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Abstract

In the normal peripheral nervous system, Schwann cells (SCs) are present in 
two different states of differentiation: myelinating SCs that surround large-caliber 
axons, forming myelin sheath, and non-myelinating SCs that surround more 
small-caliber axons forming Remak bundles. Under pathological conditions (injury 
or inflammation), SCs, with a remarkable plasticity, undergo phenotypic transfor-
mations, downregulating the production of myelin proteins mRNAs, upregulating 
neurotrophic factors and cytokines, thus promoting the axonal regeneration. 
Dedifferentiated SCs activate the protein degradation, participating in the demy-
elination process and clearance of myelin debris; attract macrophages helping 
wound healing; proliferate to replace lost cells; guide axonal growth; and protect 
against secondary axonal damage. Thus, SC functions have a critical contribution to 
regeneration processes that occur in peripheral nerve after injury.

Keywords: Schwann cell plasticity, dedifferentiated Schwann cells, peripheral nerve 
regeneration, myelin recovery

1. Introduction

Schwann cells (SCs) are glial cells present in the peripheral nerve system (PNS). 
The name was given in honor of the German scientist Theodore Schwann, who 
discovered them in the nineteenth century [1] although they were not the main 
subject of his research. At that time it was thought that this type of cells is very com-
plex and that the cells merge to supply peripheral nerves. Ramon y Cajal, only about 
100 years later, discovered the true structure of the peripheral nerves, composed of 
axons and SCs that are in a symbiotic connection with it [2]. In the following years, 
with the evolution of electron microscopy, the study of SC morphology has devel-
oped continuously, leading to a better understanding of their complex biology.

It is known that nerves in PNS are much easier to regenerate than those in the 
central nervous system (CNS). Ramon y Cajal sensed very well that there is a 
“symbiosis” between the axon and the Schwann cells. Kidd et al. [3] described the 
Schwann cell as one of the largest and most complex cells in the body, which can 
develop and evolve rapidly after injury. The origin of the Schwann cell is in the 
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neural crest, and this differentiation is made by the regulation of Sox10 but also in 
the presence of Notch and endothelin signaling [4, 5].

After a peripheral nerve lesion, a series of cellular changes occur at both axons 
and Schwann cells, a phenomenon known as Wallerian degeneration: axonal degen-
eration and myelin destruction, followed by a dedifferentiation (an immature-like 
phenotype of SCs) and proliferation of Schwann cells [6].

The purpose of this chapter is to highlight the extremely important role of the 
Schwann cell in the regeneration of the peripheral nerve and its extraordinary 
plasticity in order to ensure this phenomenon.

2. Peripheral nerve injury

What does peripheral nerve injury mean? This could mean a mechanical trauma, 
transection or crush, or a pathological condition, when could be affected sensory 
nerves, motor nerves or autonomic nerves. A peripheral neuropathy may affect one 
or many nerves, axon, or myelin in the first stage.

In the nerve transection, all nerve fibers are affected, while in a disease 
manifestation, only a number of nerve fibers are affected, others being normal 
(Figures 2A and 4).

Very briefly, in peripheral neuropathies, it may be an axonal primary damage or 
a myelin sheath primary damage. After a period both components of the nerve fiber 
are affected.

Primary axonal degeneration, whether it is nerve transection or a pathological 
manifestation, is essentially the same: it starts with a Wallerian degeneration in the dis-
tal part of nerve (Figure 1), following the myelin destruction. On semithin transverse 

Figure 1. 
Wallerian degeneration. After injury, axon and myelin sheath in the distal stump degenerate. Macrophages 
migrate to the site of lesion and with proliferating Schwann cells remove myelin debris. After the debris 
has been removed, dedifferentiated Schwann cells align forming bands of Bungner, guiding axonal sprout 
regeneration.
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sections (Figure 2B and C) and in electron microscopy images (Figure 3), the affected 
nerve fibers are seen to be in a process of necrobiosis. In electron microscopy images, 
autophagic vacuoles are seen, near the axon (Figure 3A) or in the exterior layer of SC, 

