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Chapter

A Circular Economy of
Electrochemical Energy Storage
Systems: Critical Review of
SOH/RUL Estimation Methods
for Second-Life Batteries
Simon Montoya-Bedoya, Laura A. Sabogal-Moncada,

Esteban Garcia-Tamayo and Hader V. Martínez-Tejada

Abstract

Humanity is facing a gloomy scenario due to global warming, which is increasing
at unprecedented rates. Energy generation with renewable sources and electric
mobility (EM) are considered two of the main strategies to cut down emissions of
greenhouse gasses. These paradigm shifts will only be possible with efficient energy
storage systems such as Li-ion batteries (LIBs). However, among other factors,
some raw materials used on LIB production, such as cobalt and lithium, have
geopolitical and environmental issues. Thus, in a context of a circular economy, the
reuse of LIBs from EM for other applications (i.e., second-life batteries, SLBs) could
be a way to overcome this problem, considering that they reach their end of life
(EoL) when they get to a state of health (SOH) of 70–80% and still have energy
storage capabilities that could last several years. The aim of this chapter is to make
a review of the estimation methods employed in the diagnosis of LIB, such as SOH
and remaining useful life (RUL). The correct characterization of these variables is
crucial for the reassembly of SLBs and to extend the LIBs operational lifetime.

Keywords: second-life batteries, RUL/SOH estimation, circular economy,
energy storage, Li-ion battery

1. Introduction

The Sustainable Development Goals (SDGs) are a call to action against global
issues in the twenty-first century [1] such as climate change, geopolitical topics,
overgrowing population, increasing energy demand, and resource scarcity, among
others [2]. According to the International Energy Agency (IEA) statistics, the elec-
tricity and heat producers and transport sector are the largest greenhouse gas
emitters, with at least 90% of the total CO2 emissions [3, 4]. In 2018, above 26% of
electric energy was generated from renewable sources (RSs) [5]. However, this
percentage is still low in order to maintain global warming below the 2°C increment
threshold stated in the 2015 Paris Agreement [6]. Taking this into account, its clear
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that humanity must implement disruptive strategies to tackle these challenges. In
this regard, electricity generation with RSs and electric mobility (EM) have become
two of the main mechanisms for the decarbonization of the power and mobility
sectors. In this context, electrochemical energy storage (EES) is a fundamental
technology to realize these energy transitions by coupling both sectors in this time
in history and transforming RSs from an alternative to a reliable source.

The most familiar EES devices are batteries. Compared to other energy storage
mechanisms, the energy capacity of batteries is relatively low, but its efficiency is high
(>95%) [7]. This makes batteries an ideal energy storage system for small- and large-
scale applications [8]. According to Garcia-Tamayo [9], the convenience of batteries
lies in the wide range of sizes in which they may be manufactured or assembled into
packs, their ability to supply electrical power instantly, their portability (for smaller
sizes), and the option of single-use or multiple-use units. TheWorld Economic Forum
reported that batteries could enable 30% of the required CO2 reductions in the trans-
port and power sectors, provide access to electricity for 600 million people who
currently lacking access, and create 10 million safe and sustainable jobs around the
world [10]. Also, since the use of internal combustion engine (ICE) vehicles accounts
for a large portion of the daily energy consumption, a continuous increase of batteries
through electric vehicle (EV) adoption might lead to improve grid stabilization.

Li-ion batteries (LIBs) are the most common batteries available at present
and are found in almost all commercial EVs today. The battery packs inside
a vehicle are composed of modules connected in series or parallel to reach the
energy output and power required. Each module, on its turn, is also composed of
Li-ion cells connected in series or parallel. Thus, a Li-ion cell acts as a fundamental
brick of today’s battery systems. A schematic illustration can be found in Figure 1.
When an electrical load (i.e., electric vehicle, solar panel/electrical grid) is plugged
and the circuit closed, during discharge, electrons (green circles) flow from the
anode to cathode creating an electronic current. Likewise, Li-ions (yellow
circles) are flowing in the same direction (from anode to cathode), thus converting
chemical energy into electrical energy. Ions move between the electrodes by means
of an electrolyte which has the property to be a good electronic insulator and good
ionic conductor. As a liquid electrolyte is used in most of the cases, a separator is
placed in the middle in order to maintain an even spacing between both electrodes.
This separator must provide blocking of electronic current and permeation of its
ionic analogue. The process shown in the schematic occurs during cell discharge.
During charge, an external voltage is applied to the circuit, forcing electrons and

Figure 1.
Schematic of a Li-ion cell during discharge.
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ions to flow from the cathode to anode. This process is performed to convert
electrical energy back to chemical energy.

