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Chapter

Modified Moving Least Squares
Method for Two-Dimensional
Linear and Nonlinear Systems of
Integral Equations
Massoumeh Poura’bd Rokn Saraei and Mashaallah Matinfar

Abstract

This work aims at focusing on modifying the moving least squares (MMLS)
methods for solving two-dimensional linear and nonlinear systems of integral
equations and system of differential equations. The modified shape function is our
main aim, so for computing the shape function based on the moving least squares
method (MLS), an efficient algorithm is presented. In this modification, additional
terms is proposed to impose based on the coefficients of the polynomial base
functions on the quadratic base functions (m = 2). So, the MMLS method is devel-
oped for solving the systems of two-dimensional linear and nonlinear integral
equations at irregularly distributed nodes. This approach prevents the singular
moment matrix in the context of MLS based on meshfree methods. Also, determin-
ing the best radius of the support domain of a field node is an open problem for
MLS-based methods. Therefore, the next important thing is that the MMLS algo-
rithm can automatically find the best neighborhood radius for each node. Then,
numerical examples are presented that determine the main motivators for doing
this so. These examples enable us to make comparisons of two methods: MMLS and
classical MLS.

Keywords: moving least squares, modified moving least squares, systems of
integral equations, algorithm of shape function, numerical solutions

MSC 2010: 45G15, 45F05,45F35, 65D15

1. Introduction

In mathematics, there are many functional equations of the description of a real
system in the natural sciences (such as physics, biology, Earth science, meteorol-
ogy) and disciplines of engineering. For instance, we can point to some mathemat-
ical model from physics that describe heat as a partial differential equation and the
inverse problem of it’s as integro-differential equations. Also, another example in
nature is Laplace’s equation which corresponds to the construction of potential for
a vector field whose effect is known at the boundary of Domain alone. Especially,
the integral equations have wide applicability which has been cited in [1–4].
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However, there are many significant analytical methods for solving integral
equations but most of them especially in nonlinear cases, finding an analytical
representation of the solution is so difficult, therefore, it is required to obtain
approximate solutions. The interested reader can find several numerical methods
for approximating the solution of these problems in [5–14] and the references
therein.

Moreover, there are various numerical and analytical methods have been used to
estimate the solution of integrodifferential equations or Abels integral equations
[12, 15–18]. Recently the meshless based methods, particularly Moving Least
Squares (MLS) method, for a solution of partial differential equations and ordinary
differential equations have been paid attention. Using this approach some new
methods such as meshless local boundary integral equation method [19], Boundary
Node Method (BNM) [20], moving least square reproducing polynomial meshless
method [21] and other relative methods are constructed. The new class of meshless
methods has been developed which only relied on a set of nodes without the need
for an additional mesh in the solution of a one-dimensional system of integral
equations [22].

A local approximation of unknown function presented in the MLS method give
us to possible choose the compact support domain for each data point as a sphere or
a parallelogram box centered on a point [23, 24]. So each data point has an associ-
ated with the size of its compact support domain as dilatation parameter. Therefore
the number of data point and dilatation parameter are direct effects on the MLS,
Also by increasing the degree of the polynomial base function for complex data
distributions give a more validated fashion. Nevertheless, in this case, it becomes
more difficult to ensure the independence of the shape functions, and the least-
squares minimization problem becomes ill-posed.

The common solution for increased the number of admissible node distribution
is increasing the size of the support domains (a valid node distribution is referred
to as anœadmissible node distribution [23]). There have been several proposed for
choosing the radius of support domain [25], but one of the efficient suggestion was
raised by Chen shen [26]. The author in [27] has introduced a new algorithm for
selecting the suitable radius of the domain of influence. Also in [28], presented a
modified MLS(MMLS) approximation on the shape function generation algorithm
with additional terms based on the coefficients of the polynomial basis functions.
It is an efficient method which has been proposed for handling a singular moment
matrix in the MLS based methods. The advantage of this method compared to
methods based on mesh such as a finite element or finite volume is this the domain
of the problem is not important because this approximation method is based on a
set of scattered points instead of domain elements for interpolation or approxima-
tion. So the geometry of the domain does not interfere in the MLS.

2. Methodology

2.1 Introduction of the MLS approximation

The Moving Least Square (MLS) method is a feasible numerical approximation
method that is an extension of the least squares method, also it is the component of
the class of meshless schemes that have a highly accurate approximation. The MlS
approximation method is a popular method used in the many meshless methods
[12, 19, 21, 22, 29, 30]. In many procedures used to construct the MLS shape
function is used support-domain concept. The support domain of the shape

2

Nonlinear Systems - Theoretical Aspects and Recent Applications



function is a set of nodes in the problem domain that just those points directly
contributes to the construction of the shape function, so the MLS shape function is
locally supported. According to the classical least squares method, an optimization
problem should be solved as follows

min
X

m

j¼1
uh xj

� �

� u xj

� �� �2

 !

Where Ideally the approximation function uh xð Þ should match the function u xð Þ.
Therefore, in the MLS approach, a weight optimization problem will be solved
which is dependent on nodal points. We start, with the basic idea of taking a set of

the nodal points in Ω so that Ω⊆
d
:Also Ωx ⊆Ω is neighboring nodes of point x and

finding an approximation function with m basis functions, in a system with n
equations as

T Uð Þ ¼ F

where T consists of linear and nonlinear operators and U ¼ u1, u2, … , unð Þ is
the unknown vector of functions, also F ¼ f 1, f 2, … , f n

� �

is the known vector of
functions.

So for the approximation of any of the ui, i ¼ 1, 2, … , n in Ωx, ∀x∈Ωx, uhi xð Þ can
be defined as

uhi xð Þ ¼
X

m

j¼1
aj xð Þpj xð Þ ¼ PT xð Þa xð Þ: (1)

Let P ¼ p1, p2, … pm
� �

a set of polynomial of degree at most m,m∈: Let a xð Þ
is a vector containing unknown coefficients aj xð Þ, j ¼ 1, 2, …m dependent on the
intrest point position. Also m unknown functions a xð Þ ¼ a1 xð Þ, a2 xð Þ, … am xð Þð Þ
are chosen such that:

J xð Þ ¼
X

m

j¼1
PT xj

� �

a xð Þ � ui xj

� �� �2
wi xð Þ ¼ P:a� ui½ �T:W: P:a� ui½ �, (2)

is minimized. Note that the weight function wi xð Þ is associated with node j.
As we know, each redial basis function that define in [31] can be used as weight
function, we can define wj rð Þ ¼ ϕ r

δ

� �

where r ¼ x� xik k2 (the Euclidean distance

between x and xjÞ and ϕ : 
d !  is a nonnegative function with compact support.

In this chapter, we will use following weight functions and will compare them to
each other, corresponding to the node j, in the numerical examples.

a. Guass weight function

w rð Þ ¼

exp
�r2
c2

� �

� exp
�δ2
c2

� �

1� exp
�δ2
c2

� � 0≤ r≤ δ

0 elsewhere:

8
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:

(3)

b. RBF weight function
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w rð Þ ¼
1� rð Þ6 6þ 36rþ 82r2 þ 72r3 þ 30r4 þ 5r5ð Þ 0≤ r≤ δ

0 elsewhere:

(

(4)

c. Spline weight function

w rð Þ ¼ 1� 6 r
δ

� �2 þ 8 r
δ

� �3 � 3 r
δ

� �4
0≤ r≤ δ

0 elsewhere:

(

(5)

Where c is constant and is called shape parameter. Also δ is the size of support
domain.

