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Chapter

Dynamic Stiffness Method for
Vibrations of Ship Structures
Xuewen Yin, Kuikui Zhong, Zitian Wei and Wenwei Wu

Abstract

Initiated by the objective to address the dynamics of ship structures other than
conventional finite element method, a dynamic stiffness method (DSM) is proposed
systematically including that for three types of element models. A DSM element
accounting for both in-plane and bending vibrations in flat rectangular plates is devel-
oped, which makes it possible for modeling wave conversion across junctions in built-
up plates. In addition, a DSM element for stiffened plates is formulated, which con-
siders all possible vibrations in plates and beams, i.e., bending, torsion, and extension
motions. The third type of DSMplate element takes fluid loading into account, which is
induced by vibrating plate. Finally, the proposed DSMmethod is extended to address
vibration transmission in a built-up plate structure, which demonstrates the great
potentials of DSM in application to more practical andmore general engineering fields.

Keywords: dynamic stiffness method, FEM, power flow, beam-stiffened, ship
structures

1. Introduction

The vibrational and acoustic characteristics of ship structures are likely to be one
of a number of practical concerns not only to mechanical designers and research
scientists, but sometimes even to military defense officers. The reasons lie in the
following facts. Firstly, excessive vibration levels induced by operating machines or
incident waves can inevitably lead to structural fatigue, failure, or even unexpected
disasters. Besides, onboard vibration and noise are one of the most important
indexes on ship habitability. Too much exposure to such vibrational and noisy
environments can make ship crew members uncomfortable, fatigue, or even
unhealthy, which has been convinced from a lot of experimental data, and even
witnessed from many ship collision accidents. Last but not least, for naval ships,
their vibration and acoustic signals make them as attack targets during war time,
which also challenge the performances of onboard acoustic instruments.

Up to now, many numerical methods are developed and then utilized in
addressing the vibrational and acoustic characteristics of ship structures, which can
be found in numerous literatures. Among them are finite element method (FEM),
boundary element method (BEM), statistical energy method (SEA), and mesh free
methods, etc. Through intense academic efforts from engineers and scientists, and
also due to commercial operations from software developer, most them are coded
into commercial software, and comprehensively influent the way we design our
products almost covering all the engineering fields such as civil engineering, ship
and ocean engineering, chemical engineering, and etc. To some extent, we must
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confess that we, not only engineers, scientists, but product managers, or even
government officers, have underestimate the power of novel numerical methods
and how much they forge the manufacturing process in modern industries.

As for finite element method, it is one of the most successful numerical methods
in high fidelity modeling of the dynamic behaviors of complex structures. To the
best of our knowledge, SAP is the first commercial software. Soon after, other
software like ADINA, ANSYS, ABAQUS, NASTRAN, and DYNTRAN have been
developed and scattered in worldwide universities and industries.

However, like any other numerical methods, FEM has many inherent drawbacks
due to the way it discretizes the structures. For instance, to address the vibrational
responses in high frequencies, the mesh size must be as tiny as 1/6, or less, of the
structural waves so that it can accurately reproduce the dynamics of the structures.
However, such a meshing strategy is not always successful since too much finer
meshes need not only excessive computational costs, but also lead to unexpected
numerical uncertainties.

As for ship structures, the vibration of fluid-loaded plates or shells composes as a
very important part in the studies of many engineering structures [1–3]. One of the
major reasons lies in the fact that the dynamics of these structures depends on the
structures and the fluid simultaneously. The vibrating structures can induce pres-
sure disturbances in their surrounding fluid, and, in return, the resonance frequen-
cies and vibrational responses of the structures can be altered [4, 5].

Recently, dynamic stiffness method (DSM) has won great interests and received
intense studies [6–10] from research and design engineers because it can overcome
the above issues without too much geometrical discretization requirements. Various
DSM elements have been developed for transverse or in-plane vibrations of plates.
In the beginning, more research works were mainly focused on transverse vibra-
tions since bending modes are easily excited, especially in low frequencies. Dozens
of investigator [6–15] made comprehensive contributions on DSM that only
accounts for transverse vibrations of a plate with two opposite edges simply
supported. Later, Bercin and Langley [8, 9] proposed a DSM that incorporates both
in-plane and bending vibrations. It is reasonably expected that all these works are
only applicable to few specified cases due to oversimplified modeling assumptions.
To address the vibrations of more practical engineering structures, Casimir et al. [7]
developed DSM elements for a plate with completely free boundary conditions, in
which Gorman’s superposition method was employed to obtain the exact transverse
displacements. Banerjee and his colleagues [10–12] proposed the dynamic stiffness
matrix for a rectangular plate with arbitrary boundary conditions. Similarly to DSM
for bending plates with arbitrary boundary conditions, the dynamic stiffness matrix
for in-plane vibrations of plates is developed by Ghorbel et al. [15, 16], Nefovska-
Danilovic and Petronijevic [17, 18] in which all the four edges can be prescribed
with any arbitrary conditions by adopting Gorman’s superposition method.

