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Abstract

Due to their potential application in the field of spintronics, the discovery of 
various types of oxide-based dilute magnetic semiconductors (ODMS) materi-
als that might work at practical room temperature ferromagnetism (RTFM) has 
recently attracted great attention. Among ODMS materials, transition metal™ 
doped tin oxide (SnO2) compounds are important for the investigation of ferromag-
netism due to its special important property such as high chemical stability, high 
carrier density, n-type behavior and trait long range ferromagnetism. However, the 
question of understanding the mechanism of ferromagnetism (FM) process is still 
not fully understood in these materials, due to unable to know exactly whether its 
FM property arises from the nature of the intrinsic property or secondary phases of 
the material. According to the results from many literature surveys, the mechanism 
of magnetic ordering responsible for magnetic exchange interaction in these materi-
als is highly affected by oxygen vacancy, defects, dopant types and concentration, 
temperature, sample preparation method and so on. In this chapter, we reviewed the 
mechanism of ferromagnetism observed of Ni, Mn and Fe-doped SnO2 materials.

Keywords: spintronics, diluted magnetic semiconductors (DMS), room temperature 
ferromagnetism (RTFM), TM doped tin oxide, oxygen vacancy and defect

1. Introduction

Current semiconductor-based electronics device uses only the electron charg-
ing property to perform a particular feature in which the electron spin degree is 
completely ignored [1]. The spin property of an electron which is associated with an 
intrinsic angular momentum of the electron provides new effects and new function-
alities to electronics materials based on Spintronics principle [2, 3]. Spintronics deals 
with the role played by the spin of an electron associated with its magnetic moment, 
as well as the charge degree of electron [4]. Spintronics devices have several impor-
tant applications compared to non-spin based electronics device, such as consume 
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less power of electricity, fast data processing speed, their memories are non-volatile 
[4]. Starting from metal-based technology, the research area of Spintronics shifted 
to the recent development of diluted magnetic semiconductors (DMS) materials 
which are compatible with standard semiconductor based electronics device. DMS 
are materials prepared through which a certain amount of the cations in a host 
semiconductor are partially replaced by transition metal ions (Mn, Ni, Co, Fe, Cr) 
as shown in Figure 1 [5] as a result the materials attains both semiconducting and 
magnetic property which is makes these materials advantageous and applicable 
for Spintronics application. The total ferromagnetic behavior of these materials is 
linked to the interaction of the spin of the magnetic ions with the itinerant carriers 
[6–8]. DMS are important materials in the sense that logic, communications and 
storage operation can be achieved within the same materials technology [9, 10]. The 
property of achieving RTFM is one of the most important factors that determined 
DMS material to be used for practical spintronics application [7], The sp-d exchange 
mechanism between the d states of the TM doping and sp free carriers as well as the 
double exchange mechanisms are the main factor in the production of ferromagne-
tism in ODMS materials between d states of TM ions [11]. Among DMS materials 
oxide based DMS materials such as TM doped with HfO2, TiO2, ZnO and SnO2 are 
more advantageous than normal DMS materials and have important magnetic 
properties arises from a large sp-d exchange interactions between the magnetic ion 
elements and band electrons [9, 10, 12, 13]. ODMS has important special properties 
such as having high n-type carrier concentrations wide band gap, light transparency, 
capability to be grown at low temperatures, ecological safety and cheap [14–16]. 
Due to its n-type semiconductor, good conductivity, high carrier density and high 
chemical stability, SnO2 doped with TM is particularly promising materials for 
spintronic applications [17, 18]. SnO2 naturally existing in cassiterite form and it has 
tetragonal rutile structure and its wide band gap is about 3.6 eV [19, 20]. SnO2 has 
many technological applications, including gas sensors, solar cells, heat reflectors, 
lithium ion batteries and other optoelectronic devices [21–23].

2. Ferromagnetism in oxide-based DMS

In the recent years the research field of RTFM in O-DMS has got more attention 
and many kinds of compounds have been discovered [24]. However, the idea behind 
the original source of ferromagnetism in these materials is not well understood 
a not complete it becomes the most challenging area in solid state physics [25]. 
Several groups have stated that the mechanism behind ferromagnetism in most 
O-DMS materials is the material’s intrinsic property itself or the direct and indirect 

