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Chapter

Random Forest-Based
Ensemble Machine Learning
Data-Optimization Approach for
Smart Grid Impedance Prediction
in the Powerline Narrowband
Frequency Band
Emmanuel Oyekanlu and Jia Uddin

Abstract

In this chapter, the random forest-based ensemble regression method is used for
the prediction of powerline impedance at the powerline communication (PLC)
narrowband frequency range. It is discovered that while PLC load transfer function,
phase, and frequency are crucial to powerline impedance estimation, the problem of
data multicollinearity can adversely impact accurate prediction and lead to exces-
sive mean square error (MSE). High MSE is obtained when multiple transfer func-
tions corresponding to different PLC load transfer functions are used for random
forest ensemble regression. Low MSE indicating more accurate impedance predic-
tion is obtained when PLC load transfer function data is selectively used. Using data
corresponding to 200, 400, 600, 800, and 1000 W PLC load transfer functions
together led to poor impedance prediction, while using lesser amount of carefully
selected data led to better impedance prediction. These results show that artificial
intelligence (AI) methods such as random forest ensemble regression and deter-
ministic data-optimization approach can be utilized for smart grid (SG) health
monitoring applications using PLC-based sensors. Machine learning can also be
applied to the design of better powerline communication signal transceivers and
equalizers.

Keywords: random forest, regression, impedance, data quality, prediction,
ensemble, machine learning, smart grid, deterministic artificial intelligence

1. Introduction

The utilization of powerline communication (PLC) as a tool for actualizing a
smart grid (SG) has grown beyond its traditional uses for two-way SG communica-
tion, advanced metering infrastructure (AMI) applications, demand response, and
power system control. As shown in Figure 1, cameras that can transmit data using
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PLC are now being used for monitoring of power system assets installed in remote
locations [1]. PLC is also being extensively used for broadband Internet applications
[2], consumer home automation applications [3], facilitating grid-wide artificial
intelligence (AI) applications [4–10], monitoring grid health using PLC modems
as sensors [11], etc.

Despite these uses, there are still numerous challenges militating against a more
effective deployment of PLC for SG applications. The powerline being primarily
designed for power transmission is a harsh environment for communication. As
such, there exist the problems of varying impedance, numerous white and different
nonwhite noise types, and excessive frequency-dependent attenuation [12–15]. To
ameliorate these problems and make PLC more useful for the SG, different parts
of the powerline used for PLC as shown in Figure 2 can be optimized from the
transmission (TX) end to the receiving (RX) end [16].

For PLC to be particularly useful for grid health monitoring, many researchers
worldwide have focused on the problem of powerline impedance estimation.
Powerline impedance is a very important parameter in the design of PLC trans-
ceivers and in installing a modem grid architecture [17]. In PLC, to achieve maxi-
mum power transfer between the PLC transmitting and receiving ends, powerline
TX (Figure 2), transmission line, and RX impedance must always be known by the
impedance matching network [17]. PLC impedance however is time varying since
electrical loads are always being connected to and disconnected from the PLC
networks, thus leading to the problem of PLC network impedance mismatches [18].
Accurate and real-time impedance information can be used to match impedance
variables in PLC couplers to decrease PLC data attenuation [19]. Also, online and
real-time knowledge of PLC network impedance is essential to overall grid health
monitoring of the SG. In addition, real-time PLC-based impedance information

Figure 1.
Powerline communication is being deployed for numerous smart grid applications including remote asset
monitoring using PLC-based cameras.
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can be useful for event detection [20], thus leading to lesser needs for having to
install very expensive phasor measurement units (PMUs).

