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Chapter

An Overview of Carbon-Based 
Materials for the Removal 
of Pharmaceutical Active 
Compounds
Mazen K. Nazal

Abstract

Carbon-based materials, namely activated carbon, carbon nanotube and graphene, 
are considered as one of the most effective adsorbents for pollutant removal and 
wastewater treatment. Due to their high surface area and distinct chemical and 
physical properties of the carbon-based materials, particularly activated carbon 
and carbon nanotube are rapidly emerging as one of the most effective adsorbents 
for wastewater treatment. Various studies have reported the applications of acti-
vated carbon, carbon nanotubes and graphene as promising adsorbents for remov-
ing organic and inorganic pollutants. In this chapter, an introduction about the 
activated carbon, carbon nanotubes and graphene and their production, prosperi-
ties and usage for the removal of pharmaceutical active materials from aqueous 
media are highlighted and summarized. Challenges and future opportunities for 
application of these carbon-based materials as adsorbents in wastewater treatment 
are also addressed in this chapter.

Keywords: adsorption, aquatic environment, pollutants, activated carbon, carbon 
nanotube

1. Introduction

In recent years, there is great concern about the occurrence and the impact of the 
pharmaceutical active compounds in water, in addition, development of efficient 
and cost-effective technologies for the removal of these compounds and treatment 
of industrial effluent, surface water and ground water. Pharmaceutical active com-
pounds are natural or synthetic chemicals that can be found in over-the-counter 
therapeutic drugs and veterinary drugs. They induce pharmacological effect and 
give significant benefits to human beings. A continuous release of these chemical 
compounds into aquatic environment has been increased due to the increase of 
general use of pharmaceutical compounds in human and veterinary medicines. 
Figure 1 illustrates the routes of releasing the pharmaceutical compounds into 
water. These routes include wastewater effluents, human and animal excreta, sew-
age sludge, medical and industrial waste and land fill leaching [1].

Depending on the biodegradability and hydrophobicity of these pharmaceuti-
cal active compounds, they are naturally reduced by dilution, degradation and 
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Pharmaceutical active 

compounds

Maximum detected concentration 

(ng/L)

Aquatic environment 

type

Bleomycin 19 (United Kingdom) Sewage

Clotrimazole 34 (United Kingdom) Stream or river water

Diclofenac 1200 (Germany)
41 (France)

40 (Finland)
64 (Austria)

Surface water

Carbamazepine 110 (Germany)
800 (France)
370 (Finland)
64 (Austria)

Surface water

Iopromide 910 (Germany)
17 (France)

211 (Austria)

Surface water

Roxithromycin 560 (Germany)
37 (France)

Surface water

Ibuprofen 530 (Germany)
120 (France)
65 (Finland)

Surface water

Erythromycin 80 (United Kingdom) River water

Fluoxetine 290 (United Kingdom) Sewage

Mefenamic acid 1440 (United Kingdom) Sewage

Paracetamol < 20 (United Kingdom) Sewage

Propranolol 215 (United Kingdom) River water

Tamoxifen 42 (United Kingdom) Sewage

Tetracycline 1000 (United Kingdom) River water

Trimethoprim 1288 (United Kingdom) Sewage

Table 1. 
The measured concentration of some pharmaceutical active compounds in some of the aquatic environment in 
European countries.

Figure 1. 
Routes of releasing the pharmaceutical compounds into the environment.
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adsorption in the environment. Thus, these compounds in water exist in a trace 
concentration level [2].

Some of the pharmaceutical active compounds used for birth control, heart 
medication and painkilling were detected in wastewater in the United State of 
America (USA) since more than 40 years ago [3–5]. Literature shows that the phar-
maceutical active compounds enter the surface water through different sources such 
as excretion, bathing, effluent discharging, improper disposal of these compounds 
and veterinary facilities [1, 6–8]. In addition, a study conducted in the United 
Kingdom by Drinking Water Inspectorate reported that many classes of pharma-
ceutical active compounds are present in wastewater influent [9]. Table 1 represents 
several pharmaceutical active compounds that were detected in the aquatic environ-
ment of United Kingdom (UK) and other European countries [10, 11].