Since the year 2016, Yin and his associates [19–21] have conducted comprehen-
sive studies on developing dynamic stiffness method and its application to the
dynamics of ship structures. Li et al. [19] proposed a dynamic stiffness formulation
accounting for both in-plane and bending vibrations of plates with two opposite
edges simply supported. This method was then employed for modeling vibration
transmission with built-up plate structures [22] and a ship cabin with complex hulls.
To consider the dynamics of stiffened plates, Yin et al. [21] extended Li’s formula-
tions and developed a dynamic stiffness method that considers torsion, bending,
and extension vibrations in beams with eccentric cross-sections.

The main objective of this work is to formulate the vibration analysis of ship
structures based on dynamic stiffness method that accounts for both in-plane and
bending vibrations within plate itself, all possible motions in stiffened beams,
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fluid-loading, respectively. The present paper is organized as follows. In Section 2,
this dynamic stiffness method is briefly summarized, which present the develop-
ment of the three types of models. In Section 3, our proposed method is demon-
strated by investigating the characteristics of representative plate structures.

2. Development of dynamic stiffness formulations

2.1 Model description

Figure 1 shows multiple rectangular plates in global coordinates OXYZ, which
are rigidly joined along their common edges. Each plate has dimension of Lx � Ly

and thickness of h. Its two opposite edges marked by the symbol ‘S-S’ denote simply
supported boundary conditions while the other two edges are arbitrary. In addition,
each plate is reinforced by uniform eccentric beams, and in contact with acoustic
fluid on its one side.

2.2 Development of plate element

Consider a vibrating flat plate in contact with acoustic fluid on its lower side,
which is made of isotropic material with Young’s modulus E, bulk density ρ,
Poisson’s ratio μ, and damping ratio η . Its governing equations for both in-plane and
bending vibrations can be written as,

∂
2u

∂x2
þ a1

∂
2u

∂y2
þ a2

∂
2v

∂x∂y
þ
mω2

B
u ¼ 0

∂
2v

∂y2
þ a1

∂
2v

∂x2
þ a2

∂
2u

∂x∂y
þ
mω2

B
v ¼ 0

D∇
4w�mω2w ¼ �pa x, y, 0ð Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(1)

Figure 1.
A built-up plate structure with beam stiffeners.
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pa is the induced acoustic pressure due to the bending vibration of the plate.
u, v and w are the displacements in x-, y- and z-directions. m and ω are mass per
unit area of the plate and circular frequency, respectively. The parameters a1 and
a2 in Eq. (1) are defined as

a1 ¼
1� μ

2
, a2 ¼

1þ μ

2
(2)

The extension rigidity B and flexural rigidity D can be found in Ref. [19].
According to Bercin and Langley [9], the displacements for the plate, which is

simply supported along its two opposite edges, can be expressed as N truncation terms,

u x, yð Þ ¼
P

N

n¼1
C1nλ1ne

λ1nx þ C2nλ2ne
λ2nx þ C3nkne

λ3nx þ C4nkne
λ4nx

� �

sin knyð Þ

v x, yð Þ ¼
P

N

n¼1
C1nkne

λ1nx þ C2nkne
λ2nx þ C3nλ3ne

λ3nx þ C4nλ4ne
λ4nx

� �

cos knyð Þ

w x, yð Þ ¼
P

N

n¼1
cos α1nxð ÞA1n þ sin α1nxð ÞA2n þ cosh α2nxð ÞA3n þ sinh α2nxð ÞA4nð Þ sin knyð Þ

if k2 ≥ kn
2,

:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(3)

And, if k2 < kn
2, the bending vibrations can be expanded as near-field disturbance,

w x, yð Þ ¼
X

N

n¼1

cosh α1nxð ÞA1n þ sinh α1nxð ÞA2n þ cosh α2nxð ÞA3n þ sinh α2nxð ÞA4nð Þ sin knyð Þ