To improve on available methods of powerline impedance estimation, in [13],
using an algorithm, the authors designed an adaptive inductor-capacitor-
resistor-capacitor (LCRC) impedance matching circuit for improving the imped-
ance matching problem in the PLC narrowband frequency region. Also, the authors
in [17] measured impedance and attenuation of the PLC at the CENELEC bands in
rural, urban, and industrial use cases, respectively. Results of the research are the
production of a set of formulas that can be used to deduce impedances of the PLC in
view of load variations on PLC networks. In [18], the authors produce a statistical
model of PLC network impedance. Results of work discussed in [19] are a novel
real-time impedance estimation method based on channel frequency response and
machine learning variational mode decomposition (VMD) method. In [20], the
authors propose a method by which powerline impedance can be estimated using
device status detection algorithm and device individual energy and impedance
signatures. In [21], the authors presented results of work in which the real-time
estimation of powerline impedance is based on modal analysis theory, while the
authors in [22] conducted a study on the design of a front-end optimal receiver
impedance that maximizes signal-to-noise ratio (SNR) in broadband PLC.

One significant drawback of majority of existing PLC impedance estimation
methods however is that they need dedicated equipment and the knowledge of the
network topology. This is the problem that our approach in present work seeks to
solve. We present a deterministic machine learning-based PLC impedance estima-
tion method by which common PLC network data such as the PLC channel load
transfer function, frequency, and phase can be used to estimate and predict PLC
network impedance. A benefit of the deterministic AI impedance prediction
approach adopted in our work is that data needed for impedance estimation and
prediction is not excessively superfluous and such data can be easily stored in low-
memory powerline network devices. In Section 2, we present a new set of results
that shows the transfer function and attenuation profile of PLC in the narrowband
frequency bands based on electrical loads connected to the powerline. In Section 3,
we briefly discussed the random forest ensemble method, and we present results
of how we used PLC network data to optimize results of PLC impedance prediction

Figure 2.
Different parts of powerline communication can be optimized from end to end for more effective powerline
communication [16].
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in the narrowband frequency bands. Section 4 details results and discussion and
Section 5 presents conclusion of the chapter.

2. New results on powerline communication attenuation profile in the
PLC narrowband frequency bands based on loads on the powerline

In literature, there exist several PLC models that are used to evaluate the
behavior and performance of PLC networks. In Philip’s echo model, the PLC
transfer function is given in [14] as

H fð Þ ¼
X

N

i¼1

pie
�j2πf τi (1)

In Eq. (1), N is the number of possible signal propagation paths, with each path
in N delayed by time factor τi, while pi is the product of transmission and reflection
factors. Another popular model is the Zimmerman and Dostert model which
accounts for PLC signal attenuation. The model is given by

H fð Þ ¼
X

N

i¼1

gie
� a0þa1 f

kð Þdie�j2πf
di
vp (2)

Similar to Philip’s echo model, gi in Eq. (2) is the product of transmission and
reflection. The path length for each path in N number of significant paths is di.
Attenuation parameters can be obtained from measurements and they are k, a0, and

a1. In Eq. (2), the term di
vp
can also be represented as the path delay where vp can be

represented as

vp ¼
co
ffiffiffiffi

ετ
p (3)

In Eq. (3), vp is the phase velocity, co= 3 x 108 m=s represents the speed of light in
a vacuum, while ετ is the dielectric constant. In narrowband PLC, few results exist
that directly evaluate and explain the behavior of narrowband PLC networks. A
recent result by the authors in [23] is given in Eq. (4).

H fð Þ ¼ A
X

M

k¼1

gk fð Þ exp � α0 þ α1fð Þð Þvpτk exp �j2πf τk (4)