In general, commercial LIBs have highly pure graphite as active material for
anode and different transition metal oxide lithium compounds as active material for
cathode, such as LiNi0.33Mn0.33Co0.33O2 (NMC 111), LiFePO4 (LFP), and LiCoO2

(LCO), among others. All these cathode materials are found in commercial batteries
and are referred to in the literature as battery or cathode chemistries. However, it
is important to clarify that all of them are LIB technologies.

Despite the positive attributes previously described for LIB systems, there are
also a set of critical characteristics that affect the battery behavior with time and as
a result of their usage. The sum of these effects is a process commonly referred in
literature as battery degradation or aging, which affects the cells’ ability to store
energy and meet power demands and, ultimately, leads to their end of life (EoL).
LIBs are sensitive to the way they are charged and discharged, especially in extreme
conditions such as overcharge and deep discharge as they increase the aging effect.
Thus, it is of outmost importance for any device powered by LIBs to be informed of
the amount of energy that can be stored and the power that can be provided by the
battery at any point in time. However, the rates at which these variables degrade
over time cannot be directly measured in real applications, so they must be inferred
indirectly using methods and models that use input data that can be measured
during charge or discharge operations.

Degradation in Li-ion cells is caused by a large number of physical and chemical
mechanisms, such as active material particle cracking during Li-ion insertion and
de-insertion, formation of a passivating layer on the anode/electrolyte interphase
during the first cycles (solid electrolyte interphase, SEI), SEI decomposition and
precipitation in the electrolyte, lithium plating and dendrite formation that could
cause internal short circuit, and dissolution of transition metals from the cathode in
the electrolyte, among multiple others. Multiple reviews can be found in the litera-
ture summarizing and describing in detail these aging mechanisms [11–13].

Fabrication of LIBs uses key and critical raw materials, whose exploitation and
market are associated to unequal distribution of the mineral resources in the world
[14]. Although lithium is a key ingredient in LIBs, manufacturers commonly use
lithium carbonate or lithium hydroxide in batteries rather than pure metallic lith-
ium. They also include other metals, such as cobalt, graphite, manganese, and
nickel. Among them, cobalt and lithium are the most constrained materials [15],
and nickel is important in recycling and is highly toxic to the environment.
According to the US Geological Survey, worldwide lithium supply had an increase
of around 23% from 2017 to 2018, coming in at 85,000 metric tons (MT) of lithium
content [16]. Harper et al. estimated that the 1 million EVs that were sold in 2017
together account for nearly 250,000 MT of batteries [17]. BloombergNEF recently
reported that 2 million EVs were sold in 2018, from just a few thousand in 2010, and
there is no sign of slowing down. Annual passenger EV sales are forecasted to rise
to 10 million in 2025, 28 million in 2030, and 56 million by 2040 [18].

In a rough approximation, if a full electric vehicle with a 33-kWh battery pack
requires ≈ 5.3 kg of Li, just the EVs sold in 2018 may have required ≈10,600 MT of
lithium content. If battery capacities will have an increase of at least 1.8 times by
2025 (i.e., in 6 years the capacity for the Ford Focus EV raised from 23 kWh in
2012 to 33.5 kWh in 2018, while the Renault Zoe changed from 22 kWh in 2012 to
51 kWh in 2019), the EV market will require ≈93,000 MT of lithium content
(assuming the design or battery chemistries will not change over time), exceeding
current world production. Therefore, there is still not a clear way to use less metal
without compromising life span or energy storage capacity.
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At present, EV batteries, most of them based on Li-ion technology, have a useful
lifetime (defined by the loss of capacity due to degradation until they reach 80% of
their nominal capacity) of around 300–15,000 cycles, depending on the conditions
in which the battery is charged and discharged [19]. However, it is likely that they
will be changed before they reach the 80% threshold not because they do not work
properly but because there are other battery technologies and chemistries that will
get better in the near future. For example, a recent study by Professor Jeff Dahn’s
group at Dalhousie University and Tesla Canada presented a LIB testing benchmark
where they included a battery with a lifetime of around 4600 cycles (1.600,000 km
driving range), at extreme discharging conditions (i.e., bringing the battery to a full
discharge in each cycle), which could also be employed in energy storage for
20 years after reaching its EV end of life [20]. Still, even if novel batteries will get
more cost-effective and safer, the battery manufacturing processes remain energy-
intensive [21].