There is no international standard method for drinking water sampling and 
method of analysis for pharmaceutical active compounds. In addition, a few sys-
tematic monitoring studies on measuring the pharmaceutical active compounds in 
surface water, drinking water and ground water were conducted. Therefore, limited 
data are available on their occurrence in these aquatic environments to be used in 
assessing the potential health risk due to the exposure to a trace concentration level 
of pharmaceutical compounds. However, literature showed that the surface water 
and ground water sources affected by wastewater discharges have pharmaceutical 
active compound concentrations less than 100 ng/L, while these compounds were 
found in the drinking water with a concentration less than 50 ng/L [2].

2.  Treatment technologies for pharmaceutical compounds’ removal 
from water

The presence of these compounds at trace concentration levels (nanogram to sub 
microgram per liter) in the aquatic environment has raised a question concerning 
the efficiency of wastewater treatment techniques in removing of the pharmaceuti-
cal active compounds. Many removal techniques such as chlorination, photocataly-
sis, adsorption, biodegradation and advanced oxidation or ozonation have been 
investigated for the removal of pharmaceutical active compounds from the aquatic 
environment [12–25]. Some of these techniques have different disadvantages such 
as their high cost, high energy consumption and formation of toxic by-products. 
Adsorption technique has many advantages over these techniques such as it works 
at mild operation conditions, requires low energy and is efficient and cost-effective. 
Therefore, it is a promising technique for the removal of pharmaceutical active 
compounds.

2.1 Adsorption technique

The removal of pharmaceutical active compounds from water by adsorption 
is considered as one of the easiest and safest techniques since it is easy to design 
and operate and this technique does not produce any toxic wastes as a by-product 
and is capable of removing most forms of organic material. The adsorption pro-
cess includes the accumulation of pharmaceutical compounds on the adsorbent’s 
surface. Hence, the selection of adsorbent must be precious. The adsorbent must 
have a capability to accumulate the pollutant from water with high surface area and 
high hydrophobicity. The efficiency of this technique is mainly depending on the 
functional group composition, surface area, pore size and the ash content. It also 
depends on the chemical parameters like temperature, polarity, pH, concentration 
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of the adsorbate and the availability of other competing solutes. The adsorp-
tion process also depends on the mobility of the adsorbate molecules toward the 
external boundary layer of the adsorbent, active surface sites and surface pore size. 

Pharmaceutical active 

compound

Carbon-based adsorbent Adsorption 

capacity 

(mg/g)

Reference

Clofibric acid Mesoporous silica SBA-15 70 [70]

Ofloxacin Nonporous SiO2 2.1 [71]

Tetracycline Mesoporous silica 44.4 [27]

Cephalexin Amberlite XAD-16 polymer 116 [36]

Nalidixic acid Polystyrene-divinylbenzene, X16 800 [31]

Penicillin Polymer Amberlite XAD-16 1401 [34]

Amoxicillin Bentonite clay 53.9 [38]

Flurbiprofen Organophilic montmorillonite clay 240 [39]

Tetracycline Na-kaolinite 29 [40]

Kaolinite 3.8 [72]

Rectorite clay 40 [46]

Tetracycline NaOH-activated carbon produced 
from macadamia nut shells

455.33 [48]

H3PO4-activated carbon produced 
from apricot nut shells

308.3 [49]

Activated carbons produced by KOH 
activation of tyre pyrolysis char

312 [50]

Commercial activated carbon 471 [51]

Sulfamethoxazole AC 185 [53]

Metronidazole AC 93.21 [53]

CAC 328 [52]

Amoxicillin AC 221.8 [73]

Dimetridazole CAC 186 [52]

Ronidazole CAC 394 [52]

Tinidazole CAC 385 [52]

Penicillin G AC 315 [56]

Oxytetracycline MWNT10 190.2 [54]

Tetracycline MWNTs 148 [58]

SWNTs 370

Tylosin K-MWNTs 270 [58]

K-SWNTs 466

Carbamazepine MWNT100 41.4 [58]

Cephalexin Cellulose oxide 79 [59]

Fluoroquinolone Goethite 49.6 [61]

Ciprofloxacin Hydrous oxides of Al (HAO) 13.6 [64]

Table 2. 
Different adsorbents and their adsorption capacities for removal of pharmaceutical active compounds.