Figure 2. 
Peripheral nerve pathological modifications (sural nerve biopsy): (A) a very mild affected nerve, with a 
normal fiber density; some myelinated fibers with small and medium mean diameter with demyelination;  
(B) a severe axonal destruction, with disappearance of many large diameter axons and with a low-fiber 
density; a degenerated axon is present; (C) many degenerated axons and demyelination present in the rest of 
myelinated fibers; (D) a very severe neuropathy with disappearance of most of the myelinated fibers; (E) some 
small myelinated axons with onion bulbs; (F) a hypermyelinated fiber in an HNPP case (tomacula) in the 
center of the image; (G) regeneration aspect: cluster of small axons (arrow). Semithin cross sections stained 
with toluidine blue; (under oil immersion – 60× Objective).
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under the basal lamina (Figure 3B and C) and macrophages (Figure 3D). After the 
destruction of the nerve fiber, only irregular structures of myelin residues can be seen 
(Figure 3E) or myelin debris like ovoids and balls (Figure 4B and C). If it is a chronic 
process, many nerve fibers disappear, the density of myelinated fibers being very low 
(Figure 2D and E). When the myelin is affected in the first step, not all Schwann cells 
are suffering in the same time. One internode with a very thin sheath between two nor-
mal internodes may be observed: segmental demyelination (Figure 4A and B). When a 
myelin protein, PMP22, is genetically affected, in hereditary neuropathy with pressure 
palsies (HNPP), the nerve biopsy shows demyelination and focal hypermyelination 
structures, tomacula (sausage-like) (Figures 2F and 4D). In hypertrophic neuropa-
thies, like Charcot-Marie-Tooth disease type 1A (CMT 1A) and chronic inflammatory 
demyelinating polyneuropathy (CIDP), some structures named “onion bulbs” are 
present, a result of concentric layers of Schwann cell processes and collagen around the 
axons (Figure 2E). It is a repetitive segmental demyelination and myelin regeneration.

Figure 3. 
Electron microscopy aspects of axonal degeneration (sural nerve biopsy). (A) A myelinated axon showing an 
autophagic vacuole between axon and myelin sheath. (B) A myelinated axon with an autophagic vacuole 
in the Schwann cell exterior cytoplasma: small myelin debris are seen. (C) The same aspect: an autophagic 
Schwann cell with many smaller or bigger fragments of myelin inside. (D) A macrophage with lipid droplets 
is present near myelinated axons. (E) Total myelin degradation; only irregular laminated structure is present, 
with no axon (cross sections; bar = 2 μm).
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After a segmental demyelination, along the affected internode, several Schwann 
cells arrive which begin to remyelinate this portion, the sign of remyelination being 
more short internodes (Figure 5).

The sign of axonal regeneration is observed on semithin sections and consists 
of the presence of some clusters of axons with the same small mean diameter and 
thinner myelin sheath (Figure 2G).

After these images sowing just few aspects of pathological degradation of 
peripheral nerve, focusing on myelin sheath damage, let’s take a closer look at what 
happens in the Schwann cell, at the cellular and molecular level.

3. Myelin protein gene expression in peripheral nerve after injury

Investigating the evolution of the main proteins that enter the composition of 
myelin sheath during and after nerve injury has been a subject of study for many 

Figure 4. 
Teased nerve fiber (sural nerve biopsy) panel. (A) A nerve fiber with segmental demyelination near two other 
normal myelinated fibers. (B) Near normal fibers, a fiber with segmental demyelination (a thin internode) 
and a fiber with few myelin ovoids and balls (axonal degeneration). (C) More myelin ovoids in an axonal 
degeneration. (D) A tomacula in myelin sheath of a nerve fiber.