In Eq. (4), A is the constant coefficient for frequency response adjustment, and
M is the number of significant paths. The weighting factor corresponding to each
significant path is gk fð Þ, while α0 and α1 are constant coefficients for powerline
cable adjustment. However, in view of the importance, worldwide acceptability,
and the need to better understand the narrowband PLC region (below 500 kHz) for
powerline communication [23], this chapter presents new modeling results of the
narrowband PLC region. The presented model is a novel result as it is accomplished
by systematic addition of electrical loads for empirical evaluation of the PLC nar-
rowband region. Our methodology is as shown in Figure 3. A de-embedded E5071C
ENA vector network analyzer (VNA) is used to measure the attenuation profile of
the low-voltage region, an indoor environment, when loads are added to the
powerline segments between both ends of the VNA. In each measurement case, the
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attenuation profile and frequency data are obtained from the VNA in Excel file
sheet format, and for better visualization, the profile is plotted with Matlab. Elec-
trical loads are added to the powerline in 500 watt increments. In the first instance,
two 250 W-rated desktop computers were added to the powerline for a total of
500 W. In the second instance, a 500 W blender is added to the first two desktop
computers for a total 1000 W.

Finally, a 520 W coffee maker is added to make the overall load approximately
1500 W. In each case, the attenuation profile of the powerline is measured with the
aid of the de-embedded E5071C VNA. The indoor powerline cable used for this
experiment is the 10 AWG Romex SIMpull CU NM-B cable. To examine the effect
of distance, the cable distance is extended in increments of 100 m. Initially, a 150 m
Romex indoor cable is used, and attenuation profile is measured using the VNA
when 500 W load is connected to the 150 m cable located in between two ends of
the VNA (Figure 3). The loads are subsequently increased to 1000 and 1500 W,
respectively. The Romex cable length is increased to 250 and 350 m, respectively,
and the network loads and measurements are repeated. Results of the attenuation
profiles are shown in Figures 4–6, respectively. From Figures 4 to 6, effects of
powerline length are noticeable as the VNA shows a profile that is increasingly
attenuated as PLC channel length is increasing. Also, electrical loads on the
channel have significant effect on the attenuation profile. The attenuation profile
in Figure 4 shows a channel that has more channel notches as more electrical loads
are added to the network. When loads on the channel are only 500 W, the channel
shows lesser number of notches than when loads on the channel increase to 1000
and to 1500 W, respectively. The more the loads, the more the number of notches.
This indicates that when more electrical loads exist on the PLC channels, then data
or signal sent on the channel will suffer increased attenuation than when less
amounts of electrical loads exist on the network. Similar channel load effects are
observed on the 250 m long and on the 350 m long PLC channels in Figures 5 and 6,
respectively. However, the channel profile exhibits a characteristic similar to that
described by the Zimmerman and Dostert PLC channel model. Thus, the

Figure 3.
Experimental setup for load-based attenuation profile measurement in the PLC narrowband communication
band.
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Zimmerman and Dostert model is modified to show a narrowband channel model
that considers the effect of PLC channel load. The resulting model which focuses
primarily on the effect of electrical loads on the PLC channel at the PLC narrow-
band region is shown in Eq. (5), and it is simulated with Matlab and graphed in
Figure 7. Figure 7, which is the derived model based on Eq. (5), is generally similar
to the load-based PLC channel profile shown in Figures 4 to 6. In Eq. (5), μ is the
channel load index where μ ε 1, 2, 3, … .., n. To replicate the channel profile of
Figure 7, the load factor μ can be increased from 1 to n based on discrete channel
load increments of 200 W. For the purpose of clarity, in Eq. (5), N is the number of
significant paths, di is the path length of each significant path, vp is the phase

Figure 4.
Load-based attenuation profile for powerline communication at industrial indoor distance of 150 m.

Figure 5.
Load-based attenuation profile for powerline communication at industrial indoor distance of 250 m.
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velocity, and gi is the weighting factor corresponding to each significant path.
Constant coefficients of powerline cable adjustments are denoted with a0 and a1,
respectively.

H fð Þ ¼ �μ

X

N

i¼1

gie
� a0þa1 f

kð Þdie�j2πf
di
vp (5)

The precise and deterministic nature of the channel load index μ in Eq. (5) and
the fact that the amount of PLC channel loads is directly related to the PLC channel

Figure 6.
Load-based attenuation profile for powerline communication at industrial indoor distance of 350 m.