When EV batteries reach their end of life, i.e., when they reach the 80% thresh-
old, they can still store enough energy and can operate perfectly in other uses,
opening the possibility to extend their operational lifetime into a second one. Such
use has been recently termed as second-life batteries (SLBs). SLB management and
their possible applications are receiving a lot of attention because they could serve
as a tool against the issue of ‘waste’ batteries being stored before repurposing or
final disposal and could also save many tasks related with the managing, chemical
and mechanical dismantling, and separation processes that recycling entails. To put
it in perspective, the future 10 million EVs that will be sold in 2025 [18] account for
nearly ≈2,200,000 MT of batteries [22], which, in the absence of a second life,
would otherwise end up as waste. Moreover, in the waste management hierarchy,
reuse is considered preferable to recycling [17].

According to the Advanced Battery Consortium (USABC), and in most literature
related to electric mobility [23], the end of life for an EV battery is defined as a 20%
drop of cell capacity from the nominal value or a 20% drop from the rated power
density at 80% depth of discharge (DoD, defined as the fraction or percentage of
the capacity which has been removed from the fully charged battery). Nonetheless,
among other factors, from an electrical and electrochemical standpoint, in order to
classify the delivery of SLBs as a capable and efficient energy storage system, its
remaining capacity, power, and functionality must be properly identified.

A circular economy framework diagram for LIBs is shown in Figure 2: (i) Used
batteries from EVs that have reached their end of first life are collected. Usually
their state of health (SOH) is unknown but should be around 80%. (ii) SOH testing
of the battery pack/module/cell is needed to characterize its remaining capacity as
compared to its initial capacity. (iii.a) The battery is depleted if the SOH is less than
40%, (iii.b) It is still usable if SOH is greater than 40%. (iv) The battery is sent for
repurposing. If needed it might be broken down into its fundamental parts (cells) to
connect it in series or parallel to obtain the desired energy output power for each
specific application. (v) At this point, the repurposed system becomes a second-life
battery and is placed on the market as a new product to serve in a second-life
application. (vi) The SLB is collected after reaching its end of second life, and step
(ii) is repeated to check if a third-life application is possible. (vii) If not, the battery
is sent for recycling where the raw materials will be recovered and restored. Finally,
the recovered materials are sent for the remanufacture of new products such as the
production of new Li-ion batteries (where the whole cycle would start over).

It is important to remark that step (ii), i.e., SOH testing, is crucial to determine if
the battery is depleted and immediately goes to recycling or if it may be used as a
SLB for other applications. In this chapter, we will review the diagnostic and
prognostic methods needed to estimate the battery current storage capacity, the
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state of health, and the remaining useful life (RUL), which are key variables that
will provide the inputs needed to define possibilities for SLB applications.

2. Review methodology

A systematic review methodology was employed as a screening method to select
the information. Scopus was used as scientific database, using the following key-
words as query string: Li-ion-batteries AND soh OR rul AND estimation methods
AND electrochemical model OR second-life batteries. These keywords were chosen
to narrow the scope of this review chapter to those focusing only on estimation
methods that could be extended from SOH percentages below the 70–80% electric
mobility threshold to scenarios for stationary energy storage applications that use
SOH percentages that can go as low as 40%. This screening method resulted in 152
articles. A further selection was done after analyzing the title, abstract, keywords,
and paper content. We identified and analyzed 15 papers which included journals
and conference proceedings. The selected 15 references were studied in detail to
extract useful information such as type of estimation method, estimated variables
(SOH/RUL), experimental conditions, minimum SOH reached, and reported error.

3. Estimation methods

Before reviewing and establishing a classification of the estimation methods, it is
important to provide definitions of the main variables found in the literature.