Figure 1. 
Schematic view of a non-magnetic (left) semiconductor and a diluted magnetic semiconductor (right) [5].
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interaction between only magnetic impurities and magnetic impurity ions through 
oxygen vacancies [10, 26–30]. Recently, various experimental methods have been 
used to study the magnetic properties of DMS materials, in particular the vibrating 
sample magnetometer (VSM), the superconducting quantum interference device 
(SQUID), the physical property measurement system (PPMS) and the electron 
spin resonance (ESR) techniques. According to the results from many literature 
indicated that sample preparation, growth conditions, dopant type and concentra-
tion, co-doping effect, oxygen vacancies, defects and crystal structure has played a 
role for the magnetic behaviors observed in ODMS material [31–37]. Some scholars 
reported that vacancy-induced magnetism has been played a major role for the 
observed ferromagnetism in undoped SnO2 [38]. In some cases SnO2 thin films 
does not shows RTFM when doped with 3d cations rather show when doped with 
Mn, Cr, Fe, Co, or Ni [39–41]. Similarly undoped SnO2 did not shows FM behavior. 
However, the doped SnO2 shows FM behavior at higher doping level completely 
removes the ferromagnetic behavior of the doped one [31, 42]. As shown in Figure 2 
the improvement of magnetization by co doping (Ni-Mn, Fe-Co, Fe-Ni and Fe-Mn) 
in tin oxide has been reported and the mechanism of FM is due to double exchange 
interactions occur via oxygen vacancies [11, 43]. The electronic or lattice defects of 
the materials associated with the intrinsic nature of the materials can be responsible 
for the high temperature FM of TM doped SnO2 [39]. Despite much experimental 
success, the idea behind FM in most O-DMS is controversial. Here, we present a 
brief review of the Fe, Ni and Mn Doped SnO2 system experimental work.

2.1 Ferromagnetism in Mn-doped SnO2

Mn-doped SnO2 is an excellent candidate and promising materials for RTFM 
study, but only very little work has been reported so far compared to others. Among 
other preparation methods sol-gel preparation technique is best method for prepa-
ration of TM doped SnO2 thin film and nano structures [44, 45].

2.1.1 Experimental

SnMnO2 thin film is prepared by sol-gel method according to the literature 
reported [44]. The solution was prepared by dissolving a certain amount of tin tetra-
chloride SnCl4 and manganese nitrate hydrate [Mn (NO3)26H2O] in distilled water and 

Figure 2. 
M-H curves of (Ni-Mn) co-doped with SnO2 [11].
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ethanol respectively and stirring for 5 hour and aging for at least a week, the prepared 
solution was spin-coated on silicon substrate and heated at 120°C for 25 min. The film 
precursors were obtained after multilayer coating. Finally, to obtain SnMnO2 thin 
films, the precursors of films were calcinated in atmospheric air at 5000°C for an hour.

As reported by Tian et al., the chemical co-precipitation method was used to 
synthesize Mn doped SnO2 nanoparticles [46]. First, appropriate quantities of SnCl2 
and manganese acetic acid were dissolved in ethanol solution, then a few drops of 
HCl solution were applied to ensure dissolution. Then a 10 M ammonium bicarbon-
ate solution with continuous stirring at 60°C was applied to the mixture solution 
until a pH of 9 was reached. After being distributed by ultrasonic for 15 min to get 
nano-crystalline powders. The resulting precipitation washed to clean the impuri-
ties and dried in air at 150°C. Finally, the nano crystalline powders were sintered 
in the air for 3 hours. X-ray diffraction (XRD) recorded the crystal structure of the 
synthesized SnMnO2 thin film as shown in Figures 3 and 4. The study magnetiza-
tion property and RTFM were performed using a superconductive quantum inter-
ference device (SQUID) and vibrating sample magnetometer (VSM) respectively.

2.1.2 Result and discussion

According to various reports, the origin of the observed FM in Mn-doped SnO2 
depends on a number of factors; some reported that Mn- SnO2 prepared by PLD 
method exhibits the only paramagnetic behavior [47]. Similarly, others reported that 
the dopant Mn does not contribute any role for the observed FM behavior of Mn-doped 
SnO2 films; it is assumed that oxygen vacancies and defects are the main factors con-
tributing to the FM order in the system as shown in Figure 5 below [48]. Others report 
on Mn-SnO2 powders confirmed that the observed FM property is likely the results 
from oxygen vacancies, and Mn doping has only a significant role of the observed 
source of RTFM in the materials [49]. High level of Mn dopant can degrade the FM 
behavior where as small doping concentration intrinsic defects can act as a source of 
the FM in Mn-doped SnO2 due to a very large magnetic moment [39]. On the other 
hand, a study reported on Mn doped SnO2 nanoparticles shows sintering temperature 
and doping concentration can affects the magnetism of the materials system [46]. As 
shown in Figure 7 that Mn-doped SnO2 powder that concentration of Mn ion contrib-
utes to a decrease in the average magnetic moment of magnetic ions, this is due to the 
competition between the super-exchange antiferromagnetic coupling and the F-center 
coupling mechanism [50]. Similarly, other research on Mn-doped SnO2 thin films 