Figure 7.
Narrowband PLC model showing load-based attenuation profile.
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impedance is exploited in this chapter to reduce the amount of data that can be used
in machine learning ensemble algorithm to predict the PLC channel impedance. Our
approach can thus be viewed as a deterministic data-optimization approach to PLC
impedance prediction. In deterministic AI, data produced by systems whose
behavior is governed by fundamental physical laws can utilize those laws for
reducing data used in machine learning and other AI applications [24]. Determinis-
tic AI methods have been successfully applied in large engineering systems such as
altitude control of spaceships suffering from loss of vital parts [25]. It has also been
applied for achieving better precision in AI algorithms [26] used for adaptive
control of actuators [24, 27], in system identification [26], and in plant control [28],
with results indicating that the deterministic AI method often leads to better preci-
sion in prediction performance and in reducing superfluous network data.

3. Machine learning ensemble regression method for PLC channel
impedance estimation

PLC network impedance has significant effect on communication over
powerline networks. The line impedance directly impacts the communication dis-
tance in an inverse relationship, i.e., the higher the line impedance, the lower the
distance at which good communication can be achieved over the powerline. Also, if
the powerline load impedance is lower than the PLC network transmitter imped-
ance, then the load will provide an easier grounding pathway for the communica-
tion signal. The signal, thus, will get easily attenuated. Hence, due to the importance
of impedance [29] to the success of communication over the powerline, it is essen-
tial that the impedance information of the PLC network is always available at the
transmitter and PLC receiver ends [30, 31]. However, it is challenging to always
predict the PLC network impedance in real time since electrical appliances are
always being switched on and off, thus causing network impedance to vary always.
In addition, VNA, PMUs, and other equipment useful for measuring PLC network
impedance are always expensive, and thus, it is impossible to install such equipment
at all possible nodes on the network for grid health monitoring. Hence, in this
chapter, we have devised machine learning and deterministic data optimization-
based approach by which PLC network impedance can be predicted using common
PLC network load data. The machine learning approach adopted for this work is the
use of random forest ensemble regression method.

In literature, different types of machine learning and artificial intelligence
methods have been used for different types of engineering and large network
problems [32–54]; however, the random forest ensemble regression method has
been proven to be very useful since it is known to have high prediction accuracy, it
is efficient on large datasets, and it also gives better predictive accuracy when there
are cases on missing data [52–54].

Random forest is an ensemble classifier that consists of many decision trees and
outputs the class that is the mode of the class’s output by individual trees. Random
forest works by training randomly selected subset of data from a large set of data on
decision trees and then aggregating the results of each decision tree to form an
ensemble result that often yields better prediction. In Figure 8, each decision tree is
trained using a method called bootstrap aggregating.

At each split node and the resulting child nodes, another metric called the
information gain which is the difference between the uncertainty of the starting
node and the weighted impurity of the resulting two-child nodes is used to decide
on which feature can be used to split the data. The combined use of the Gini index,
information gain, bootstrap aggregation, and decision trees serves to make the
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random forest a valuable method for both classification- and regression-based
predictions.

In our implementation of the random forest method for PLC impedance predic-
tion, the de-embedded E5071C VNA is used to measure the network when different
types and power ratings of electrical loads are plugged to the network of Figure 3.
About 200, 400, 600, 800, and 1000 W loads of different ratings are separately
plugged to the network, and PLC variables such as transfer function, frequency, phase,
distance, and frequency data are obtained and used to predict PLC network imped-
ance. Measurement data are obtained in Excel file format from the VNA, and random
forest ensemble regression is used to predict PLC network impedance using those
variables. Resulting Excel files are loaded onto an Ubuntu 18.04 Linux system. Python,
including python libraries such as sklearn, pandas, and numpy, is used to import
python-based random forest regression (ensemble-GradientBoostingRegressor)

Figure 8.
Random forest ensemble method of tree selection and result aggregation.