Figure 5. 
Peripheral nerve remyelination. In demyelinating peripheral neuropathies, the segmental demyelination is 
often seen. Following a Schwann cell degeneration, the lost myelin internode is replaced by some Schwann cells 
which generate myelin sheaths, resulting in many shorter internodes.
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scientists. These proteins are P zero (P0), myelin basic protein (MPZ), and P2. 
The first two play an important role in maintaining the integrity and compactness 
of the myelin sheath. P2 is a lipid-binding protein and participates in fatty acid 
elongation and transport during the myelination process [7]. Myelin associated 
glycoprotein (MAG) is a transmembrane protein that is found in the periaxonal 
region and participates in SC-axon contact organization. It seems to be involved 
in the myelination process after injury [8]. P0 and MBP mRNA in the distal nerve 
portion after transection were found to be 20% lower than normal levels but have 
had normal levels after crushing [9, 10]. In the absence of a contact between SCs 
and the axon, the levels of mRNAs of P0 and MBP remained low, and mRNA of 
MAG was undetectable, long time after nerve transection, whereas MAG mRNA 
was undetectable after lesion; in the case of a crush injury, after a sudden and 
short decrease, the mRNA levels of these proteins were found to increase rapidly 
afterwards [10, 11].

4. Biological aspects of Schwann cell

To understand what plasticity of Schwann cells means, we need to understand 
what the starting point is for their differentiation and evolution.

4.1 Schwann cell differentiation and development

During development, SCs surround bundles of axons and support them to out-
grow by releasing growth factors such as nerve growth factor (NGF), glial cell line-
derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), 
and neurotrophin (NT3) [12–14]. It follows a “radial sorting” of axons by extension 
of cellular process from Schwann cells, which begins to divide axon bundles into 
smaller ones and finally separate the neighboring axons with cell cytoplasm. Thus 
two types of fibers are formed: (i) unmyelinated Remak fibers, in which SC sur-
rounds several small-sized axons (sensory and autonomic) and does not produce 
myelin, and (ii) myelinated fibers in which each large-sized axon is surrounded by 
a SC cell, 1:1 relationship, and a myelin sheath is formed by SC membrane spirally 
wrapping the axon [15]. Mesaxon is termed the point where the plasma membrane 
apposition is formed where the first encircling process meets itself. Remak SCs 
maintain the proliferative capacity of all the life [16].

During this stage, changes in cell morphology and gene expression occur, medi-
ated by the transcription factor Krox-20 (or Egr-2) [17–19].

4.2 Interactions between Schwann cells and axons

The differentiation of Schwann cells is controlled by some growth factors among 
which the most important are in the neuregulin family. Neuregulins (Nrgs) are trans-
membrane proteins that signal through ErbB tyrosine kinase receptors [20]. Axonal 
neuregulin-1 (Nrg1), produced in many isoforms by alternative splicing (heregulin, 
glial growth factor, sensory and motor neuron-derived factor), interacts with ErbB2/
ErbB3 receptors tyrosine kinase expressed on Schwann cells [21–25]. ErbB2 and 
ErbB3 combine to act as heterodimers and efficiently bind Nrg1. Nrg1/ErbB signal-
ing axis has a critical role in Schwann cell development (for review [26–28]) like 
survival, proliferation, migration, differentiation, and myelination [26, 29–32].

Nrgs need protease involvement for Nrg1-ErbB interactions because Nrgs are 
synthesized as single-pass transmembrane proteins and shed from the cell surface 
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by the proteolytic cleavage, thus permitting the interaction with ErbB receptors 
across the periaxonal space [33, 34].

Another enzyme implicated in Nrg1 cleavage is beta-amyloid converting enzyme 
(BACE1), a beta-secretase present in axon [35, 36]. An in vivo study showed that 
the BACE1-null mice presented reduced rates of Nrg1 cleavage and decreased PNS 
myelin, a low capacity of myelination with axons with a thinner myelin sheath [35].

An effect opposite to the BACE activity has tumor necrosis factor-alpha-con-
verting enzyme (TACE), a neuronal alpha-secretase, cleaving Nrg1 into an inactive 
form [37]. TACE genetic inactivation in motor neurons caused hypermyelination 
like in Nrg1 overexpression.

Another factor that is essential in SCs-axon interaction, with a protection 
role for the axon, is Schwann cell basal lamina. The basal lamina together with 
extracellular collagen fibrils protects axons from extension and compression 
injuries. They provide good support for axonal outgrowth and guidance (reviewed 
by [38]). Basal lamina defines also Schwann cell orientation in axonal myelination 
[39]. More of this, SCs require axonal contact for secreting the components of 
basal lamina, so the relationship of axon-SCs via basal lamina is interactive and 
reciprocal [40, 41].