N is the number of nodes in Ωx with wi xð Þ>0, the matrices P and W are
defined as

P ¼ pT x1ð Þ,pT x2ð Þ, …pT xNð Þ
� 	T

N� mþ1ð Þ (6)

W ¼ diag wi xð Þð Þ, i ¼ 1, 2, … ,Nð (7)

and

uh ¼ uh1 , u
h
2, … uhn

� 	

: (8)

It is important to note that uTi , i ¼ 1, 2, … n, in (2) and (8) are the artificial nodal

values, and not the nodal values of the unknown trial function uh xð Þ in general.
With respect to a xð Þ and uTi will be obtained,

A xð Þa xð Þ ¼ B xð Þui, (9)

where the matrices A xð Þ and B xð Þ are defined by:

B xð Þ ¼ w1p x1ð Þ,w2p x2ð Þ, … ,wNp xNð Þ½ � (10)

A xð Þ ¼
X

N

i¼1
wi xð ÞpT xið Þp xið Þ ¼ pT xð Þw xð Þp xð Þ: (11)

The matrix A xð Þ in (11) is non-singular when the rank of matrix P xð Þ equals tom
and vice versa. In such a case, the MLS approximation is well-defined. With com-

puting a xð Þ, uhi can be obtained as follows:

uhi xð Þ ¼
X

N

j¼1
ϕj xð Þui xj

� �

¼ φT
:ui (12)

ϕj xð Þ is called the shape function of the MLS approximation corresponding to

the nodal point xj, where

φ xð Þ ¼ pT xð ÞA�1 xð ÞB xð Þ (13)

Also with use the weight function, matrix A,B are computed and then ϕi xð Þ is
determined from (13), If, further, ϕ is sufficiently smooth, derivatives of U are

usually approximated by derivatives of Uh,
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Dαuix ≈ Dαuhi xð Þ ¼
X

N

j¼1
Dαaj xð Þui xj

� �

, x∈Ω (14)

2.2 Modify algorithm of MLS shape function

In the MLS approximation method, a local evaluation of the approximating
unknown function is desired, and therefore for any nodal points the compact
support domain is chosen as a sphere or a parallelogram box centered on the point
[23, 29, 32]. This finding which the support domains contain what points. Each data
point has a connected dilatation parameter λ which is given δi ¼ λhi. Also, δi is the
size of compact support domain in a node point xi.

Also, the necessary condition for that the moment matrix A be nonsingular is
that for any point xi ∈Ω, i ¼ 1, 2, … ,N, [31].

ℵ jjxj ∈Ωδi

� �� �

≥m, j ¼ 1, 2, … ,N

So the dilatation parameters λ determine the number of points of support
domain, Also these points participate in the production of the shape function
Therefore, λ is very important and should be chosencorrectly so that the moment
matrix A is nonsingular.

In the remainder of this section, we introduce the new algorithm, with the aim
of avoiding the singularity of the matrix A by choosing the correct λ parameter by
the algorithm.

Algorithm 1

Require: X ¼ xi : i ¼ 1, 2, … ,Nf g- Coordinates of points whose MLS shape
function to be evaluated.

1: procedure MATRIX A
2: λnew  λ

3: α 0:01 (This value selected experimentally.)
4: δ ¼ λnew � h (h: the fill distance is defined to be h ¼ supx∈Ω

min 1≤ j≤N

∥x� xi∥2)
5: Loop
6: set I xð Þ ¼ j∈ 1, 2, … ,Nf g, ∥x� xi∥2 ≤ δf g (Using set of indices I, by

localization at a fixed point x)
7: for j∈ I xð Þ do
8: for i ¼ 1 : N do
9: Compute wi for any xj ∈Ωi

10: A ¼ Aþ wip
2
i

11: end
12: end
13: if cond Að Þ≥ 1

ε
then

14: {
15: λnew ¼ λnew þ αλ

16: δ ¼ λnew � h
17: else
18: goto end
19: }
20: if δi ≤∥XΩ∥2 then
21: goto Loop
22: end
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In Algorithm 1.
X: is a set containing N scattered points which are called centers or data site and I

(x) is the Index of points which MLS shape function is evaluated.
α: is a small positive number that is selected experimentally.
Then in every node points, matrix A is computed.
By running the algorithm the new value is assigned to λ, this value is related to

the condition number of matrix A and its amount will increase. Therefore, the size
of the support domain is increased and then the matrix A with new nodal points in
the support domain is reproduced. This loop is repeated until 1

cond Að Þ ≥ ε.

The main idea of the moving least squares approximation is that for every point
x can solve a locally weighted least squares problem [30], it is a local approximation,
thus the additional condition to stop the loop is the size of the local support domain,
the value of λ should be well enough to pave the local approximation, Line 20 is said
to satisfy this condition.

2.3 Modified MLS approximation method

One of the common problems in Classic MLS method is the singularity of the
moment matrix A in irregularity chosen nodal points. To avoid the nodal configu-
rations which lead to a singular moment matrix, the usual solution is to enlarge the
support domains of any nodal point. But it is not an appropriate solution, in [31] to
tackle such problems is proposed a modified Moving least squares(MMLS)approx-
imation method. This modifies allows, base functions in m≥ 2 to be used with the
same size of the support domain as linear base functions m ¼ 1ð Þ: We should note
that,impose additional terms based on the coefficients of the polynomial base
functions is the main view of the modified technique. As we know, in the basis
function p xð Þ is

p xð Þ ¼ 1, x, x2, … , xm
� 	T

(15)

where x∈, Also the correspond coefficients aj, that should be determined
are [24]:

a xð Þ ¼ a1, ax, ax2 , … , axm½ �T (16)

For obtaining these coefficients, the functional (2) rewrite as follows:

J xð Þ ¼
X

m

j¼1
PT xj

� �

a xð Þ � ui xj

� �� �2
wi xð Þ þ

X

m�2

ν¼1
wν xð Þa2ν xð Þ, i ¼ 1, 2, … , n (17)

Where w is a vector of positive weights for the additional constraints,

also a ¼ ax2 , ax3 , … , axm½ �T is the modified matrix.
The matrix form of (17) is as follows:

J xð Þ ¼ P:a� ui½ �T:W: P:a� ui½ � þ aTHa, i ¼ 1, 2, … , n (18)

where H is as,

H ¼
O2,2 Om�2,m�2

O2,2 diag wð Þ

" #

, (19)
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where, Oi,j is the null matrix. By minimizing the functional (18), the coefficients
a xð Þ will be obtained. So we have

A xð Þa xð Þ ¼ B xð Þui, (20)

where

A ¼ PT
:W:PþH (21)

And the matrics B xð Þ is determined as the same before. So we have

φm xð Þ ¼ a xð Þ ¼ pT xð ÞA�1 xð ÞB xð Þ (22)

where φm xð Þ is the shape function of the MMLS approximation method.