Frequency (kHz) Transfer function (1000 W loads) Predicted impedance (Ω)

10 �0.041888548 2.683132621

10.01 �0.083776438 2.620954991

10.02 �0.125664329 2.558777556

10.03 �0.167552219 2.496600312

10.04 �0.209440109 2.434423254

10.05 �0.251327999 2.372246379

10.06 �0.293215889 2.310069682

10.07 �0.335103779 2.24789316

499.93 �0.502655337 19.13619916

499.94 �0.544543227 19.07860685

499.95 �0.586431116 19.00921205

499.96 �0.628319005 19.92970978

499.97 �0.670206895 19.84181646

Only two features are used in this instance.

Table 1.
Snapshot of data used to predict network impedance. Only data from frequency ranges 10–10.07 kHz and
499.93–499.97 kHz are shown.

9

Random Forest-Based Ensemble Machine Learning Data-Optimization Approach for Smart…
DOI: http://dx.doi.org/10.5772/intechopen.91837



library to accomplish PLC impedance prediction. In each of the data set loaded onto
the Linux system, the last column (to be predicted) by the ensemble random forest
method is the PLC network impedance.

The random forest regressor parameters include splitting the training and test
data in an 80:20 ratio, the number of estimators in each case is 500, and the
maximum depth is 4. The learning rate of the network is 0.01. This rate is selected
based on similar data rate selection in literature [32]. Since it is established in
literature that random forest ensemble regression method works well for prediction
efforts, our objectives include finding correct features of the PLC network that will
yield the lowest possible MSE. Each data set exported from the de-embedded
E5071C VNA to the Linux system contains 49,101 data points. Initially, only the
frequency data and the transfer function of the 1000 W network load are used to
predict PLC network impedance. A snapshot of the dataset and the predicted
impedance yielded by the Linux system is shown in Table 1. A plot of the predicted
impedance using only those two variables (frequency and 1000W transfer function
data) is shown in Figure 9.

4. Results and discussion

The MSE of using only two PLC network variables to accomplish impedance
prediction is 0.005. As observed in Figure 9 and from the MSE result, there is
clearly an undesired effect of overfitting when only two features are used to predict
the PLC network impedance. It can be seen that the fitted regression line (red) and
the impedance prediction data (in blue) almost perfectly overlay each other. To
improve on prediction accuracy, several PLC network parameters including trans-
fer functions for 200, 400, 600, and 800 W, distance (150, 250, and 350 m), and
phase data are measured and added to our prediction data. A snapshot of the new
data used is shown in Table 2.

Results of using these data sets are shown from Figures 10 to 17. In Figure 10, it is
observable that using 200, 400, 600, 800, and 1000 W transfer function data,
frequency, phase, and 150 m distance data does not yield a very good impedance
prediction result since the measured MSE is 59.59. In Figure 11, 250 m distance is
added to the dataset that yielded result of Figure 10. It is also observed that the

Figure 9.
Narrowband PLC impedance prediction using only three features showing effects of overfitting.
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Frequency

(kHz)

Tf. func

(200 W)

Tf. func

(400 W)

Tf. func

(600 W)

Tf. func

(800 W)

Tf. func

(1000 W)

Tf func

(1500 W)

Distance

(m)

Phase

(degree)

Predicted

impedance

10 �0.278762778 �0.228976545 �0.467543787 �0.534524537 �0.354669876 �0.762554545 150 �0.7540 2.496600312

10.01 �0.245907689 �0.378620012 �0.290837890 �0.657890436 �0.876453095 �0.879698379 150 �0.8796 2.667887534

10 �0.278762778 �0.378400133 �0.287910770 �0.561996103 �0.678567899 �0.799721056 250 �2.8903 2.356813698

10.01 �0.300135667 �0.333501255 �0.315340097 �0.559899856 �0.668970778 �0.789987231 250 �2.7646 3.325678210