All these interactions described above are very important and may be modulated 
in the control of nerve regeneration.

5. Schwann cell plasticity

PNS has a very good regenerative capacity, and this is largely due to Schwann 
cells that develop a high plasticity and can contribute very quickly to the regen-
eration of peripheral nerves after injury whether it is a trauma or a pathological 
condition. In these cases, SCs have the ability to transform into an immature-like 
form, which drives subsequent regeneration of the nerve. These processes of 
dedifferentiation into non-myelinating cells and redifferentiation after injury are 
characteristic of these glial cells in PNS, and in the last decade a significant progress 
has been made in the study of the molecular mechanisms and signaling pathways 
that regulate this plasticity (reviewed in [42]). More of this, the myelinating and 
non-myelinating SCs remain bipotential cells all the time, as demonstrated by graft-
ing or nerve cross anastomosis experiments [43–45]. Many experimental studies 
on transgenic animals have shown that after nerve cut or crush, both types of SCs 
reprogram into proliferative progenitor-like repair SCs [46, 47]. This phenomenon 
involves downregulation of pro-myelinating genes, such as early growth response 
2 (Egr-2 or Krox-20), POU domain class 3 transcription factor 1 (Pou3f1 or Oct-
6), and myelin protein zero (MPZ)/myelin basic protein (MBP). There is also an 
upregulation of markers of dedifferentiated (immature) SCs like low affinity neu-
rotrophin receptor (p75NTR), c-Jun, or glial fibrillary acidic protein (GFAP) [6].

After Wallerian degeneration following nerve injury, a downregulation of pro-
myelinating genes occurs, and the myelin clearing phenomenon begins after myelin 
sheath disorganization, through a mechanism of autophagy or myelinophagy [48]. 
Macrophages also participate in this process, phagocytosing myelin and axonal 
debris. The recruitment of macrophages is also done by SCs [49–51].

One of the major problems of human SCs is that as their regenerative capacity 
decreases in time, they can no longer sustain axonal growth, and their numbers 
decrease greatly (reviewed in [52]).

Regarding the plasticity of Schwann cells, although not covered by this chapter, 
we just want to mention here that SC precursors can generate many and different 
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cell types during embryogenesis, besides myelinating and non-myelinating SCs, 
such as endoneurial fibroblasts, melanocytes, and neurons [52].

5.1 Schwann cell dedifferentiation

After injury, SCs reacquire some capabilities from early development, like pro-
liferation, production of growth factors, sorting, and myelination. A good review 
regarding the biology of Schwann cells is the one made by Kidd et al. [3].

SC behavior and fate is regulated by two sort of interactions: SCs-axon and SCs-
extracellular matrix/basal matrix. After 48 hours following axonal transection, SCs 
downregulate the production of myelin protein mRNAs [53] and upregulate trophic 
factors and cytokines [12–14] like NGF, BDNF, GDNF, and LIF, molecules necessary 
in axonal regeneration promoting into distal stump (reviewed in [54]). After axonal 
injury/transection, the axon is rapidly destroyed by a nonapoptotic autonomous 
mechanism [55]. SCs begin myelin degradation after axon injury, disassembling first 
the myelin internode starting with Schmidt-Lantermann incisure swelling [56, 57], 
following the dissolution of myelin in bubbles, ovoids, and balls. Macrophages finish 
the myelin degradation by phagocytosis [58]. It is not known exactly how much 
the SCs contribute to myelin degradation compared to macrophage participation, 
but it seems that it depends on the volume of the internode [59, 60]. During myelin 
degeneration, changes occur in the SC microtubule network, lysosome, and endo-
some positioning [61].

After nerve crush or transection, between the two stumps, over the lesion site, 
fibroblasts form a bridge, interacting with SCs [62]. The newly formed vasculature 
participates also in guiding the growing axons through this bridge to the distal end 
[63]. After a period of persistence of distal nerve stumps, distal axons disappear 
and dedifferentiated SCs proliferate, align, and begin emitting processes, forming 
the bands of Bungner (Figure 1), offering a physical and trophic support for the 
regrowth of axon [44, 60].