5

An Overview of Carbon-Based Materials for the Removal of Pharmaceutical Active Compounds
DOI: http://dx.doi.org/10.5772/intechopen.91934

Many researchers have studied the adsorption of pharmaceutical active compounds 
from wastewater using different types of adsorbents. Several materials as an adsor-
bent have been reported in the literature and listed in Table 2 and were tested 
and investigated for the pharmaceutical active compounds’ removal from aquatic 
environment, such as silica-based adsorbents [26–30], polymeric materials [31–37], 
clay [38–47], carbonaceous materials [48–58] and other materials [59–71]. The next 
sections focus on carbonaceous materials as adsorbents, namely activated carbon 
and carbon nanotubes.

2.1.1 Activated carbon

Activated carbon is a pure carbon graphite form with amorphous and highly 
porous structure. It contains different range of pore sizes starting from cracks to 
slits of molecular dimensions [73]. The first produced commercially activated 
carbon was in early nineteenth century from wood as a raw material. It has been 
used for water odor and taste control in 1930 [74]. Nowadays, activated carbon is 
produced from a wide range of raw organic materials and sources, such as sugar, 
shells, refinery coke, rice hulls and different types of wood. The main features of 
activated carbon that make it good as an adsorbent in the adsorption process are the 
following: (i) its high surface area, (ii) its porosity and (iii) its surface reactivity.

2.1.1.1 Classifications of activated carbons

Activated carbon can be classified based on its activation process or its proper-
ties. Based on the activation process, the following are the main two categories 
based on the activation process:

• Physically or thermally activated carbon: the activation process involves 
carbonization of organic raw materials at temperature ranging from 500°C to 
600°C [75].

• Chemically activated carbon: the activation process involves addition of some 
inorganic salts such as metallic chloride to activate the surface of carbon [76].

Mattson et al. [77] suggested another classification, which categorizes activated 
carbon to acidic or basic activated carbon:

• Carbon activated at low temperature range from 200°C to 400°C: this develops 
an acidic surface that lowers the pH value of the solution. This activated carbon 
exhibits negative zeta potential and usually adsorbs basic and hydrophilic 
compounds.

• Carbon activated at a high temperature range from 800°C to 1000°C: this 
develops basic surface that increases the pH value of the solution. Therefore, 
this type of activated carbon has a positive zeta potential and is usually used 
for adsorbing acidic organic compounds.

Commercially, activated carbon can be classified as three main types [78], and 
they are the following:

• Powdered activated carbon (PAC): it has fine granules or powder with par-
ticle size less than 1.0 mm and average diameters ranging between 0.15 and 
0.25 mm.
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• Granular activated carbon (GAC): it combines powdered activated carbon with 
a binder and forms cylindrical shape activated carbon particles with diameters 
from 0.8 to 130 mm. The main application for this form is for gas purification.

• Impregnated activated carbon (IAC): it is impregnated with different inor-
ganic ions.

• Polymeric coated activated carbon, which is used in medical field applications.

2.1.1.2 Physicochemical properties of activated carbon

The properties of activated carbon are influenced by the used raw materials and 
activation method in its preparation process. The porous graphite and graphene 
sheets that form the activated carbon are connected together and have π-orbitals in 
the benzene rings, which enable several modifications to be carried out on activated 
carbon. For example, cooling the activated carbon in the presence of oxygen can 
produce activated carbon rich with oxides and acidic functional groups, as a result, 
alter the positive zeta potential of basic activated carbon to negative to be used for 
different applications. In addition, the surface chemistry, pore structure (volume 
and diameter) and surface area of activated carbon depend significantly on the 
employed temperature in the preparation process [75, 79].