State of health is a percentage that measures the remaining capacity of an aged
battery compared to the capacity when it was fresh. It is defined by Eq. (1).

SOH ¼

Q actual

Q nominal

� 100% (1)

where Q actual and Q nominal represent the actual capacity and the nominal
capacity, respectively.

Figure 2.
Li-ion battery circular economy framework diagram.
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Remaining useful life is an estimation of the remaining time or number of cycles
until the SOH of a battery reaches a specific threshold usually defined by an appli-
cation. For example, in electric mobility, it is calculated until the SOH reaches 80%.
Although in the literature some authors define the RUL as the time in which the
SOH of the batteries reaches 0% [24], there are few articles in which the SOH is
estimated below the 80% threshold.

One of the main aspects for RUL estimation is to have an accurate knowledge of
the current battery state of health [25]. In the case of RUL for SLBs, it is crucial to
know the minimum SOH requirements for each application in order to estimate the
number of cycles or the remaining time that the batteries will last [26, 27].

In general, estimation methods for SOH and RUL are described separately in the
literature [28–30]. Some authors have classified battery models for SOH diagnosis
as electrochemical, electrical, and mathematical models [31], while others have
grouped them as direct measurements, model-based, and adaptive techniques [32].
Similar categorizations can be found in the literature for RUL estimation methods
and have been organized as adaptive filter, intelligent, and stochastic techniques [28].
Particularly, the classifications made by Saidani et al. [33] and Liao et al. [34] are
interesting as they introduce a comprehensible way to group both SOH and RUL
estimation methods in three categories, based on system theory concepts: white-box,
black-box, and gray-box methods (see Figure 3). In general, these concepts refer to
the level of theoretical or experimental knowledge needed to describe or model a
process. Each set will be discussed in detail, but in summary white-box methods try
to elucidate what happens inside a battery in terms of aging and degradation, while
black-box methods employ mathematical and stochastic equations to establish cor-
relations between intrinsic electrochemical mechanisms and external variables that
can be easily measured. Gray-box methods are hybrid prognostics between white-
and black-box methods where both internal mechanisms of batteries and data-
driven models are integrated.

3.1 White-box methods

White-box models refer to methods that consider internal reactions and aging
mechanisms of the batteries, which include physicochemical, electrochemical, and
thermodynamic theories [35]. For instance, Fu et al. [36] developed a degradation
model based on partial differential equations (PDEs) that estimate the capacity

Figure 3.
Classification of SOH and RUL estimation methods.
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fade using three key parameters: (i) the volume fraction of accessible material in
the anode, (ii) ionic and electronic resistance of the solid electrolyte interphase
and deposited layers on the electrode surfaces, and (iii) diffusion coefficient of
the electrolyte. These parameters must be estimated through experimental tests
and validated by characterization techniques such as scanning electron micros-
copy, X-ray diffraction, or X-ray photoelectron spectroscopy for each battery
chemistry. This model exemplifies two of the main disadvantages of white-box
methods: the need to estimate a lot of parameters and the solution of complex PDE
systems. Most of the times, white-box methods derive results that are not cost-
effective [33, 37].

Similarly, Gao et al. [38] proposed an electrochemical aging model that estimates
the capacity fade considering the change of the open-circuit voltage (OCV) over the
life span of a Li-ion battery. They reported a maximum error of about 2% for
different batteries charged and discharged at different current rates (C-rates),
namely, 1C, 2C, and 3C. However, this error tends to increase at the final phase of
the cycling test. Likewise, with the purpose of reducing the complexity of electro-
chemical models, there are other methods such as single-particle models (SPMs),
which assume each electrode as a single particle in order to obtain an ordinary
differential equation system that models the Li-ion battery behavior [39–41]. SPMs
have been integrated with a capacity degradation model coupled to a chemical/
mechanical degradation mechanism that allows the prediction of the capacity fade
as a function of battery temperature and cycling. The root mean squared errors

(RMSEs) in these estimation methods were 7:21� 10�3, 7:43� 10�3, and

10:3� 10�3 for LiFePO4 (cathode)/graphite (anode) batteries tested at 15, 45, and
60°C, respectively [42].