3. Stiff systems of ordinary differential equations

In this section, we use MLS approximation method for numerical solution of the
Stiff system of ordinary differential equations so consider the following differential
equation

A Uð Þ � F xð Þ ¼ 0,U 0ð Þ ¼ U0,x∈Ω (23)

with boundary conditions,

B U,
∂U

∂x

� �

¼ 0,x∈∂Ω:

where A is a general differential operator, U0 is an initial approximation of (23),
F xð Þ is a vector of known analytical functions on the domain Ω and ∂Ω is the
boundary of Ω. The operator can be divided by A ¼ LþN, where L is the linear
part, and N is the nonlinear part of its. So (23) can be, rewritten as follows;

L Uð Þ þN Uð Þ � F xð Þ ¼ 0 (24)

We assume that a ¼ a1, a2, … , amf g are the MLS shape functions so in order to
solve system (24), N nodal points xi are selected on the Ω, which xiji ¼ 1, 2, … ,Nf g
is q-unisolvent. The distribution of nodes could be selected regularly or randomly.

Then instead of uj from U, we can replace uhj from (13). So we have

uhj xð Þ ¼
X

N

i¼1
ai xð Þuj xið Þ (25)

where j ¼ 1, 2, … , n is the number of unknown functions. we estimate the
unknown functions ui by (25), so the system (24) becomes the following form

L
X

N

i¼1
ai xð Þu1 xið Þ,

X

N

i¼1
ai xð Þu2 xið Þ, … ,

X

N

i¼1
ai xð Þun xið Þ

 !

þ

N
X

N

i¼1
ai xð Þu1 xið Þ,

X

N

i¼1
ai xð Þu2 xið Þ, … ,

X

N

i¼1
ai xð Þun xið Þ

 !

¼ f 1 xð Þ, f 2 xð Þ, … , f n xð Þ
� �

þ r xð Þ:

(26)
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where r xð Þ is residual error function which vanishes to zero in collocation points
thus by installing the collocation points yr; r ¼ 1, 2, … ,N, so

L
X

N

i¼1
ai yr

� �

u1 xið Þ,
X

N

i¼1
ai yr

� �

u2 xið Þ, … ,
X

N

i¼1
ai yr

� �

un xið Þ
 !

þ

N
X

N

i¼1
ai yr
� �

u1 xið Þ,
X

N

i¼1
ai yr

� �

u2 xið Þ, … ,
X

N

i¼1
ai yr

� �

un xið Þ
 !

¼

X

N

i¼1
L ai yr

� �� �

u1 xið Þ,
X

N

i¼1
L ai yr

� �� �

u2 xið Þ, … ,
X

N

i¼1
L ai yr

� �� �

un xið ÞÞþ

N
X

N

i¼1
ai yr
� �

u1 xið Þ,
X

N

i¼1
ai yr

� �

u2 xið Þ, … ,
X

N

i¼1
ai yr

� �

un xið Þ
 !

¼

f 1 yr

� �

, f 2 yr
� �

, … , f n yr

� �� �

(27)

therefore

CU ¼

L a1 y1
� �� �

L a2 y1
� �� �

… L aN y1
� �� �

L a1 y2
� �� �

L a2 y2
� �� �

… L aN y2
� �� �

⋮

L a1 yN
� �� �

L a2 yN
� �� �

… L aN yN
� �� �

2

6

6

6

4

3

7

7

7

5

u1 x1ð Þ u2 x1ð Þ … un x1ð Þ
u1 x2ð Þ u2 x2ð Þ … un x2ð Þ

⋮

u1 xNð Þ u2 xNð Þ … un xNð Þ

2

6

6

6

4

3

7

7

7

5

(28)

And the matrix form of (27) as follows

CN�NUN�n þNN�n a,Uð Þ ¼ FN�n yr
� �

(29)

where

Ci ¼ L a1 yr

� �� �

, … ,L aN yr

� �� �� 	n

i¼1

Ui ¼ ui x1ð Þ, ui x2ð Þ, … , ui xNð Þð ÞT
h in

i¼1

F yr

� �

¼ f 1 yr

� �� �N

r¼1

h iT
, f 2 yr

� �� �N

r¼1

h iT
, … f n yr

� �� �N

r¼1

h i

� �T

:

(30)

by imposing the initial conditions at t ¼ 0, we have

X

N

i¼1
ai 0ð Þu1 tið Þ,

X

N

i¼1
ai 0ð Þu2 tið Þ, … ,

X

N

i¼1
ai 0ð Þun tið Þ

 !

¼ U0 (31)

and Solving the non-linear system (29) and (31), lead to finding quantities uj xið Þ.
Then the values of uj xð Þ at any point x∈Ω, can be approximated by Eq. (25) as:

uj xð Þ≃
X

N

i¼1
ai xð Þuj xið Þ

Remark
Note that, for simplicity, the modification derivation is made for bivariate

data, but can be easily extended to higher dimensions. Also, for implementation,

8

Nonlinear Systems - Theoretical Aspects and Recent Applications



the modified moving least squares approximation method it is sufficient to use
φm instead of φ:

3.1 Error analysis

The convergence analysis of the method in matrix norm has been investigated
for the systems of one and two-dimensional Fredholm integral equations by authors
of [22]. It should be noted that The convergence analysis of the method for imple-
mentation classic moving least squares approximation method on a system of inte-
gral equations has been discussed and it should be investigated for modified Mls
method. we can use the results for this type of equations.

So in continuation of this section, the error estimations for the system of differ-
ential equations is developed. In [26], has obtained error estimates for moving least
square approximations in the one-dimensional case. Also in [33], is developed for
functional in n-dimensional and was used the error estimates to prove an error
estimate in Galerkin coercive problems. In this work, have improved error estimate
for the systems of stiff ordinary differential equations.

Given δ>0 let Wδ ≥0 be a function such that supp wδð Þ⊂Bδ 0ð Þ ¼ zkzj≤ δf g and
Xδ ¼ x1, x2, … , xnf g, n ¼ n δð Þ, a set of points in Ω⊂ an open interval and let
U ¼ u1, u2, … , uNð Þ be the unknown function such that ui1, ui2, … , uin be the values
of the function ui in those points, i.e., ui,j ¼ ui xj

� �

, i ¼ 1, … ,N, j ¼ 1, … , n. A class

of functions W ¼ ωj

� �N

j¼1 is called a partition of unity subordinated to the open

covering IN if it possesses the following properties:

•W j ∈C0
s , s>0 or s ¼ ∞,

• sup ωj

� �

⊆Λj,

•ωj xð Þ>0, x∈Λj,

•
X

N

i¼1
ωj ¼ 1 for  every x∈Ω

There is no unique way to build a partition of unity as defined above [34].
As we know, the MLS approximation is well defined if we have a unique solution

at every point x∈Ω. for minimization problem. And non-singularity of matrix A xð Þ,
ensuring it is. In [33] the error estimate was obtained with the following assumption
about the system of nodes and weight functions ΘN,WNf g:

We define

u, vh i ¼
X

n

j¼1
w x� xj
� �

u xj
� �

v xj
� �

then

∥u∥2x ¼
X

n

j¼1
w x� xj
� �

u xj
� �2

Also for vector of unknown functions, we define

∥U∥∞ ¼ max uij jx, i ¼ 1, 2, … ,N
� �

9
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are the discrete norm on the polynomial space 1
m if the weight function w

satisfy the following properties.

a. For each x∈Ω, w x� xj
� �

>0 at least for mþ 1ð Þ indices j.

b. For any x∈Ω, the moment matrix A xð Þ ¼ w xð ÞPT is nonsingular.

Definition 3.1. Given x∈Ω, the set ST xð Þ ¼ j : ωj 6¼ 0
� �

will be called the star of x.