Figure 3. 
XRD patterns of SnMnO2 films [44].
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synthesized by sol-gel method show that dopants and electronic cloud interactions play 
a significant role in establishing FM [44]. The ferromagnetic property of Mn doped 
SnO2 confirmed that BMP’s overlapping, oxygen vacancies and F-center exchange 
interaction are the cause for the existence of ferromagnetic behavior in in pure and 
doped Mn doped SnO2 materials [51]. The increment of Mn concentration lead to the 
decline of magnetic moment of the origin of ferromagnetism behavior in Mn-doped 
SnO2 films is explained BMP and the average magnetic moment per Mn concentration 
decreases with increasing Mn content [44]. Overall, the origin of FM in Mn doped 
SnO2 system is still controversial and there is no such exact cause FM in this material.

2.2 Ferromagnetism in Fe-doped SnO2

2.2.1 Experimental

Rodrı et al. reported that Fe-SnO2 thin films on the LaAlO3 subtract were synthe-
sized with PLD techniques. The doped SnO2 target was synthesized with metallic 
Fe powders and SnO2. The powders were mixed with a ball-mill for 2 minutes, 

Figure 4. 
XRD patterns of SnMnO2 nano particle [46].

Figure 5. 
RTFM for undoped and Mn doped tin oxide thin films, room temperature ferromagnetism.
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then pressed uniaxially (200 MPa) into a disk and finally sintered at 1000°C [52]. 
The crystallographic structures of the prepared Fe doped SnO2 were determined 
by X-ray diffraction (XRD) and the magnetic measurements were performed with 
superconducting quantum interference device (SQUID).

2.2.2 Result and discussion

There have been reports of Fe doped SnO2 in which the ferromagnetic interac-
tions between magnetic impurities mediated oxygen or free carriers in the Fe 
doped SnO2 system responsible for forming FM. Similarly, defects in undoped SnO2 
semiconductors may contribute to the observed ferromagnetism [33, 53]. Similarly 
both undoped and Fe-doped SnO2 thin films shows the observed FM property 
is due to oxygen vacancies near Fe increased the magnetic moment, the RTFM 
behavior observed in the SnO2 film must be associated with the sample shape or to 
defects incorporated during film growth and, part of the magnetism observed in 
SnO2 as shown in figure [52]. The results from Fe-doped SnO2 powders prepared by 
polymerized complex method confirms that the annealing temperature contributes 
to decline of magnetic saturation which is related to the defects rather than from 
dopant iron sites shown in Figure 6a below [54, 55] the existence of vacancies 
and defects in the grain boundaries and interfaces in Fe doped SnO2 nanoparticles 
leads to decline the ferromagnetic behavior of system [56]. The decrease in Fe 
ion’s magnetic moments, with their doping concentrations increasing, The super-
exchange interaction may result in the interaction between neighboring TM-ions 
of the anti-ferromagnetic form, resulting in the observed decrease in the magnetic 
moment with increased concentration of TM as shown in Figure 10 [57]. The work 
of the other group reporting shows that the lattice distortion induced by co-doping 
Fe-SnO2 enhance ferromagnetic saturation magnetization of the compared with not 
co-doped one [26]. As shown in Figure 7 oxygen vacancies has a great impact on the 
FM property of Fe doped SnO2 [58]. The ferromagnetic behavior of Fe-doped SnO2 
thin films is caused by the coupling of ferric ions through an electron trapped in an 
oxygen vacancy [59]. In some cases the introduction of iron in semiconducting nano 
particles SnO2 is responsible for appearance of paramagnetic behavior of the system 
that is due to weak antiferromagnetic interaction [60]. The decline of antifer-
romagnetic interaction in Fe-SnO2 nano particles was reduced by the increment of 
Fe concentration [61]. Some study reported that the magnetic properties Fe-doped 
SnO2 nano powders shows that the an increased Fe concentration leading to the 
reduction of oxygen-related vacancy changes magnetic property to paramagnetic 

Figure 6. 
Fe doped SnO2 magnetic hysteresis annealed for certain hours at different temperatures [54].
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system as shown in Figure 8 and the FM interactions is based on Bound Magnetic 
Polarons (BMPs) formation [62]. Sometimes the host systems SnO2 and SnO doped 
with Fe during sample preparation can affect the observed magnetic properties of 
the system [63]. Another study confirms that changes in temperature play a role in 
the magnetic transition from paramagnetic to ferromagnetic behavior at ambient 
temperatures and low temperatures.