On the other hand, white-box methods have not been used for RUL estimation
due to the reasons mentioned above, i.e., because of the complexity of the models
and the fact that cycles are not explicit on most of this type of methods. Thus, it is
difficult to obtain parameters for SLBs’ RUL because the information of the batte-
ries on their fresh state is normally unknown [43]. However, some authors have
used empirical approximations, such as Arrhenius equation (takes temperature as
an accelerated aging factor) and power law (takes mechanical/electrical stress as
an accelerated aging factor), to model capacity loss on batteries as a function of
cycle number [30, 44].

As a result, the implementation of these methods on SLBs has been relegated
since most of them do not consider the C-rate as an explicit parameter on their
aging models. SOH and RUL estimation for SLBs should consider the load profile of
each future application in terms of the current (amperes) needed [26, 45]. These
methods have been developed for automotive applications where batteries reach
their EoL when they get to a state of health of 70–80% [46] and where the capacity
degradation is approximately linear until this SOH threshold, as shown in Figure 4.
After this point, the aging behavior changes and nonlinearities start to
appear [47, 48].

3.2 Black-box methods

Black-box methods take advantage of data-driven models that establish rela-
tionships between unknown intrinsic electrochemical mechanisms and external
measurable variables of a Li-ion battery (e.g., voltage, current, temperature, capac-
ity) [23]. These methods extract relevant aging features and construct degradation
models based on mathematical and stochastic equations to estimate the SOH and
thus predict the RUL [49]. Indeed, aging feature extraction is crucial to obtain
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accuracy estimations with these kinds of methods [50]. Jiang et al. [51] tested six
LiFePO4 batteries, scrapped from a retired battery pack of an EV, with different
load profiles simulating frequency regulation and peak shaving applications. They
used the incremental capacity analysis (ICA) obtained from a curve of voltage (V)
vs. charge/discharge capacity (Q) using Eq. (2), to develop a linear regression,
constructed with the ordinary least squares (OLS) method, that could correlate
features from the IC curve and the battery SOH. They obtained a mean absolute
error and maximum error within 2%. Similarly, Quinard et al. [52] concluded that
the ICA technique, used for SOH estimation in SLBs, has a high dependence on
the C-rate (i.e., an inverse relationship between C-rate and accuracy). They
reported a maximum absolute error of 5%.

IC ¼

dQ

dV
(2)

Likewise, machine learning algorithms have been widely used in battery prog-
nostics as these techniques can extract patterns from battery datasets, such as those
from NASA [53] and University of Oxford [54], where batteries were tested at
different aging conditions (C-rates and temperature). Support vector machines
(SVM) [55], artificial neural networks [56, 57], and fuzzy logic [58] are some of the
strategies used for SOH estimation. Nevertheless, to guarantee low-error predic-
tions and robustness against noise, machine learning algorithms need an amount of
cycling data corresponding to at least 25% of the whole battery life span [59], which
could take months or years to be generated.

Taking this into account, Cai et al. [60] developed a novel method based on a
combination of SVM for regression (SVR) and a genetic algorithm that employs
short-term features extracted from the voltage response under a current pulse test
that lasts just 18 seconds. Therefore, this process can be implemented in real SLB
applications. As a result, they obtained a minor RMSE of 19.12 � 10�3 for a battery
with a LiFePO4 chemistry compared to a RMSE of 24.8 � 10�3 obtained by a
traditional SVR-based model for a LiCoO2 chemistry [61].

Figure 4.
Illustrative capacity degradation curve for a common Li-ion battery at its first and second life.
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Another strategy that has been used to address the issues for these data-driven
methods was proposed by Tang et al. [62]. They developed a model migration-
based algorithm to predict the battery aging trajectory and the RUL with a notable
reduction of experimental tests. This approach generates a well-known base model
with enough data that is then employed in an analogous process with less available
data. In this case, the base model takes advantage of accelerated aging tests, while
the analogous process uses normal aging tests. As a highlight, they reached a RMSE
of about 2% in RUL prediction making use of 15% of the aging data.

It is important to mention that some data-driven models extract multiple
features from LIBs that do not necessarily enhance the prediction due to an emer-
gence of redundant information [63], whereby a sliding window-based feature
extraction [63] and false nearest neighbor [64] algorithms have been implemented.

