels of
expression of these genes were corroborated. Additionally, hyper-
hydroxymethylation and increased expression of different genes have been
observed in samples of human primary colon cancer [32–42]. The genes with hyper-
5hmC status and high expression include tescalcin (TESC), a calcium-binding pro-
tein involved in the promotion of tumorigenesis in colorectal cancer, which acti-
vates Akt-dependent NF-κB pathway, promoting proliferation and also
contributing to invasion and metastasis in colon cancer [32–42, 74, 75];
transforming growth factor-beta-induced (TGFBI) that promotes cell proliferation,
migration, metastasis, and inflammation [32–42, 74–76]; and bone morphogenetic
protein 7 (BMP7) that has an augmented expression, but in this case there has been
a controversy because in colorectal cancer it has also been reported to have low
levels. Additionally, it has been reported that, in colorectal cancer, BMP7 has anti-
cancer activity [32–42, 74–78] and naked cuticle homolog 2 (NKD2) [32].

2.12 5hmC status in endometrial cancer

Endometrial cancer is the most common tumor in the genital tract in developed
countries [43]. A report showed a decreased level of 5hmC in samples of endome-
trial cancer by an ELISA-like reaction. In addition, decreased expression levels of
TET1 and TET2 mRNA and increased levels of TET3 mRNA were observed [79].
However, in another report, increased levels of TET1 protein and increased levels of
5hmC in endometrial cancer and hyperplasia using immunohistochemistry were
indicated [43]. This discrepancy could be associated to the different levels of regu-
lation of TET1 expression. Interestingly, the authors determined that TET1 could
promote the accumulation of 5hmC in the promoter of the glyoxalase I (GLO1) gene
(Table 1), resulting in the increased expression of GLO1 in endometrial cancer
[43]. GLO1 promotes proliferation and chemotherapeutic resistance and contrib-
utes to progestin resistance used in the treatment of endometrial cancer [43, 79,
80]. Moreover, it was reported that metformin treatment reduced the expression of
TET1 and 5hmC levels, promoting the reduction of GLO1 expression and increasing
the sensitivity to progestin in a model in vitro [43].

2.13 5hmC status in breast cancer

Breast cancer (BC) is the most frequent neoplasia in women worldwide; data
from the WHO suggests that it comprises 16% of the total of cancer cases. In
addition, every year 138 million new cases are detected, and approximately 458,000
deaths occur due to the pathology [81].

In breast cancer, low levels of 5hmC in the locus of the gene leucine zipper
putative tumor suppressor (LZTS1) (Table 1) have been reported. In addition, the
level of LZTS1 expression was low in breast cancer samples compared to normal
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breast tissue. These results coincide with the low expression of TET1. The results
suggest that low levels of 5hmC in the locus of LZTS1 are probably due to the
decrease in TET1 [44]. In human cancer, loss of LZTS1 expression has been associ-
ated with tumor progression, metastasis, and poor prognosis [82].

3. Conclusion

In the tumors researched in this document, in most of them, an overall global
reduction of 5hmC, with accumulation in certain genetic locations or genes, is
reported. Some are also related to the overexpression of genes, taking into account
that 5hmC is an epigenetic mark of transcription activation. However, the methods
used to determine the 5hmC vary between the studies, and not all the methods can
be considered reliable to distinguish between 5mC and 5hmC with confidence.
Moreover, an area that has not been explored is the effect that 5hmC has on the
expression in miRNAs and lncRNA. These observations can be taken to reassess the
role of DNA hydroxymethylation status in tumorigenesis.

Expression analyses of TET family members and correlation with 5hmC status
have been performed in a wide variety of cancers. However, the biological effect of
this aberrant changes in 5hmC levels has not been deeply determined. For example,
targeted genes regulated by hydroxymethylation in many cancers have not been
established, characterization of the hydroxymethylation patterns in regulator
regions of target genes is not determined in some cases, and their expression levels
are not corroborated with 5hmC status. Importantly, the effects resulting in the
modification or the return to the original state of the hydroxymethylation patterns
in cancer are extensively unknown. In addition, since hydroxymethylation can be
regulated in different physiological process in health and disease, modifications in
5hmC status could generate undesirable side effects. Thus, more studies are neces-
sary to have a comprehensive understanding of the biological effects and dynamic
changes of the hydroxymethylation in cancer, which could allow new therapeutic
strategies in the future.
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Appendices and nomenclature