2.1.1.3 Activated carbon production

A wide range of raw materials can be used as a starting material for producing 
activated carbon as stated in Section 2.1.1. The following activation methods are 
used in activated carbon production:

• Thermal activation: this physical process may involve two main steps: the first 
one to eliminate the volatile matters in the raw materials by carbonizing them 
thermally at a temperature ranging from 500°C to 600°C and in the second 
step the porosity and surface are improved by the gasification process. In the 
gasification process, a carbon dioxide CO2, methane or steam as an oxidizing 
gas is used at a high temperature of 800–1000°C [75].

• Chemical activation: in this process, inorganic salts such as metallic chloride 
are added before the carbonization step to improve the micro-porosity as well 
as the surface area of the activated carbon [76].

2.1.1.4 Activated carbon for removal of pharmaceutical active compounds

Activated carbon (AC) is widely used in adsorption processes as filtration 
and purification materials. For instance, in water treatment, activated carbon 
is used to control taste and odor and to adsorb undesired suspended metals and 
pollutants [74]. Due to the high surface area and commercial availability of AC, it 
was studied for removal of different pharmaceutical active compounds. Table 3 
summarizes some of these pharmaceuticals. For example, different types of 
activated carbon were used for removal of tetracycline (antibiotic drug) from 
aqueous media. Martins et al. [48] prepared activated carbon from macadamia 
shells as precursors, the yield was 19.79% and the prepared activated carbon’s 
surface area was 1524 m2/g. They used it for the tetracycline removal and it had 
455.33 mg/g adsorption capacity. Muthanna et al. [80] reported that the activated 
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carbon was used for removal of three pharmaceutical active compounds (i.e., 
tetracycline, penicillins and quinolones) and the used activated carbon has 1340.8 
mg/g adsorption capacity for tetracycline. Chen et al. [81] studied the effect 
of the adsorption parameters (i.e., pH, contact time, initial concentration and 
temperature) on the removal of tetracycline from aqueous solution using rice husk 
ash (RHA). They found the adsorption capacity increased from 1.51 to 3.41 mg/g 
when the initial tetracycline concentration in the solution increased from 5 to 20 
mg/l. Another study showed that activated carbon prepared via a chemical activa-
tion of apricot shells using phosphoric acid heated in air at 100 °C for 24 hours 
has 307.6 m2/g surface area and 308.3 mg/g adsorption capacity [49]. In 2016, an 
activated carbon (TPC-AC) was prepared from tires waste by their pyrolysis and 
then activated using potassium hydroxide [50]. The prepared adsorbent was tested 
for tetracycline removal and it has been found that the adsorption process was 
spontaneous and has adsorption capacity (312 mg/g) higher than the commercial 
activated carbon. Carl et al. [51] reported that the adsorption capacity of the 
commercial activated carbon for tetracycline is directly related to the density of π 
electrons in the graphene layers on activated carbon and the aromatic ring in the 
tetracycline.

2.1.2 Carbon nanotube

Single and multiwall carbon nanotube (CNT) materials are graphene sheets 
rolled-up tubular individually or more than one inside each other. CNTs were 
discovered by Sumio Ijima in 1991 at NEC Laboratory in Japan using the Arc 
discharge production method and then characterized using a transmission electron 
microscope [82]. CNTs have two different structures based on the rolling direction 
of graphene sheets: (i) armchair nanotube and (ii) zigzag nanotube structure [83] 
as shown in Figure 2.

The cylindrical shape of CNT nanostructure can have a length to diameter 
ration up to 132,000,000:1, which is significantly higher than any other materials 
[83]. This property was explained by the sp2 hybridization in the carbon atoms 
that CNTs are composed of in addition to the natural alignment of CNT into ropes 
attracted together by Van der Waals interaction [84].