3.3 Gray-box methods

Gray-box methods are hybrid prognostics between white and black methods.
In other words, this category integrates both internal mechanisms of batteries and
data-driven models. Liao et al. [65] stipulated that including general aging progres-
sion (white-box methods) improves the prediction accuracy of black-box methods.
Equivalent circuit models (ECM) have been commonly used to simulate internal
parameters such as electrochemical systems in battery management systems (BMS)
[45, 66]. For instance, Wei et al. [61] modeled the capacity and impedance degra-
dation parameters using SVR and ECM, respectively. Also, they employed particle
filter (PF) to improve the SVR simulation. Tracking these aging characteristics, they
estimated SOH and RUL with a high accuracy compared to an artificial neural
network-based model. Likewise, references [67, 68] developed a promising modi-
fied PF algorithm that avoids particle degradation. For example, Shi et al. [68]
demonstrated that improved unscented PF (IUPF) had better accuracy than
unscented Kalman filter (UKF) and unscented particle filter (UPF) model predic-
tion of ohmic internal resistance (Ro) and SOH.

In the same way, Tian et al. [69] tested three commercial LiNi0.33Mn0.33Co0.33O2

(NMC) batteries, considering the effect of temperature and discharge rate on aging
cycle, to develop an on-board SOH estimation. Their model consisted in a fractional
order model (FOM) using Thevenin ECM with the forgetting factor recursive
expanded least square (FFRELS) method to estimate the open-circuit voltage which
was then correlated to the SOH using the ICA method. Their proposed method
obtained a capacity fade with an error of less than 3.1%, independent of the C-rate
aging cycles.

Similarly, Guo et al. [70] used an EDKF-based model and second-order RC
circuit model to estimate the SOH, obtaining a maximum error below 4%. Hu et al.
[71] achieved accurate results for SOH estimation with a relative error within 3%,
using a modified moving horizon estimation (mMHE) method integrated to
first-order RC ECM.

3.4 Estimation method summary

A comparative summary of the SOH and RUL estimation methods mentioned
above, which are included in the 15 references that resulted from the screening
method described in the review methodology, can be seen in Table 1. For each
method, it compares the employed aging feature and the reported error. Finally,
there is a column for the minimum SOH reached in order to identify promising
methods for SLB estimation.
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Authors Estimation method Estimated

variables

Experimental conditions* Aging features employed for

estimation

Minimum SOH

reached

Reported error**

Bartlett

et al. [72]

Reduced-order electrochemical

model for a composite electrode

battery with solid particle and

liquid sub-models

WHITE BOX

SOH • Chemistry: LMO-NMC (15 Ah)

• The cells were cycled using the

charge-depleting (CD) current

profile defined by the US

Advanced Battery Consortium

Loss of cyclable Li-ion that causes

a shift of the normalized

concentration operation ranges of

the electrodes

≈85% SOH estimation was

performed on five different

automotive cells tested at

different conditions

Mean estimate error: below

0.48 Ah

Li et al.

[42]

Single particle-based degradation

model

WHITE BOX

SOH • Chemistry: LFP (2.2 Ah)

• Conditions shown in [73, 74]

• Cycle number

• Temperature

≈76% Error for predicted battery

capacity fade RMSE:

10.3 � 10�3

Gao et al.

[38]

Order-reduced electrochemical

model considering side reactions

WHITE BOX

SOH • Chemistry: NMC (26 Ah)

• Ch: 1C (CCCV) protocol

• Followed by a 30 min rest

• Dch: 1C (CC)

• Ambient temperature: 25°C

Capacity fade with the help of

equilibrium electrode potential

60% For cycles at 1C, 2C, and 3C

Maximum error is mostly

<2%

Lin et al.