(4)

where k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρω2=D
p

and kn ¼ nπ=Ly. Cmn,m ¼ 1, 2, 3, 4 and Amn,m ¼ 1, 2, 3, 4
are the unknown constants. Wavenumbers for in-plane and out-of-plane waves
take the following forms:

λ1n,2n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kn
2 � kL

2
p

, λ3n,4n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kn
2 � kT

2
p

k2 ≥ kn
2, α1n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � kn
2

p

, α2n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ kn
2

p

k2 < kn
2, α1n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kn
2 � k2

p

, α2n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kn
2 þ k2

p

8

>

>

>

<

>

>

>

:

(5)

where kL
2 ¼ ρω2 1� μ2ð Þ=E, kT

2 ¼ 2ρω2 1þ μð Þ=E.
Accordingly, the transverse shear force Qx perpendicular to xy plane, the bend-

ing moment Mxx, longitudinal force Nxx, and in-plane shear force Nxy along the
plate junctions can be derived as follows,

Qx ¼ �D
∂
3w

∂x3
þ 2� μð Þ

∂
3w

∂x∂y2

� �

Mxx ¼ �D
∂
2w

∂x2
þ μ

∂
2w

∂y2

� �

Nxx ¼ �B
∂u

∂x
þ μ

∂v

∂y

� �

Nxy ¼ �Ba1
∂u

∂y
þ

∂v

∂x

� �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(6)
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Based on Eqs. (3) and (6), for any nth mode, the generalized displacement

vector qn and force vector Qn are written as,

qn ¼

unjx¼0

vnjx¼0

wjx¼0

θn
�

�

x¼0

unjx¼Lx

vnjx¼Lx

wnjx¼Lx

θn
�

�

x¼Lx

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

¼

Ð

Ly

0

2

Ly
u 0, yð Þ sin knyð Þdy

Ð

Ly

0

2

Ly
v 0, yð Þ cos knyð Þdy

Ð

Ly

0

2

Ly
w 0, yð Þ sin knyð Þdy

Ð

Ly

0

2

Ly
θ 0, yð Þ sin knyð Þdy

Ð

Ly

0

2

Ly
u Lx, yð Þ sin knyð Þdy

Ð

Ly

0

2

Ly
v Lx, yð Þ cos knyð Þdy

Ð

Ly

0

2

Ly
w Lx, yð Þ sin knyð Þdy

Ð

Ly

0

2

Ly
θ Lx, yð Þ sin knyð Þdy

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8�1

, (7)

Qn ¼

Nn

�

�

x¼0

Tn

�

�

x¼0

Sn
�

�

x¼0

Mn

�

�

x¼0

Nn

�

�

x¼Lx

Tn

�

�

x¼Lx

Sn
�

�

x¼Lx

Mn

�

�

x¼Lx

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

¼

Ð

Ly

0

2

Ly
N 0, yð Þ sin knyð Þdy

Ð

Ly

0

2

Ly
T 0, yð Þ cos knyð Þdy

Ð

Ly

0

2

Ly
S 0, yð Þ sin knyð Þdy

Ð

Ly

0

2

Ly
M 0, yð Þ sin knyð Þdy

�
Ð

Ly

0

2

Ly
N Lx, yð Þ sin knyð Þdy

�
Ð

Ly

0

2

Ly
T Lx, yð Þ cos knyð Þdy

�
Ð

Ly

0

2

Ly
S Lx, yð Þ sin knyð Þdy

�
Ð

Ly

0

2

Ly
M Lx, yð Þ sin knyð Þdy

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8�1

(8)

Hence, the relationship between generalized displacements qn and generalized

forces Qn at any nth mode can be developed after simple matrix algorithm, which is

generally known as dynamic stiffness matrix Kn. Once the dynamic stiffness matrix
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is obtained, the dynamic responses resulted from excitations can be readily
achieved after solving linear equations like those in conventional finite element
methods [19].