10 �0.278762778 �0.300198951 �0.315487632 �0.495908178 �0.712089758 �0.777180790 350 �3.1416 2.996754013

10.01 �0.278762778 �0.343590108 �0.456790799 �0.466320126 �0.787710967 �0.899870018 350 3.0159 3.132459810

Table 2.
Snapshot of data used to predict PLC network impedance. Several features are used in this instance.
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prediction result in this instance is poor since MSE is 59.02. Likewise, when 350 m
data is added (Figure 12), the MSE is 59.17, indicating poor performance by the
ensemble regression method. Next, all the distance data were removed, leaving only
200, 400, 600, 800, and 100W transfer function, phase, and frequency data.
Impedance prediction result is shown in Figure 13, and the MSE is 37.82. It is also
observed in Figure 13 that the collective impedance result is approaching true values

Figure 10.
Narrowband PLC impedance prediction using several features including 150 m distance data.
Multicollinearity effect prevents optimized prediction; MSE = 56.59.

Figure 11.
Narrowband PLC impedance prediction using several features including 150 and 250 m distance data;
MSE = 59.02.
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of between 17 and 25 Ω for home PLC impedance [17] as shown by the inserted blue
ring. Prior results from Figures 10 to 12 do not yield such improved prediction.

To further optimize impedance prediction result using common PLC network
data, only 200, 400, and 600 W, frequency, and phase data were used to predict
impedance. The result of this is shown in Figure 14.

It is observable (using the inserted blue ring) that the impedance prediction is
even better. The MSE for this result is 31.63. Figure 15 shows the result of using
only 200 and 400 W, phase, and frequency data. The MSE in this instance is only

Figure 12.
Narrowband PLC impedance prediction using several features including 150, 250, and 350 m distance data.
Multicollinearity effect prevents optimized prediction; MSE = 59.17.

Figure 13.
Narrowband PLC impedance prediction with 200, 400, 600, 800, and 1000 W, frequency, and phase data.
No distance data; MSE = 37.82.
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17.02. In Figure 16, only 400 W, frequency, and phase data were used for predic-
tion, and the resulting MSE is 22.79. From the foregoing, it can be deduced that
using two columns (200 and 400 W) of PLC network electrical load transfer
function, frequency, and phase data works very well when random forest regression
method is used for PLC network impedance prediction. To further test this deter-
ministic hypothesis, a different set of 200 and 400 W load ratings are plugged into
the PLC network, and the resulting impedance prediction shown in Figure 17
yielded only an MSE of 17.12.

Figure 14.
Narrowband PLC impedance prediction with 200, 400, and 600 W, frequency, and phase data. No distance
data; MSE = 31.63.

Figure 15.
Narrowband PLC impedance prediction using frequency, 200 and 400 W, and phase data; MSE = 17.02.
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5. Conclusion

In this chapter, a new set of attenuation profile result based on the load ratings
of electrical devices existing on PLC network in the narrowband PLC frequency
range has been obtained. The new result can be used to model the attenuation

Figure 16.
Narrowband PLC impedance prediction using frequency and 400 W data only; MSE = 22.79.

Figure 17.
Narrowband PLC impedance prediction using frequency, phase, and 200 and 400 W data; MSE = 17.12
(other sets of electrical loads).
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profile of the PLC network when the number and ratings of electrical loads on the
network are considered. In addition, the random forest ensemble regression method
is used to predict the PLC network impedance using commonly available PLC
network data.

MSE result shows that using only four features including two columns of net-
work load transfer functions, frequency, and PLC network phase data leads to
optimized impedance prediction for the PLC network. Our result indicates that
commonly available PLC network devices reinforced with deterministic data-
optimization approach can be used for PLC impedance prediction. This is different
from the state of the art, where very expensive devices are used for PLC network
impedance measurement and prediction.
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