Theorem 3.1. [34, 35] A necessary condition for the satisfaction of Property b is that

for any x∈Ω

n ¼ card ST xð Þð Þ≥ card mð Þ ¼ mþ 1

For a sample point c∈Ω, if ST cð Þ ¼ j1, … jk
� �

, the mesh-size of the star ST cð Þ
defined by the number is h ST cð Þð Þ ¼ max hj1, … hjk

� �

:

Assumptions. Consider the following global assumptions about parameters.
There exist

a1ð Þ An over bound of the overlap of clouds:

E ¼ supc∈Ω
card ST cð Þð Þf g:

a2ð Þ Upper bounds of the condition number:

CBq ¼ supc∈Ω
CNq ST cð Þð Þ, q ¼ 1, 2
� �

:

where the numbers CNq ST cð Þð Þ are computable measures of the quality of the
star ST cð Þ which defined in Theorem 7 of [19].

a3ð Þ An upper bound of the mesh-size of stars:

R ¼ supc∈Ω
hST cð Þð Þ:

a4ð Þ An uniform bound of the derivatives of wj

� �

: That is the constant
Gq >0, q ¼ 1, 2, such that

DμW j













L∞
≤

Gq

R∣μ∣
1< μ< q,

a5ð Þ There exist the number γ >0 such that any two points x, y∈Ω can be joined

by a rectifiable curve Γ in Ω with length ∣Γ∣ ≤ γ x‐y










:

Assuming all these conditions, Zuppa [34] proved.

Lemma 3.1. U ¼ u1, u2, … unð Þ such that ui ∈Cmþ1
Ω
� �

and Uk k∞ ¼ uk, 1< k< n,

There exist constants Cq, q ¼ 1 or 2,

C1 ¼ C1 γ, d,E,G1,CB1ð Þ,

C2 ¼ C1 γ, d,E,G2,CB1,CB2ð Þ,

then

DμU �DμUh












∞
<CqR

qþ1�∣μ∣∥u mþ1ð Þ
k ∥L∞

Ωð Þ 0< μ< q (32)

Proof: see [36].
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3.2 System of ODE

If in (24) the non-linear operator N be zero, we have

L Uð Þ ¼ f 1, f 2, … , f n
� �

(33)

where U is the vector of unknown function and L is a matrix of derivative
operators,

L U :ð Þð Þ ¼
X

n

ς¼1
λς

∂
ς

:ð Þς U :ð Þ: (34)

And from (25), we define

Uh tð Þ ¼
X

N

i¼1
ai tð ÞU tið Þ

where aið ÞNi¼1 are the MLs shape functions defined on the interval 0, 1½ � satisfying
the homogeneous counterparts of the boundary conditions in (23). Also if the
weight function w possesses k continuous derivatives then the shape functions aj is

also in C k [33]. By the collocation method, is obtained an approximate solutionUh tð Þ.
And demand that

Lh U :ð Þð Þ ¼
X

n

ς¼0
λς

∂
ς

:ð Þς U
h
:ð Þ (35)

where (λ ¼ 0 or 1). It is assumed that in the system of ODE derivative of order
at most n ¼ 2. Each of the basis functions ai has compact support contained in 0, 1ð Þ
then the matrix C in (30) is a bounded matrix. If δ be fixed, independent of N,
then the resulting system of linear equations can be solved in O Nð Þ arithmetic
operations.

Lemma 3.2. Let U ¼ u1, u2, … unð Þ and F ¼ f 1, f 2, … f n
� �

so that ui ∈Cmþ1
Ω
� �

m≥ 1 and ∥ui∥∞ ¼ uk, k∈ 1, 2, … , nf g where Ω be a closed, bounded set in R. Assume
the quadrature scheme is convergent for all continuous functions on Ω: Further, assume
that the stiff system of ODE (23) with the fixd initial condition is uniquely solvable

for given f i ∈C Ωð Þ: Moreover take a suitable approximation Uh of U Then for all
sufficiently large n, the approximate matrix L for linearly case exist and are uniformly
bounded, ∣L∣ ≤M with a suitable constant M<∞: For the equations L Uð Þ ¼ F and

Lh Uð Þ ¼ F we have

Et ¼ ∥L U tð Þð Þ � Lh U tð Þð Þ∥∞

so that

∥Et∥∞ ≤CqK λ, ςð ÞRmþ1�μ∥u mþ1ð Þ
k ∥L∞

:

Proof. we have

∥L U tð Þð Þ � Lh U tð Þð Þ∥∞ ¼ ∥
X

n

ς¼0
λς

∂
ς

tς
U tð Þ �

X

n

ς¼0
λς

∂
ς

tς
Uh tð Þ∥∞
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so due to the lemma (36),

∥L U tð Þð Þ � Lh U tð Þð Þ∥∞ ≤
X

n

ς¼0
∣λς∣∥

∂
ς

tς
U tð Þ � ∂

ς

tς
Uh tð Þ∥∞

≤ max
i

X

n

ς¼0
∣λςk

∂
ς

tς
ui tð Þ �

∂
ς

tς
uhi tð Þ∣

≤
X

n

ς¼0
Cq∣λς∣∥u

mþ1ð Þ
k ∥L∞

Rmþ1�ς

where should be m≥ ς so,

X

n

ς¼0
∣λς∣R

mþ1�ς ≤K λ, ςð ÞRmþ1�μ

where μ is the highest order derivative And K λ, ςð Þ ¼
P

n

ς¼0
∣λς∣, so demanded that

∥Et∥∞ ≤CqK λ, ςð ÞRmþ1�μ∥u mþ1ð Þ
k ∥L∞

:

It should be noted that in the nonlinear system the upper bound of error depends
on the nonlinear operator.

4. Two-dimensional linear systems of integral equations

4.1 Fredholm type

In this section, we will provide an approximation solution of the 2-D linear
system of Fredholm integral equations by the MLS method. The matrix form of this
system could be considered as

U x, yð Þ ¼ F x, yð Þ þ
ð

Ω

K x, y, θ, sð ÞU θ, sð Þdθds, x, yð Þ∈Ω, (36)

where Ω ¼ a, b½ � � c, d½ � as Ω⊂
2, Also K x, y, θ, sð Þ ¼ κij x, y, θ, sð Þ

� 	

,  i, j ¼
1, 2, … , n is the matrix of kernels, U x, yð Þ ¼ u1 x, yð Þ, u2 x, yð Þ, … un x, yð Þð ÞT is the

vector of unknown function and F x, yð Þ ¼ f 1 x, yð Þ, f 2 x, yð Þ, … f n x, yð Þ
� �T

is the
vector of known functions.

In addition, is took that two cases for the domain, the rectangular shape, and
nonrectangular one and three cases relative to the geometry of the nonrectangular
domain are considered where can be transformed into the rectangular shape [35].