2.3 Development of beam element

As shown in Figure 2, a beam with an eccentric cross section is located with
geometric center O and the shear center G. Based on classical beam theory, the
governing equations for the forced vibrations at line G� G0 are expressed as,

∂
2

∂y2
ErIz

∂
2ur
∂y2

� �

�mrω
2ur þmrω

2zGϕr ¼ Pr

Er
∂
2vr
∂y2

þ ρrω
2vr ¼ Nr

∂
2

∂y2
ErIx

∂
2wr

∂y2

� �

�mrω
2wr �mrω

2xGϕr ¼ Qr

GIt
∂
2ϕr

∂y2
þ I0ω

2ϕr �mrω
2xGwr þmrω

2zGur ¼ Tr

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(9)

where ur, vr and wr are the displacements in xr-, yr- and zr-directions, and ϕr is

the rotation about yr axis. Pr, Nr, Q r are the forces acting line G� G0 in xr-, yr- and
zr-directions, and Tr is the torsion moment about yr axis. Ix and Iz are the principle
moments of the beam’s cross-section about xr- and zr-axes. Er and ρr are Young’s
modulus and density of the material. mr is mass per unit length of the beam, i.e.,
ρrAr, where Ar is the cross-sectional area. G and I0 are shear modulus of the
material, polar moment of mass inertia with respect to shear center, respectively,
and It is cross-sectional factor in torsion.

Since the beam is attached to one edge of the plate, its motions are in the similar
forms as that expressed in Eq. (3) and can be readily written as,

Figure 2.
Schematic illustration of a beam: Geometric center G, shear center O; xG and zG are the offset between G and O

in xr-, and zr-directions, respectively.
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ur yr
� �

¼
P

N

n¼1
urn sin knyr

� �

vr yr
� �

¼
P

N

n¼1
vrn cos knyr

� �

wr yr
� �

¼
P

N

n¼1
wrn sin knyr

� �

ϕr yr
� �

¼
P

N

n¼1
ϕrn sin knyr

� �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(10)

Substituting Eq. (10) into Eq. (9), and utilizing the orthogonality relationship of
the modes, the vibration motions at the nth mode for the beam can be readily
derived,

ErIzk
4
n �mrω

2
� �

urn þmrω
2zGϕrn ¼ Prn

�ErAk
2
n þmrω

2
� �

vrn ¼ Nrn

ErIxk
4
n �mrω

2
� �

wrn �mrω
2xGϕrn ¼ Q rn

�GItk
2
n þ I0ω

2
� �

ϕrn �mrω
2xGwrn þmrω

2zGurn ¼ Trn

8

>

>

>

>

<

>

>

>

>

:

(11)

Without complex derivation procedure, Eq. (11) can be rewritten in a more
compact matrix form,

Frn ¼ Krn ωð Þqrn, (12)

where the dynamic stiffness matrix has the following expressions:

Krn ¼

ErIzk
4
n �mrω

2 0 0 mrω
2zG

0 �ErAk
2
n þmrω

2 0

0 0 ErIxk
4
n �mrω

2 �mrω
2xG

mrω
2zG 0 �mrω

2xG �GItk
2
n þ I0ω

2

2

6

6

6

6

4

3

7

7

7

7

5

:

(13)

2.4 Development of fluid-loaded element: acoustic pressure

The acoustic pressure satisfies the Helmholtz equation,

∂
2

∂x2
þ

∂
2

∂y2
þ

∂
2

∂z2

� �

pa þ k20pa ¼ 0, (14)

where k0 is the acoustic wavenumber. The boundary condition at the interface
between the plate and the fluid is expressed as

∂pa
∂z

� ��

�

�

�

z¼0

¼ ρ0ω
2w, (15)

where ρ0 is the density of the acoustic fluid. Since the acoustic pressure pa has
the following form:

pa x, y, zð Þ ¼ pa
�

�

�

� exp �j kxxþ kyyþ kzz
� �� 	

, (16)
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where pa
�

�

�

� is the amplitude of the acoustic pressure, and kx, ky, and kz are

wavenumbers for the acoustic waves. It is ready to obtain the expression for the
acoustic pressure at the plate-fluid interface,

pa x, y, 0ð Þ ¼

jρ0ω
2w

k20 � k2b
� �1=2

, if kb < k0 ,

�ρ0ω
2w

k2b � k20
� �1=2

, if kb > k0 :

8

>

>

>

>

<

>

>

>

>

:

(17)

It is noted that we have the expression k2b ¼ k2x þ k2y, where kb is the

wavenumbers for the structural waves propagating within the plates. For sake of
brevity, the relationship between the acoustic pressure at the fluid–structure inter-
face and the inertia terms due to the vibration of the plate, which is referred to as
fluid-loading parameter, can be rewritten as,