2.1.2.1 Physical properties and chemical reactivity of carbon nanotubes

CNTs form bundles of a highly complex network [85]. They have electrical 
conductivity that depends on the arrangement of the hexagonal rings along the 
tubular surface. Due to their extraordinary properties, such as large geometric 
aspect ratio, nanocavities and electrical conductivity, CNTs are considered as 
attractive candidates in many nanotechnological applications, including the 
removal of pharmaceutical compounds in water treatment processes. One of the 

Physical property Material name

MWCNTs SWCNTs Wood Steel Epoxy

Density (g/cm3) 2.6 2.6 0.6 7.8 1.25

Tensile strength (Gpa) 150 150 0.008 0.4 0.005

Young’s modulus (Gpa) 1200 1054 0.6 208 3.5

Table 3. 
Comparison between CNTs and other materials.
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main drawbacks of carbon nanotubes is that they do not have good suspension 
properties in aqueous and organic solvents that in turn has made CNTs’ use in 
industry limited [86]. This disadvantage can be overridden by modifying CNTs 
chemically with some hydrophilic functional groups that in turn increase CNTs’ 
suspension in water.

The main distinct properties of the carbon nanotubes are categorized into the 
following:

• Mechanical properties: due to the covalent sp2 bonds formed between the 
individual carbon atoms, CNTs have high strength and stiffness. According 
to the reported results, CNTs have elasticity higher than steel by 10–100 
times with an elastic modulus 1Tpa [87]. A comparison between some 
materials, which have good mechanical properties, with CNTs is shown in 
Table 3.

• Thermal conductivity: CNTs have thermal conductivity ranging from 2800 up 
to 6000 W/m K [88].

• Electrical properties: CNT carbon-based material exhibits extraordinary 
electrical properties and it can be conducting or semiconducting material. The 
conductive CNTs are found to carry electrical current thousand times higher 
than copper material [89].

• Chemical reactivity: CNTs can chemically be modified to make them highly 
soluble in aqueous and organic solutions as well as more efficient for certain 
applications. Their reactivity is related to the mismatching of π-orbitals, which 
are caused by the curvatures in CNTs’ structure. In general, smaller nanotube 
diameters result in increasing their reactivity. Moreover, the reported results 
showed that chemical modification of sidewalls or end caps of CNTs are also 
possible [90].

Based on the CNTs’ properties that have been discussed above, CNT materi-
als and their modified structures are promising for different applications such as 
water treatment, environmental protection and pharmaceutical active compound 
removal, material science, medicinal chemistry and others.

Figure 2. 
Armchair and zigzag structural forms of CNTs
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2.1.2.2 Carbon nanotube production

CNTs are produced using different techniques, and the most common and 
widely used techniques are:

• Arc discharge technique. Arc discharge technique is the most common and 
simplest technique for CNT production. As mentioned earlier, CNTs were 
firstly discovered using this technique. In arc discharge technique, CNTs are 
produced at low pressure of helium inert gas or any other neutral gas [91]. 
They are produced through arc vaporization of two separated carbon rods in 
an enclosed system filled with inert gas [92]. One of the major disadvantages 
of CNT production using this technique is that the produced CNTs are not pure 
containing some of the catalytic metals; therefore, they require purification to 
remove these metals and get clean CNTs.

• Laser ablation technique. In 1995, carbon nanotubes were synthesized 
using a laser beam to vaporize graphite at 1200°C [93]. The pulsed and 
continuous laser methods are the main two types of laser ablations. Much 
higher light intensity (100 kW/cm2) is used in the pulsed laser, compared 
to 12 kW/cm2 in case of the continuous laser type, which is the main differ-
ence between these two laser ablation technique types. In the laser ablation 
method, CNTs are produced and collected on a cooler surface in the reactor 
system as the vaporized carbon is condensed. In this technique, SWCNTs can 
be produced from graphite electrodes by adding metal-based catalysts such 
as Co, Fe and Ni to the system. However, MWCNTs are the main product 
when a pure graphite electrode is used [94].

• Chemical vapor deposition (CVD) technique. Chemical vapor deposition 
technique is a simple process and it is believed to be the easiest technique for 
industrial production of CNTs. In this method, the desired CNT type and qual-
ity can be produced by controlling the system production parameters such as 
temperature, type of catalyst and type of carbon source gases. CVD technique 
consists of two main steps (catalyst preparation step and then CNT synthesis). 
In general, to produce CNTs, methane and carbon monoxide gases are dissoci-
ated into reactive carbon atoms using an energy source, and then these reactive 
atoms diffuse over a substrate that is coated by transition metals as a catalyst 
and heated at a temperature range from 500 to 1000°C [95].
 A comparison between the previously discussed methods for CNT production 
is summarized in Table 4.