2.3 Ferromagnetism in Ni doped SnO2

2.3.1 Experimental

As reported in the literature SnNiO2 films were prepared by sol-gel method [64] 
the same procedure as [44]. The solution was prepared by dissolving SnCl4 and 

Figure 7. 
Sn1−x FexO2 film hysteresis loops with different concentration at 300 K. The inset is the difference in the 
concentration of Fe doping in saturation magnetization [58].

Figure 8. 
RT magnetization versus magnetic field curves for the Fe-doped SnO2 nano powders [62].
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NiCl2·6H2O in distilled water and ethanol. For the film preparation, to get the thin 
films the solution was spin-coated on silicon substrate. As reported by [57] undoped 
and Ni doped SnO2 prepared using a method of co-precipitation, the solution 
was prepared by dissolving SnCl4.5H2O and NiCl2.5H2O properly into de-ionized 
water. After the white precipitates were obtained, ammonium hydroxide (NH4OH) 
was added with stirring to the solution. The resulting mixtures were washed with 
de-ionized water to remove unwanted ionic impurities that may develop during the 
process of synthesis. Such washed precipitates were dried in air and Ni doped SnO2 
powder products were eventually obtained.

Detail crystallographic structures of the prepared SnNiO2 thin films and pow-
ders were carried out using XRD and the details of the magnetic properties were 
probed by vibrating sample magnetometer (VSM) measurements.

2.3.2 Result and discussion

According to recent experimental investigation of RTFM on Ni doped SnO2 has 
made it important and promising materials for spintronics application [64–68]. The 
observed FM in these materials is linked to oxygen vacancy and structural defects 
of the materials [67]. In some cases, nano-crystalline Ni doped SnO2 exhibits 
Paramagnetic character [68]. As shown in Figure 9 the super-exchange interaction 
may result in an anti-ferromagnetic type interaction between neighboring TM-ions, 
resulting in a decline in magnetic moment with an increase in TM concentration 
[57]. In some studies the introduction of more Ni doping concentration leads for 
reduction of magnetic moment Ni ion of because the antiferromagnetic super-
exchange interaction among closest neighbor in Ni2+ ions in Ni doped SnO2 samples 
the BMP model can explain for RTFM on these systems on the other hand nickel 
(Ni) doped SnO2 powder shows a substitution of Sn atom by Ni atom interstitially 
lead to the appearance of diamagnetic state [64]. Kuppan et al. shows that oxygen 
vacancy around magnetic impurity plays a major role in establishing ferromagne-
tism in Ni doped SnO2. Nevertheless, saturation magnetization slowly decreases 
with a persistent rise in Ni doping concentration [68]. Thus we strongly feels that 

Figure 9. 
The RTFM hysteresis of SnFeO2 and SnNiO2 at different doping concentration [57].
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the oxygen vacancy and or defects in the Ni doped SnO2 system. Similarly a report 
from Ni-doped SnO2 nanoparticles synthesized by a polymer precursor method 
demonstrated that doping small amount of Ni doping concentration can push 
defect-related FM while introducing high Ni concentration favors the paramagnetic 
phase stabilization [70]. Similarly oxygen vacancy and defects on Ni doped SnO2 
thin film contribute for the formation RTFM [71]. As shown in Figure 10 some 
studies have confirmed that Ni ions doping creates numerous defects or oxygen 
vacancies in SnO2 nanoparticles in order to introduce RTFM in SnO2 nanoparticles 
[69]. Some reported that substrates on thin film deposition have a strong impact on 
the magnetic moment of these material and the result confirmed that that FM in 
the films is as result of the doped matrix grown in different substrates [65]. In some 
cases the decrease of magnetic moment of per Ni ion is observed with the intro-
duction of more dopants Ni ions that is associated with antiferromagnetic super-
exchange interaction between in Ni ions in the system [64, 72]. Some reported that 
the mechanism of the observed FM in nickel (Ni) doped tin oxide thin films can be 
explained in bound magnetic polaron (BMP) mode [73].

3. Conclusion

Most of the results reported in the review shows that the perfect mechanism of 
induced FM in Mn, Fe and Ni doped SnO2 is related to the intrinsic nature of the 
material itself, especially oxygen vacancies and defects of the crystal formed during 
sample preparation and doping magnetic impurity influence the magnetism of the 
systems. Even though, a different type of FM is reported. However, the different 
reported results are contradictory with each other and further research is needed to 
bring new solution for the contradiction idea behind FM.

Figure 10. 
Room temperature magnetization for pure and Ni doped SnO2 NPs [69].
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