ε f ¼ pa x, y, 0ð Þ= mω2w½ � ¼

jρ0

m k20 � k2b
� �1=2

, if kb < k0 ,

�ρ0

m k2b � k20
� �1=2

, if kb > k0:

8

>

>

>

<

>

>

>

:

(18)

2.5 Dynamic responses of built-up plate structures

The dynamic stiffness matrices for the plate and the beam (in Sections 2.2 and
2.3) are expressed in local coordinates, which can be termed as local dynamic
stiffness matrices. With reference to the conventional finite element technique, the
dynamic stiffness matrix for each plate element and each beam element can be
readily assembled into overall global dynamic stiffness matrix. Hence, the dynamic
responses of a built-up structure composed of plates and beams can be solved
through novel numerical methods.

3. Numerical results and discussion

Without loss of generality, we only focus on the vibration transmission in a
built-up plate structure that is reinforced by stiffeners or plates. Numerical
results for the dynamics of plates with beam stiffeners based on our method can
found in [21].

3.1 Transmission modes within a plate stiffened by stiffeners

To demonstrate our method in addressing the vibration transmission within
complex built-up structures, a horizontal plate reinforced by a vertical plate, i.e.,
plate 2 is employed in this subsection. The detailed parameters of the plates are
listed in Table 1. The two opposite long edges of plate 1 is simply supported. One of
the free end of the plate, namely, left edge, is subjected to uniformly distributed
vertical forces of 1 N/m.

Yin et al. [22] identify that there are three representative transmission modes in
a stiffened plate. As the plate structures get more complex, similar phenomena can
be also found, in which a plate is stiffened by 9 identical plates. When the left side
of the plate is enforced with transverse force, three representative transmission
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modes can be clearly identified. In Figure 3(a), only the left local portion of the
plates is excited that implies bending waves cannot propagate effectively forward
due the presence of the stiffening plates. However, in some frequency regimes as
shown in Figure 3(b) and (c), bending waves can pass the stiffening members
freely. As frequency increases, the stiffening members act more like a barrier that
prevent structural waves propagate.

From Figure 3(a)–(d), we can convince that the vibration transmission
modes do exist in even more complex plate structures. In addition, we suggest to
explore the underlying mechanisms, if any, between these transmission modes
and the well-known pass band and stop band since vibration transmission is
probably one of the most important characteristics in complex plate structures,
e.g., ship structures, etc.

E (Gpa) ρ(Kg/m3) μ η Lx(m) Ly(m) h(m)

Plate 1 200 7800 0.3 0.01 6.0 1.0 0.008

Plate 2 200 7800 0.3 0.01 0.5 1.0 0.008

No beam stiffeners are considered in case 1.

Table 1.
Geometry and material parameters of the plates (case 1).

Figure 3.
Representative vibrational transmission modes of a stiffened plate: (a) 270 Hz, (b) 345 Hz, (c) 395 Hz, and
(d) 445 Hz.
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3.2 Vibrations of a ship hull in contact with water

Figure 4 shows a ship hull that is reinforced by eight beams with dimension
0:02m� 0:02m along the junctions of their neural planes. The ship hull has the
dimension of 6m� 4m� 2:4m and with thickness of 0.008m. The bottom of the ship
hull is in contact with water. About 1 N concentrated force is applied at the middle
point in upper plate and the response gauge is set at middle point in the bottom plate.

Figure 5 shows the curves for the vertical displacement obtained by FEM and
DSM, respectively. The truncation term N is set to 6 in DSM and the mesh size in
the FEM is 0:2m� 0:2m. It is indicated that satisfactory agreement can be found
between the results from DSM and those from FEM, which implies that our pro-
posed method can provide excellent numerical results for ship structures.

4. Conclusion

A DSM is proposed to address the dynamics of ship structures, which include
three types of elements. First, a DSM formulation for both in-plane and bending

Figure 4.
A ship hull reinforced with eight stiffeners.

Figure 5.
Vertical displacement at the middle point in the bottom plate.
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vibrations in flat rectangular plates is developed. Then, a DSM for stiffening beams
is addressed, which accounts for all possible vibrations in plates and beams, i.e.,
bending, torsion, and extension motions. Finally, a DS plate element with fluid
loadings included is formulated. The numerical results for the vibrations for a ship
hull based on the proposed DSM have excellent agreement with those results
obtained from FEM, which demonstrate its potential in addressing the dynamics of
ship structures. In addition, vibration transmission modes of a stiffened plate are
also addressed using this method.
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