2.1.2.3 Carbon nanotubes for pharmaceutical active compounds’ removal

Carbon nanotubes with their excellent properties show considerable adsorption 
capability for removal of pharmaceutical active compounds. A study in 2009 found 
that the single wall carbon nanotubes (SWNTs) are more efficient for removal of 
tetracycline from aqueous solutions than multiwall carbon nanotubes (MWNTs), 
graphite and activated carbon [58]. This finding was explained through the 
molecular sieving effect, whereas the tetracycline is bulky molecules failed to seep 
through inner pores, which indicates the important role of molecules’ size and their 
accessibility into pores in the adsorbent materials. In 2016, Yu et al. [96] studied 
the adsorption performance of MWNTs for removal of ciprofloxacin and found the 
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maximum adsorption capacity is 20 mg/g, which was obtained at pH 4 and 240 min 
that was attributed by the π-π interaction rather than hydrogen bonding and inter-
action with oxygenated functional groups on MWNTs. Another study by Yu et al. 
[97] showed that the maximum adsorption capacity of MWNTs for tetracycline was 
269.54 mg/g, which achieved at 25°C and pH 5 within 80 min.

In order to improve the performance and adsorption capacity of CNTs, different 
types of modifications can be performed such as graphitization, hydrolyzation, 
carboxylation and etching with potassium hydroxide (KOH). For example, Ji et al. 
[98, 99] modified the SWNTs and MWNTs by etching using KOH and tested the 
etched CNTs for three pharmaceutical active compounds (i.e., sulfamethoxazole, 
tetracycline and tylosin). They found the adsorption performance of the KOH 
modified SWNTs (K-SWNTs) and KOH modified MWNTs (K-MWNTs) for sul-
famethoxazole and tetracycline was enhanced by around 56% and 84% compared 
to the unetched SWNTs and MWNTs, respectively. This has been explained by 
increasing the surface area of the etched CNTs.

2.1.3 Graphene

Graphene is a two-dimensional carbonaceous nanomaterial formed from a 
layer of sp2 hybridized carbon atoms. The graphene nanomaterial has exceptional 
properties such as high specific surface area [98, 99], high electrocatalytic activity 
[100], great thermal conductivity [101], high stiffness and strength [102] and high 
speed electron mobility [103]. These unique physical properties attracted great 
interest of scientist and introduced it for different potential applications. Among 
these applications is the adsorptive removal of emerging pollutants such as pharma-
ceutical active compounds.

2.1.3.1 Types of graphene

The following are the common types of graphene:

• Single layer graphene (SLG): it is one thick hexagonally arranged sp2 hybridized 
bonded carbon atoms. The dimensions of SLG vary from nano- to microscale. It 
can be suspended in an aqueous solution or adhered on a substrate.

• Multilayer graphene (MLG): it consists of few flaks of single layer graphene 
and it is useful in the preparation of nanomaterial composites.

Method Yield (%) SENT MINT Concerns

Chemical vapor 
deposition

20–100% Long tubes 
with diameters 

0.6–4 nm

Long tubes 
with diameters 

10–240 nm

Nets are usually 
mints and often 

riddled with defects

Arc discharge 30–90% Short tubes 
with diameters 

0.6–1.4 nm

Short tubes with 
inner diameter 

1–3 nm

Short tubes with 
random sizes and 

directions and 
required purification

Laser ablation 
(Vaporization)

Up to 70% Long bundles 
of tubes with 

diameters 1–2 nm

Not suitable and 
too expensive

Costly and required 
high power

Table 4. 
Comparison between the three methods in terms of CNT production efficiency, type of CNTs produced, and 
the current drawback of each technology.
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• Graphene oxide: it is a single layer or multilayer graphene that has high oxygen-
ated surface and prepared by exfoliation and chemical oxidation of graphite.