After the axonal regeneration, SCs differentiate once more in non-myelinating 
and myelinating cells to finish the functional recovery of the nerve. The regenerated 
myelin internodes (Figure 5) are shorter and thinner than the rest of the original 
ones in the proximal part of nerve [64].

5.2 Molecular mechanisms which control SC plasticity

The molecular mechanisms that regulate SC plasticity are very complex and 
widely described in many studies in recent years (reviewed in [42]). Here we will 
briefly mention them.

5.2.1 Transcriptional factors

One important transcriptional factor in SC reprogramming is c-Jun. Although it 
is downregulated or absent in the differentiation of SC, under pathological condi-
tions c-Jun is particularly upregulated as described in various peripheral neuropa-
thies [65–69], being a cross-antagonist of Krox-20 (a pro-myelinating transcription 
factor). c-Jun take part at the myelinophagy process [47] and participate also in the 
macrophage recruitment following nerve injury [70].

Another transcriptional regulator is NICD, an intracellular domain generated 
from neurogenic locus notch homolog protein (Notch) cleavage. SC proliferation 
and generation of immature SCs are controlled by Notch. But the same Notch is a 
negative regulator of myelination [71].



9

Schwann Cell Plasticity in Peripheral Nerve Regeneration after Injury
DOI: http://dx.doi.org/10.5772/intechopen.91805

Nuclear factor kB (NF-kB), a transcription factor which regulates many physi-
ological processes especially the inflammatory response, is very important for SC 
differentiation and myelination as in vitro studies showed [72–74].

In the recent years, a transcriptional repressor, Zeb2, has been investigated, and 
the researchers showed that it is implied in SC differentiation and myelination. The 
lack of Zeb2 in SCs results in a failure of SC maturation and in absence of myelin 
membranes [75].

Other factors which are overexpressed in SC dedifferentiation are Sox-2, paired 
box protein 3 (Pax-3), early growth response proteins 1 and 3 (Egr-1 and Egr-3), 
and DNA-binding protein inhibitor 2 (Id2) [66, 76, 77]. Sox-2 is also necessary for 
the nerve bridge formation after nerve injury [62].

mTOR complex 1 (mTORC1) (reviewed in [78]) has a significant role on the 
transcriptome by controlling transcription factors [79–82]. It promotes anabo-
lism, counting mRNA translation, and purine and pyrimidine synthesis [83, 84]. 
mTORC1 is necessary in radial sorting of axons by SCs, biosynthesis of lipids, 
and, on this basis, myelin growth [85, 86]. The mTORC1 activity is higher before 
myelination onset and decreases when myelination starts [87–89].

5.2.2 Mitogen-activated protein kinase (MAPK) family proteins

In the distal stump of the peripheral nerve after injury SCs respond by activating 
MAPK proteins like extracellular signal-regulated kinase (Erk), c-Jun N-terminal 
kinase (JNK), and p38 MAP kinase [66, 90–95].

Ras/Raf/Erk signaling in SC dedifferentiation was studied for the first time by 
Harrisingh et al., and they showed that the Raf activation suppresses the differen-
tiation of primary SCs induced by cyclic adenosine monophosphate (cAMP) [91]. 
Raf is an activator of Erk. The authors demonstrated that the activation of Ras/Raf/
Erk pathway induced demyelination in an in vitro study on cocultured cells—SCs 
and neurons from dorsal root ganglia.

Erk activation is a pro-myelinating factor, and if Erk is inhibited, the SC differ-
entiation and myelination are blocked, showed many in vivo studies [96–98].

In conclusion, Erk signaling is required in differentiation (Erk low levels) but 
also in dedifferentiation (high Erk levels) of SCs after nerve lesion [99, 100].

JNK, another MAPK protein, is implied in SC functions, so when c-Jun is acti-
vated by JNK, the migration and proliferation of SCs are produced [19, 101, 102].