The first one is Ω ¼ θ, sð Þ∈
2
: a≤ s≤ b, g1 sð Þ≤ θ≤ g2 sð Þ

� �

where g1 sð Þ
and g2 sð Þ are continues functions of s, the second one can be consider as Ω ¼
θ, sð Þ∈

2
: c≤ θ≤ d, g1 θð Þ≤ s≤ g2 θð Þ

� �

where g1 θð Þ and g2 θð Þ are continues func-
tions of θ, Also the last one is a domain which is neither of the first nor the
second kinds but could be separated to finite numbers of first or second sub-
domains, it is labeled as a domain of third kind. Without loss of generality, the
first kind domain can be assumed as
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Ω ¼ θ, sð Þ∈
2
: �1≤ s≤ 1, g1 sð Þ≤ θ≤ g2 sð Þ

� �

(37)

by the following linear transformation

θ t, sð Þ ¼ g2 θð Þ � g1 θð Þ
2

tþ g2 θð Þ � g1 θð Þ
2

, (38)

the interval g1 θð Þ, g2 θð Þ
� 	

is converted to the fixed interval �1, 1½ �, so we have

U x, yð Þ ¼ F x, yð Þ þ
ð

1

�1

ð

1

�1

K x, y, t, sð ÞU t, sð Þdtds,  such that x, yð Þ∈ �1, 1½ � � �1, 1½ �

(39)

where

K x, y, t, sð Þ ¼ g2 θð Þ � g1 θð Þ
2

K x, y, θ, sð Þ (40)

Also, the second kind is straight similarly by commuting the variables and
the third kind can be separated to finite numbers of sub-domains of the first
or second kinds, so the method can be applied in each sub-domain as described
earlier.

So, for the numerical integration Ω ¼ ⋃L
l¼1Ωl and Ωl ⋂Ωk 6¼ ∅, 1≤ k, l≤L

ð

Ω

g sð Þds ¼
X

L

l¼1

ð

Ωl

g sð Þds (41)

Here, the MLS method is applied for the general case where the domain is
a, b½ � � c, d½ �.

To apply the method, as described in section 2.1, instead of ui from U, we can

replace uhi from (12). So we have

Uh xð Þ ¼ uh1 xð Þ, uh2 xð Þ, … , uhn xð Þ
� �T

(42)

Also, obviously from (12)

uhj x, yð Þ ¼
X

N

i¼1
ϕi x, yð Þuj xi, yi

� �

(43)

in this section, is assumed that the domain has rectangular shape, so system (36)
becomes as follows

uh1 x, yð Þ, uh2 x, yð Þ, … uhn x, yð Þ
� �T ¼ f x, yð Þ þ

ð

d

c

ð

b

a

kij x, y, t, sð Þ
� 	

uh1 t, sð Þ,uh2 t, sð Þ, … uhn t, sð Þ
� �T

dtds:

(44)
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By substituting (42) in (44), and it holds at points xr, yr
� �

, r ¼ 1, 2, … ,N we
have

f xr, yr
� �

¼
X

N

i¼1
ϕi xr, yr
� �

u1 xi, yi
� �

,
X

N

i¼1
ϕi xr, yr
� �

u2 xi, yi
� �

, …
X

N

i¼1
ϕi xr, yr
� �

un xi, yi
� �

 !T

�
ð

d

c

ð

b

a

kij xr, yr, t, s
� �� 	

X

N

i¼1
ϕi t, sð Þu1 xi, yi

� �

, … ,
X

N

i¼1
ϕi t, sð Þun xi, yi

� �

 !T

dtds:

(45)

We consider the m1-point numerical integration scheme over Ω relative to the

coefficients τk, ςp

� �

and weights ωk and ωp for solving integrals in (45), i.e.,

ϜNð Þjuj x, yð Þ ¼
X

m1

p¼1

X

m1

k¼1

X

N

i¼1
kji xr, yr, τk, ςk
� �

ϕi τk, ςkð Þωkωp

 !

, x, yð Þ∈Ω, ui ∈ �∞,∞ð Þ

(46)

Applying the numerical integration rule (46) yields

f xr, yr
� �

¼
 

X

N

i¼1
ϕi xr, yr
� �

�
X

m1

p¼1

X

m1

k¼1

X

N

j¼1
kj1 xr, yr, τk, ςk
� �

ϕi τk, ςkð Þωkωp

 ! !

u1i,

X

N

i¼1
ϕi τk, ςkð Þ �

X

m1

p¼1

X

m1

k¼1

X

N

j¼1
kj2 xr, yr, τk, ςk
� �

ϕi τk, ςkð Þωkωp

 ! !

u2i,

…
X

N

i¼1
ϕi τk, ςkð Þ �

X

m1

p¼1

X

m1

k¼1

X

N

j¼1
kjn xr, yr, τk, ςk
� �

ϕi τk, ςkð Þωkωp

 ! !

uni

!

T, r ¼ 1, 2, …N

where uj
� �

i
are the approximate quantities of uj when we use a quadrature rule

instead of the exact integral. Now if we set Fl, l ¼ 1, 2, … n as a N by N matrices
defined by:

Flð Þi,j ¼ ϕi xr, yr
� �

�
X

m1

p¼1

X

m1

k¼1

X

N

j¼1
kjl xr, yr, τk, ςp

� �

ϕi τk, ςp

� �

ωk

 !

ωp (47)

So, the moment matrix F is defined by (47) as follows

F ¼ F1, F2, … Fn½ �nN�nN (48)

And

U ¼ u11, u12, … u1Nð ÞT, u21, u22, … u2Nð ÞT, … un1, un2, … unNð ÞT
h iT

f xr, yr
� �

¼ f 1 xr, yr
� �� �N

r¼1

h iT
, f 2 xr, yr

� �� �N

r¼1

h iT
, … f n xr, yr

� �� �N

r¼1

h i

� �T

:

(49)

So by solving the following linear system of equations with a proper numerical
method such as Gauss elimination method or etc. leads to quantities, uji.

FU ¼ f (50)
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Therefore any uj x, yð Þ at any arbitrary point x, yð Þ from the domain of the
problem, can be approximated by Eq. (43) as

uj x, yð Þ≈
X

N

i¼1
ϕi x, yð Þuji xi, yi

� �

(51)

4.2 Volterra type

Implementation of the proposed method on the Volterra integral equations is
very simple and effective. In this case, the domain under study is as Ω ¼
a, x½ � � c, y½ � such that 0≤ x≤ 1, 0≤ y≤ 1 and a, c are constant, so a Volterra system
type of integral equations can be consider as

U x, yð Þ ¼ F x, yð Þ þ
ð

Ω

K x, y, t, sð ÞU t, sð Þdtds, x, yð Þ∈Ω, (52)

like the Fredholm type, it is the matrix form of a system, so we have

U x, yð Þ ¼ u1 x, yð Þ, u2 x, yð Þ, … un x, yð Þð ÞT, the  vector of  unknown functions

F x, yð Þ ¼ f 1 x, yð Þ, f 2 x, yð Þ, … f n x, yð Þ
� �T

, the  vector of  known functions

K x, y, t, sð Þ ¼ κij x, y, t, sð Þ
� 	

i, j ¼ 1, 2, … , n the matrix of  kernels:

(53)

By the following transformation the interval a, x½ � and c, y½ � can be transferred to
a fixed interval a, b½ � and c, d½ �,

t x, θð Þ ¼ x� a

b� a
θ þ b� x

b� a
a: (54)

s y, ξð Þ ¼ y� c

d� c
ξþ d� y

d� c
c: (55)

Then instead of ui from U, we can replace uhi from (12). So we have

Uh xð Þ ¼ uh1 xð Þ, uh2 xð Þ, … uhn xð Þ
� �T

(56)

where

uhi xð Þ ¼
X

N

j¼1
ϕj xð Þui xj

� �

(57)

where x ¼ x, yð Þ∈ a, b½ � � c, d½ �, thus, system (52) becomes

uh1 xð Þ, uh2 xð Þ, … uhn xð Þ
� �T ¼ F xð Þ þ

ð

x

a

ð

y

c

κij x, y, t, sð Þ
� 	

: uh1 x, yð Þ, uh2 x, yð Þ, … uhn x, yð Þ
� �T

dtds:

(58)

Therefore from (54) and (55), the system (58) takes the following form

uh1 xð Þ, uh2 xð Þ, … uhn xð Þ
� �T ¼ F xð Þ þ

ð

b

a

ð

d

c

κij x, y, t, sð Þ
� 	

: uh1 x, yð Þ, uh2 x, yð Þ, … uhn x, yð Þ
� �T

dθdξ:

(59)
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Where

K :, :, :, :ð Þ ¼ x� a

b� a

y� c

d� c
K :, :, :, :ð Þ, (60)

Using techniques employed in the Fredholm case yields the same final linear
system where

Flð Þi,j ¼ ϕi xr, yr
� �

�
X

m1

p¼1

X

m1

k¼1

X

N

j¼1
kjl xr, yr, τk, ςp

� �

ϕi τk, ςp

� �

ωk

 !

ωp (61)

where l ¼ 1, 2, … , n.

5. Nonlinear systems of two-dimensional integral equation

5.1 Fredholm type

In the nonlinear system, the unknown function cannot be written as a
linear combination of the unknown variables or functions that appear in them,
so the matrix form of Fredholm integral equations defined as the following
form [27].

U x, yð Þ ¼ F x, yð Þ þ
ð

Ω

K x, y, θ, s,U θ, sð Þð Þdθds, x, yð Þ∈Ω, (62)

Where U x, yð Þ, K and F are defined as,

U x, yð Þ ¼ u1 x, yð Þ, u2 x, yð Þ, … , un x, yð Þð ÞT

K x, y, θ, s,U θ, sð Þð Þ ¼ kij x, y, θ, s,U θ, sð Þð Þ
� 	

, i, j ¼ 1, 2, … , n

F ¼ f 1, f 2, … , f n
� �T

As mentioned above, we assume that Ω ¼ a, b½ � � c, d½ �.
To apply the aproximation MLS method, we estimate the unknown functions ui

by (12), so the system (62) becomes the following form

uh1 x, yð Þ, uh2 x, yð Þ, … uhn x, yð Þ
� �T ¼ f x, yð Þ þ

ð

d

c

ð

b

a

kij x, y, t, s,U
h t, sð Þ

� �� 	

dtds (63)

We consider the m1-point numerical integration scheme over the domain under

study relative to the coefficients τk, ςp

� �

and weights ωk and ωp for solving tow-

dimentional integrals in (63), i.e.,

ϜNð Þiui x, yð Þ ¼
X

m1

p¼1

X

m1

k¼1
kji x, y, τk, ςp,

X

N

j¼1
ϕj τk, ςp

� �

ui x, yð Þωkωp

 !

, x, yð Þ∈Ω, ui ∈ �∞,∞ð Þ

(64)
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Applying the numerical integration rule (64) in (63) yields

uh1 xr, yr
� �

, uh2 xr, yr
� �

, … , uhn xr, yr
� �� �T ¼ f xr, yr

� �

þ
X

m1

p¼1

X

m1

k¼1
kij xr, yr, τk, ςp,U

h τk, ςp

� �� �h i

dtds

(65)

Finding unknowns Uh by solving the nonlinear system of algebraic Eq. (65)
yields the following approximate solution at any point x, tð Þ∈Ω:

uj x, yð Þ≈
X

N

i¼1
ϕi x, yð Þuji xi, yi

� �

(66)

5.2 Volterra type

Two-dimensional nonlinear system of Volterra integral equations can be con-
sidered as the following form

U x, yð Þ ¼ F x, yð Þ þ
ð

x

a

ð

y

c

K x, y, θ, s,U θ, sð Þð Þdθds, x, yð Þ∈Ω, (67)

where K, F are known function and U the vector of unknown functions are
defined in (63) [27]. In order to apply the MLS approximation method, as same as
the linear type, the interval a, x½ � and c, y½ � transferred to a fixed interval a, b½ � and
c, d½ �. Then uhi , i ¼ 1, 2, … , n instead of ui in U ¼ u1, u2, … , unð from (12) is replaced.
So the nonlinear system (67) is converted to

uh1 x, yð Þ, uh2 x, yð Þ, … , uhn x, yð Þ
� �T ¼ f x, yð Þ þ

ð

d

c

ð

b

a

K x, y, t, s,Uh t, sð Þ
� �

dtds (68)

where

K x, y, t, s,Uh t, sð Þ
� �

¼ x� a

b� a

y� c

d� c
K x, y, t, s,Uh t, sð Þ
� �

, (69)

Using the numerical integration technique (64) which applied in the Fredholm
case yields the same final nonlinear system (65), so the approximation solution of U
would be found by solving this system of equations.

6. Examples

In this section, the proposed method can be applied to the system of 2-dimen-
sional linear and nonlinear integral equations [37] and the system of differential
equations. Also, the results of the examples illustrate the effectiveness of the
proposed method Also the relative errors for the collocation nodal points is used.

∥ei∥∞ ¼
∥uiex x, yð Þ � uhi x, yð Þ∥

∥uiex x, yð Þ∥
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where uhi is the approximate solution of the exact solution uiex. Linear and
quadratic basis functions are utilized in computations.

6.1 Example 1

As the first example, we consider the following system of nonlinear Fredholm
integral equations [27].

u1 x, yð Þ ¼ f 1 x, yð Þ þ
ð

Ω

u1 s, tð Þu2 s, tð Þdsdt

u2 x, yð Þ ¼ f 2 x, yð Þ þ
ð

Ω

u1 s, tð Þu2 s, tð Þ þ u22 s, tð Þdsdt

where Ω ¼ 0, 1½ � � 0, 1½ �: The exact solutions are U x, yð Þ ¼ xþ y, xð Þ and the

F x, yð Þ ¼ xþ y� 7
12, x� 11

12

� �

: The distribution of randomly nodes is shown in
Figure 1. By attention to the irregular nodal points distribution, unsuitable δ can
lead to a singular matrix A. So in this example, the adapted algorithm can tackle
such problems. The MLS and MMLS shape functions are computed by using Algo-
rithm 1, so the exact value of the radius of the domain of influence is not important;
in fact, it is chosen as an initial value.

The condition numbers of the matrix A is shown in Figure 2 and the determinant
of A at sample points p is shown in Figure 3, where the radius of support domains for
any nodal points is started from δ ¼ 0:05. Note that, there is a different radius of
support domain for any node point, it might be increased due to the inappropriate
distribution of scattered points by the algorithm. These variations are shown in
Table 1 for sample points x, yð Þ, where Cond Að Þ is the conditions number A, its initial
case (δ ¼ 0:005) and final case (Newδ, ) and N:O:iteration is the number of iteration
of the algorithm for determining a suitable radius of support domain.

In computing, δ ¼ 2r where r ¼ 0:05 and c ¼ 2
ffiffi

3
p r: Also In MMLS, wν ¼ 0:1,

ν ¼ 1, 2, 3: It should be noted that, these values were also selected experimentally.
Relative errors of the MLS method for different Gauss-Legendre number points at
m ¼ 1, 2 and 3 compared in Table 2, also investigating the proposed methods
shown that increasing the number of numerical integration points does not guar-
antee the error decreases. jkjk.