• Reduced graphene oxide: it is that same as graphene oxide; however, the oxy-
genated functional groups are reduced chemically, thermally or biologically.

2.1.3.2 Graphene for pharmaceutical active compounds’ removal

The graphene nanomaterials and their modified forms have extraordinary 
surface area and catalytic activity, and as a result, they can be used in several 
applications such as adsorptive removal of pharmaceutical active compounds 
[104–111]. Gao et al. [106] investigated the adsorption performance of graphene 
oxide for tetracycline antibiotic from aqueous solution. They found that the adsorp-
tion of tetracycline achieved mainly through a π-π and cation-π interactions with 
a maximum monolayer adsorption capacity is 313 mg/g and it decreased with an 
increase in the solution pH or the sodium ions concentration. In 2017, Danna et al. 
[107] modified a graphene oxide with decafluorobiphenyl and then investigated 
the prepared adsorbent for removal of six pharmaceutical active compounds 
from water namely, carbamazepine, sulfamethoxazole, sulfadiazine, ibuprofen, 
paracetamol and phenacetin. They found that the adsorption capacities for these 
compounds are 340.5 μmol/g, 428.3 μmol/g, 214.7 μmol/g, 224.3 μmol/g, 350.6 
μmol/g and 316.1 μmol/g, respectively. A study in 2014 showed that the adsorp-
tive removal of acetaminophen, aspirin and caffeine from aqueous solution using 
graphene nanoplates (GNPs) was thermodynamically spontaneous and exothermic 
with adsorption capacities of 18.07 mg/g, 12.98 mg/g and 19.72 mg/g for acetamino-
phen, aspirin and caffeine, respectively [105].

The surface area of graphene reduces significantly in solutions due to its 
aggregation, and as a result, the adsorption capacity of graphene is reduced, which 
is one of the main disadvantages associated with using graphene as adsorbents. 
Functionalization or modification of the graphene with certain functional group 
or metals can be the best solution to overcome that disadvantage as well as increase 
the adsorption capacity of graphene. Lin et al. [108] functionalized a graphene 
oxide with magnetic nanoparticles and then studied its adsorptive removal for four 
tetracycline (TC) pharmaceutical active compounds (i.e., tetracycline, oxytetracy-
cline, chlortetracycline and doxycycline) from aqueous solution. They found that 
the solution pH and ionic strength had insignificant effect on the TC adsorption 
and the maximum adsorption capacity is 39.1 mg/g.

3. Conclusions

Pharmaceutical active compounds are continuously released into aquatic envi-
ronment via different routes (i.e., human and animal excreta, medical industry’s 
waste, wastewater effluent, sewage and landfill leaching). That release increases 
due to the increase of general use of pharmaceutical compounds in human and 
veterinary medicines. Therefore, these compounds should be removed from the 
contaminated water to prevent their accumulation, reduce the environmental pol-
lution and provide an additional source of clean water. Removal of pharmaceutical 
active compounds from aquatic media can be achieved by either conventional or 
advanced methods. Among them, the adsorption technique has many advantages 
over the others. Several materials as adsorbents have been reported and dis-
cussed in the literature such as silica-based adsorbents, polymeric materials, clay, 
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carbonaceous materials and other materials. Activated carbon, carbon nanotube 
and graphene oxide among carbonaceous materials show excellent performance and 
high adsorption capacity for pharmaceutical active compounds. As discussed in this 
chapter, the activated carbon can be activated using different methods (i.e., physi-
cal or chemical activation), while the carbon nanotube can be produced through 
using one of the following methods: (i) arc discharge, (ii) laser ablation and (iii) 
chemical vapor deposition. The physical (surface area and porosity) and chemical 
(functional groups) properties are significantly affected by the followed production 
method for these carbonaceous materials. Using freely available raw materials for 
the activated carbon and carbon nanotubes production and their modification with 
different nanoparticles and functional groups is the future prospect for the adsorp-
tive removal of pharmaceutical active compounds from the aquatic environment.
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