ALOX15 Arachidonate 15-lipoxygenase
BMP7 Bone morphogenetic protein 7
bHlH Basic helix–loop–helix
C Cytosine
CA2 Carbonic anhydrase 2
CCNY Cyclin Y promoter and loci
ccRCC Clear cell carcinoma cell renal
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CHD2 Chromodomain-helicase-DNA-binding protein 2
CDK16 Cyclin-dependent kinase-16
COMT Catechol O-methyltransferase
CpG Islands cytokine phophate guanine
DDX1 DEAD-box helicase 1
DNA Deoxyribonucleic acid
Ezh2 Histone-lysine methyltransferase
FAM49A Family with sequence similarity 49 member A
Fe2+ Iron 2+
FMN2 Formin 2
FMO3 Flavin-containing monooxygenase 3
GATA6| GATA binding protein 6
GBM Glioblastoma
GHRHR Growth hormone-releasing hormone
GLO1 Glyoxalase I
G9a Euchromatic histone-lysine N-methyltransferase 2 (EHMT2)
HIF1α Hypoxia-inducible factor 1 alpha subunit
HIF2α Hypoxia-inducible factor 2 alpha subunit
hMLH1 Human mutL homolog 1
HR High-risk
hypo-5hmC Hypo-5 hydroxymethylcytosine
HuRCSC Kidney renal stem cell
H3K36me3 Trimethylation of lysine 36 of histone H3
IDH Isocitrate dehydrogenase
IDH1 Isocitrate dehydrogenase 1
IDH2 Isocitrate dehydrogenase 2
IGF1R Insulin-like growth factor 1 receptor
lncRNA Long noncoding RNAs
IR Intermediate-risk
IRX1 Iroquois homeobox 1
LCAT Lecithin-cholesterol acyltransferase
LATS2 Suppressor kinase of large tumors 2
LR Low-risk
LSMEM1 Leucine-rich single-pass membrane protein 1
MB Medulloblastoma
mm3 Cubic millimeter
mRNA Messenger RNA
MMP11 Matrix metalloproteinase-1
MRPL50 Mitochondrial ribosomal protein L50
MYCN Proto-oncogene, bHLH transcription factor
NDRG3 Neuregulin 3
NKD2 Naked cuticle homolog 2
NF-κB Nuclear factor kappa B
PCTAIRE1 Serine/threonine protein kinase (PCTK1)
PDAC Pancreatic ductal adenocarcinoma
PDCD4 Programmed cell death 4
PKIB CAMP-dependent protein kinase inhibitor beta
PPP1R3A Protein phosphatase 1 regulatory subunit 3A
PRC2 Polycomb repressive complex 2
PTEN Phosphatase and tensin homolog
p16ink Protein 16 ink
RAC3 Ras-related C3 botulinum toxin substrate 3
RCC Renal cell carcinoma
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RNA Ribonucleic acid
SETD2 SET domain containing 2, histone lysine methyltransferase
SLC26A2 The solute carrier family 26 member 2 (diastrophic dysplasia sul-

fate transporter)
SOX2-OT SOX2 overlay transcript
TESC Tescalcin
TET Ten-eleven translocation
TET1 Ten-eleven translocation 1
TET2 Ten-eleven translocation 2
TET3 Ten-eleven translocation 3
TFPI2 Tissue factor pathway inhibitor 2
TGF Transforming growth factor
TGFBI Transforming growth factor-beta-induced
TKTL1 Transketolase-like protein1
TIMP2 Tissue inhibitor of metalloproteinase 2
TRDN Triadin
v-myc Avian myelocytomastosis viral oncogene
VAV2 Vav guanine nucleotide exchange factor 2
VHL Von Hippel–Lindau gene
5fC 5-Formylcytosine
5cC 5-Carboxycytosine
5mC 5-Methylcytosine
5hmC 5-Hydroxymethylcytosine
50UTR 50 untranslated region
αKG α-Ketoglutarate
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