Figure 1.
The scatter data of example 1.
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Figure 2.
The condition numbers of a at a sample point p and δ ¼ 0:05 for example 1. Using algorithm 1.

Sample points Cond(A) Result of algorithm

n x y initial final Newδ N.O.iteration

1 0:2575 0:4733 1:1005e� 17 1:0117e� 06 0:1297 11

2 0:2575 0:6160 0 3:1111e� 06 0:1569 13

3 0:2575 0:9293 5:3204e� 17 5:2445e� 07 0:0974 8

4 0:2551 0:6160 0 3:1115e� 06 0:1569 13

5 0:6991 0:2435 2:7166e� 17 1:4652e� 07 0:0550 2

Table 1.
Change of the radius and the condition number A at sample points (x,y) using algorithm 1, for example 1.

m = 1 ek k
∞

m = 2 ek k
∞

m = 3 ek k
∞

N u1 u2 u1 u2 u1 u2

5 6:28� 10�4 2:7 � 10�3 3:45� 10�7 1:15� 10�6 3:1� 10�6 2:8� 10�6

10 1:2� 10�4 5:9� 10�4 2:46� 10�7 8:41� 10�7 2:1� 10�7 5:41� 10�7

15 2:3� 10�4 5:9� 10�4 4:47 � 10�8 1:34� 10�7 4:47 � 10�8 2:15� 10�7

20 2:3� 10�4 5:14� 10�4 6:12� 10�7 2:46� 10�6 3:2� 10�7 1:9� 10�6

30 3:2� 10�4 5:9� 10�4 1:84� 10�6 6:64� 10�6 2:34� 10�6 7:14� 10�6

Table 2.
Maximum relative errors for different points Gauss-Legendre quadrature rule δ ¼ 2r, for example 1.
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In Table 3, we can see that the CPU times for solving the nonlinear system (65)
are much larger in MMLS method; but, the errors are very smaller (Figure 3).

6.2 Example 2

Consider the system of linear Fredholm integral equations with [27].

K x, y, t, sð Þ ¼
x tþ sð Þ �t

ts yþ xð Þt

� �

, (70)

Such that U x, yð Þ ¼ xþ y, xð Þ is the vector of The exact solutions and the vector

of unknown function is F x, yð Þ ¼ � 1
6 xþ yð Þ þ 1

3,
4
3 x� 1

3þ 1
3 y

� �

: Also the domain of

the problem determine by Ω ¼ 0, 1½ � � 0, 1½ �: In this example, initial value of r as
radius of support domain set by 0:05. Also Algorithm 1 is used for producing shape
function at m ¼ 1, 2, 3. In computing, we put wν ¼ 0:1, ν ¼ 1, 2, 3:

MMLS ek k
∞

MLS ek k
∞

CPU times

N u1 u2 u1 u2 MLS MMLS

10 3:78� 10�10 8:13� 10�10 2:46� 10�7 8:41� 10�7 389:9574 2:9776� 103

15 1:35� 10�10 2:00� 10�11 4:47 � 10�8 1:34� 10�7 410:9083 2:1109� 103

20 8:63� 10�11 2:51� 10�9 6:12� 10�7 2:46� 10�6 634:8373 3:2115� 103

30 3:99� 10�10 1:58� 10�9 1:84� 10�6 6:64� 10�6 1:0331� 103 2:5844� 103

Table 3.
Compare relative errors and CPU times of MLS and MMLS for different points Gauss-Legendre quadrature
rule, m ¼ 2ð Þ, for example 1.

Figure 3.
The determinant of a at a sample point p and δ ¼ 0:05 for example 1. Using algorithm 1.
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Table 4 shows relative errors and CPU times of MLS for different Gauss-
Legendre number points at m ¼ 1, 3: As shown in Table 5, comparing the errors of
MMLS and MLS method determines the capability and accuracy of the proposed
technique to solve systems of linear Fredholm integral equations. This indicates the
advantage of the proposed method over these systems of equations.

Comparing the errors ofMMLS andMLSmethod determines the capability and
accuracyof theproposedmethod to solve systemsof linear Fredholm integral equations.

6.3 Example 3

The third example that we want to approximate is the system of linear Volterra-
Fredholm integral equations with [27].

K x, y, t, sð Þ ¼ xþ yð Þ exp tþsð Þ xþ yð Þ exp tþsð Þ

1 �1

 !

, (71)

The domain is considered as Ω ¼ x, yð Þ∈
2
: 0≤ x≤ 1, 0≤ y≤ 1� yð Þ

� �

so that

y∈ 0, 1½ �. Also the exact solutions are exp xþy, exp x�yð Þ: It is important to note that
the linear transformation used in the experiment is only (55) and from (40) the
kernel becomes

m = 1 m = 3

N u1 u2 CPU.T. u1 u2 CPU.T.

5 2:94� 10�4 6:02� 10�4 108:957 2:08� 10�4 2:91� 10�4 152:1474

10 1:79� 10�4 3:89� 10�4 159:258 1:7 � 10�4 2:37 � 10�4 170:7879

15 1:86� 10�4 3:989� 10�4 198:135 2:47 � 10�4 3:30� 10�4 252:75424

20 1:86� 10�4 3:986� 10�4 221:321 2:41� 10�4 3:29� 10�4 247:0093

30 1:85� 10�4 3:987 � 10�4 308:987 2:25� 10�4 3:37 � 10�4 314:8173

40 1:85� 10�4 3:980� 10�4 395:125 1:87 � 10�4 2:86� 10�4 402:9594

Table 4.
Relative errors and CPU times of MLS for different points Gauss-Legendre quadrature rule at m ¼ 1, 3, for
example 2.

MLS MMLS

m N u1 u2 CPU.T. u1 u2 CPU.T.

2 5 1:24� 10�7 3:89� 10�6 289:75 4:47 � 10�7 6:12� 10�6 297:7

10 3:16� 10�7 5:23� 10�7 189:99 2:16� 10�8 6:26� 10�8 210:09

15 1:68� 10�7 4:13� 10�7 389:95 2:02� 10�8 8:12� 10�8 390:15

20 1:61� 10�7 3:88� 10�7 410:90 2:04� 10�8 5:24� 10�8 425:87

30 1:45� 10�7 3:80� 10�7 604:80 1:98� 10�8 3:25� 10�8 618:44

40 1:44� 10�7 3:84� 10�7 689:9574 1:04� 10�8 6:87 � 10�8 697:04

Table 5.
Compare relative errors and CPU times of MLS and MMLS for different points Gauss-Legendre quadrature
rule at m ¼ 2, for example 2.
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K :, :, :, :ð Þ ¼ y� c

d� c
K :, :, :, :ð Þ: (72)

In this example, the effect of increasing radius of the domain of influence δi in
MLS method on error has been investigated. Therefore the δi was considered as
follows

δi ¼ λr i ¼ 1, 2, … ,N (73)

In this way, useful information is obtained about the performance of the pro-
posed method. By investigating the results in Tables 6 and 7 we found that the
relative error in MLS was also related to the radius of the domain of influence (i.e.
δ ¼ λr so that λ ¼ 3, 5, 7); however, it cannot be greater than 7: For example, the
relative errors by choosing λ ¼ 10 (i.e. δ ¼ 0:05λ) and 10�point GaussLegendre
quadrature rule are ek k∞u1

¼ 3:3� 10�2 and ek k∞u2
¼ 1:8� 10�2 at m ¼ 1: Also,

Table 8 depicts, the number of points in the numerical integration rule cannot be
effective to increase the accuracy of the method.