Without insisting, we would like just to remember other MAPK proteins and 
signaling pathways involved in SC plasticity: p38MAPK, PI3K/Akt/mTOR signal-
ing (reviewed by [42]).

5.2.3 TLRs signaling

After nerve injury, inflammation is an important phenomenon that must be con-
sidered. Thus, Toll-like receptors (TLRs) are key factors in initiating the immune 
response. A number of such receptors are expressed by SCs: TLR3, TLR4, and TLR7 
[103]. Some experimental studies showed an upregulation of TLRs following nerve 
injury, the effect being the inflammation trigger with macrophage recruitment and 
activation and myelin clearance via SCs [50, 104, 105].

5.2.4 Nrg1/ErbB2/3 signaling

SCs express receptors for axonal neuregulins, as it is showed in Ssection 
2.2. The neuregulin/Erb2/3 signaling is strongly involved in immature SC 
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development but not in the regulation of adult SC proliferation after injury. An 
in vivo study on erbB2 wt/lacZ (with highly reduced ErbB2 levels in adult sciatic 
nerves) mice showed that after sciatic nerve transection, SC proliferation is not 
affected in adult ErbB2-conditional null nerves. More of this, the maintenance of 
myelinated peripheral nerves did not require ErbB2 function [106]. Other stud-
ies demonstrated that ErbB2 activation after sciatic nerve axotomy induced SC 
demyelination [107].

Neuregulin Nrg1 is still necessary for adult SC evolution after nerve injury 
[108, 109]. The absence of Nrg1 in adult axons results in remyelination defects 
after nerve crush experiments and also in a slower axon regeneration [110].

6. Therapeutical approaches based on Schwann cell plasticity

Although the peripheral nerve has a much greater regenerative capacity than the 
CNS nerve, the clinical recovery of patients with peripheral neuropathies is dif-
ficult, slow and often incomplete. Moreover, this capacity decreases with age.

The rate of nerve regeneration is approximately 1 mm/day, depending on the site 
of the lesion and on the patient age. SC plasticity diminishes with age, showing an 
altered expression of c-Jun [111] and a weak regenerative capacity [112, 113].

Understanding the signaling pathways that govern SC reprogramming and 
plasticity is essential for nerve repair and therapy.

For example, modulating Nrg1/ErbB signaling may improve myelin clearance, 
axonal regeneration, and finally functional nerve recovery after injury. An inap-
propriate overactivation of this pathway may lead to demyelinating neuropathies 
or tumors like neuroepithelioma and neuroplastic SC line [114, 115]. Experiments 
on transgenic mice with overexpression of Nrg1 showed hypertrophic neuropathies 
and malignant peripheral nerve sheath tumors [116]. The excessive activation 
of ErbB2 by Mycobacterium leprae determines one of the symptoms of leprosy, 
an important peripheral nerve demyelination [117]. In Charcot-Marie-Tooth 1A, 
abnormal demyelination and axon loss were prevented by Nrg1 therapy during early 
postnatal period in a rat model [118].

Another approach to stimulate SC regeneration and peripheral nerve functional 
recovery is the exogenous modulation by electric stimulation with low frequencies, 
photomodulation with low-level laser, and pharmacotherapy (with pharmacological 
agents, growth factors, bioproducts, or hormones) (reviewed by [119]).

7. Conclusions

Understanding Schwann cell biology and its extraordinary plasticity can lead to 
the development of new therapeutic approaches in peripheral nerve pathology and 
in the improvement of treatment methods in the case of traumatic nerve lesions. 
Peripheral neuropathies cause a significant morbidity and a decreased life quality. A 
better understanding of the many SC signaling pathways represents a very impor-
tant approach for nerve regeneration as long as we have seen that SC is the main 
engine in nerve damage and repair after injury.

The recovery of the peripheral nerve, although better than that of the CNS 
nerve, is still quite complicated, difficult many times, and it is never perfect until 
the end. But in the last years, a huge amount of scientific data drew attention to the 
role of growth factors, transcriptional factors, inflammatory factors, hormones, 
and even exogenous modulation factors in the regulation of Schwann cell and of 
Schwann cell-axon interrelations, a complex integrated system.
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