λ ¼ 3 ek k
∞

λ ¼ 5 ek k
∞

λ ¼ 7 ek k
∞

r u1 u2 u1 u2 u1 u2

0:2 9� 10�3 5� 10�3 1:9� 10�3 1� 10�3 6:02� 10�4 3:36� 10�4

0:1 1:2� 10�3 6:87 � 10�4 1:34� 10�4 7:46� 10�5 4:57 � 10�6 2:91� 10�6

0:05 1:44� 10�4 8:14� 10�5 2:23� 10�5 1:26� 10�5 6:27 � 10�6 3:6� 10�6

Table 6.
Maximum relative errors of MLS for 10 Gauss-Legendre points and different values of δ ¼ λr at m ¼ 2, for
example 3.

λ ¼ 3 ek k
∞

λ ¼ 5 ek k
∞

λ ¼ 7 ek k
∞

r u1 u2 u1 u2 u1 u2

0:2 1:5� 10�3 8:77 � 10�3 6:56� 10�5 3:01� 10�5 1:09� 10�4 6:19� 10�5

0:1 1:08� 10�4 6:51� 10�5 3:47 � 10�5 2:08� 10�5 1:24� 10�5 7:22� 10�6

0:05 6:63� 10�6 3:93� 10�6 3:9� 10�6 2:31� 10�6 2:41� 10�6 1:38� 10�6

Table 7.
Maximum relative errors of MLS for 10 Gauss-Legendre points and different values of δ ¼ λr at m ¼ 3 for
example 3.

λ ¼ 3 ek k
∞

λ ¼ 5 ek k
∞

λ ¼ 7 ek k
∞

N u1 u2 u1 u2 u1 u2

5 2:2� 10�3 1:5� 10�3 6:33� 10�5 4:52� 10�5 2:21� 10�5 1:59� 10�5

10 1:1� 10�3 7:4� 10�4 4:17 � 10�5 2:89� 10�5 2:96� 10�6 2:72� 10�6

15 2� 10�3 1:3� 10�3 7:9� 10�5 5:07 � 10�5 6:31� 10�6 5:11� 10�6

20 2:1� 10�3 1:3� 10�3 8:06� 10�5 5:17 � 10�5 3:96� 10�6 3:69� 10�6

30 2:1� 10�3 1:3� 10�3 8:16� 10�5 5:17 � 10�5 4:11� 10�6 3:74� 10�6

Table 8.
Maximum relative errors of MLS for different values of δ ¼ λr, r ¼ 0:05 and Gauss-Legendre points at
m ¼ 1, using algorithm 1 for example 3.
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Then the relative error by MMLS shape function described in section (2.3) were
obtained, using δ ¼ 7r and wν ¼ 10, such that ν ¼ 1, 2, 3 as weights of additional
coefficients for MMLS. We can see that in Table 9 the errors of the system of linear
Volterra-Fredholm integral equations are similar in both methods (i.e. MLS and
MMLS methods).

6.4 Example 4

Consider the following nonlinear stiff systems of ODEs [38].

u01 tð Þ ¼ �1002u1 tð Þ þ 1000u22 tð Þ
u02 tð Þ ¼ u1 tð Þ � u2 tð Þ � u22 tð Þ

(

With the initial condition u1 0ð Þ ¼ 1 and u2 0ð Þ ¼ 1: The exact solution is

u1 tð Þ ¼ exp �2tð Þ
u2 tð Þ ¼ exp �tð Þ:

In this numerical example, two scheme are compared and as explained the main
task of the modified method tackle the singularity of the moment matrix. Table 10
presents the maximum relative error by MLS on a set of evaluation points (with
h ¼ 0:1 and 0:02) and δ ¼ 4h and 3h. Also in Table 11 MLS and MMLS at different
number of nodes for h ¼ 0:004 and δ ¼ 5h and 8h, were compared (Tables 10–12).

MLS MMLS CPU time

r u1 u2 u1 u2 MLS MMLS

0:2 1:09� 10�4 6:19� 10�5 5:52� 10�4 3:08� 10�4 4:0556 3:3893

0:1 1:24� 10�5 1:08� 10�6 1:25� 10�5 7:36� 10�6 38:0616 31:7945

0:05 1:91� 10�6 1:085� 10�6 1:54� 10�5 8:77 � 10�6 496:1746 409:0342

Table 9.
Compare relative errors and CPU times of MLS and MMLS for wν ¼ 10 and 10 Gauss-Legendre points and
different values of δ ¼ 7r at m ¼ 2 for example 3.

m = 2,δ = 4 r m = 2, δ = 3 r

r u1 u2 u1 u2

0.1 5� 10�3 4:1� 10�4 8:85� 10�4 2:2� 10�3

0.02 5:8� 10�2 6:5� 10�5 5:42� 10�4 6:52� 10�5

Table 10.
Maximum relative errors by MLS, example 4.

m = 3, δ = 5 r m = 3, δ = 8 r

Type u1 u2 u1 u2

MLS 1:03� 100 0:98� 101 1:01� 100 9:2� 100

MMLS 9:23� 10�4 9:22� 10�4 6:89� 10�4 6:96� 10�4

Table 11.
Maximum relative errors for h = 0.004 by MMLS and MLS, example 4.
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6.5 Example 5

In this example, we consider U tð Þ ¼ 1
47 95 exp �2tð Þ � 48 exp �96tð Þ
� �

, 1
47

�

48 exp �96tð Þ � exp �2tð Þð ÞÞ as the exact solution and U 0, 0ð Þ ¼ 1, 1ð Þ as the initial
conditions for the following system of ODE,

x0 tð Þ ¼ �x tð Þ þ 95y tð Þ
y0 tð Þ ¼ �x tð Þ � 97y tð Þ

�

Table 12 presents the maximum relative norm of the errors on a fine set of
evaluation points (with h ¼ 0:004) and δ ¼ 5h for MLS and MMLS at different type
of weight functions. As seen in this table, one major advantage of MMLS is that the
computational time used by MMLS is less than MLS.

7. Conclusion

In this paper, two meshless techniques called moving least squares and modified
Moving least-squares approximation are applied for solving the system of func-
tional equations. Comparing the results obtained by these methods with the results
obtained by the exact solution shows that the moving least squares methods are the
reliable and accurate methods for solving a system of functional equations. Meshless
methods are free from choosing the domain and this makes it suitable to study real-
world problems. Also, the modified algorithm has changed the ability to select the
support range radius In fact, the user can begin to solve any problem with an
arbitrary radius from the domain and the proposed algorithm can correct it during
execution.

MLS MMLS

weight type u1 u2 Cputime u1 u2 Cputime

Guass 3:06� 10�3 9:92� 10�5 61:1706 8:5� 10�4 6:5� 10�4 0:5598

Spline 5:06� 10�4 5:3� 10�4 64:5897 1:93� 10�2 4:23� 10�4 0:6714

RBF 6:407 � 10�4 3:02� 10�4 59:1790 6:9� 10�3 6:9� 10�3 0:5768

Table 12.
Maximum relative errors by MLS t∈ 0, 5½ �,h ¼ 0:004,, example 2.
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