[58]

Fuzzy logic identification based

on the closest normal

distribution

BLACK BOX

SOH • Chemistry: LCO (3.7 V/

2.37 Ah)

• Ch: 0.5 C (CCCV protocol)

• Dch: 0.2, 0.4, 0.6, 0.8, and 1C

(CC)

• Temp: 0–45°C

• Battery charging time

• OCV difference between

fully charged battery and with

a load

• Voltage difference between

fully discharge and after

resting for 1 min

≈70% Average error of good

diagnosis: 1.46%

Long

et al. [74]

Autoregressive model and the

improved particle swarm

optimization algorithm

BLACK BOX

RUL • CALCE dataset: LCO (1.1 Ah)

• Ch: 0.5C (CCCV protocol)

• Dch: 0.5C (CC)

• Ambient temperature

Capacity degradation 80% (defined

threshold: 211 cycles)

RUL prediction difference at:

Cycle 110: 26 cycles

Cycle 140: 1 cycle

Cycle 150: 0 cycle

Cycle 190: 1 cycle

Zhang

et al. [56]

Three-layer back propagation

artificial neural network model

BLACK BOX

SOH • Batteries from Beijing Olympic

EV bus

Internal resistance Not reported. But

they reach the 80%

SOH from its use on

second life

• Average absolute error

0.899 Ah

• Capacity estimation error

within 2.5%
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Authors Estimation method Estimated

variables

Experimental conditions* Aging features employed for

estimation

Minimum SOH

reached

Reported error**

• Internal resistance measure

under (100 A, �200 A, and

�300 A) pulsed current tests

Zhou

et al. [75]

Simple linear regression

BLACK BOX

SOH • Chemistry: LCO (1.1 Ah)

• Ch: 0.5C (CCCV protocol)

• Dch: 1C (CC)

Integral from voltage series

between 3.85 and 4.3 time on CC

charging phase

≈75% Average R2: 0.97

Average RMSE: 0.01

Cai et al.

[60]

Support vector regression and

genetic algorithm

BLACK BOX

SOH • LFP (3.3. V/2.5 Ah)

• Load profile of primary

frequency regulation

• Ambient temperature: 25°C

Keen points in the voltage

response under current pulse test

≈84% RMSE for Cell 1: 19.12 � 10�3

Cell 2: 13.14 � 10�3

Jiang

et al. [51]

Incremental capacity analysis

with multiple linear regression

model and OLS estimation

BLACK BOX

SOH • LFP (60 Ah) obtained from a

retired battery pack

Load profiles of:

• Frequency regulation

application

• Peak shaving application

• Ambient temperature: 25°C

Evolution of normalized peaks of

the incremental capacity curve

≈65% Average errors for OLS

regression:

MAE (%):0.609

ME (%):1.226

RMSE: 0.589

Wu et al.

[76]

Neural network model with a

bat-based particle filter

algorithm

BLACK BOX

RUL • CALCE dataset: LCO (1.1 Ah)

• Ch: CCCV protocol

• Dch: 1C (CC)

• NASA dataset LiCoO2 (2.1 Ah)

Test (1) for periods of 5 min:

• Ch: Series of random current

• Dch: CC

Test (2) 2A charging/discharging

test after about 5 days

Cycle number or cycle time 80% (CALCE defined

threshold: 602 cycles)

(NAS2 defined

threshold:

146.83 days)

• Capacity degradation fit:

R2
> 0.98

RMSE<0.04

• RUL predictions:

• For CALCE:

AE: 2 cycles (at 500 cycles)

• For NASA:

AE: 2.19 days (at

100.02 days)

Quinard

et al. [52]

Partial coulometric counter

BLACK BOX

SOH • LMO-LNO (3.75 V/65 Ah)

• Full CC discharge at 1C forerun

by a wake-up cycle (partial

charge)

Partial capacity from a partial

charge

≈45% For partial counter:

R2: 0.69

Average AE: 1.6
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Authors Estimation method Estimated

variables

Experimental conditions* Aging features employed for

estimation

Minimum SOH

reached

Reported error**

• Sampling frequency: 10 Hz

• Ambient temperature: 25°C

Maximum AE: 5.1

Estimated test time: 300 s

Casals

et al. [77]

Aging model based on an

equivalent electric circuit that

simulates the battery’s behavior

GRAY BOX

SOH/RUL Real demand area regulation

profile from the Spanish operator

“Red Eléctrica“given to a gas

turbine power plant

Current (load profile) and

temperature

Considering two SLB

applications on

providing area

regulation service:

Application 1: ≈51%

Application 2: ≈46%

Considering two SLB

applications on providing

area regulation service:

Application 1: deviation of

7.35%

Application 2: deviation of

8.1%

Wei et al.

[61]

Support vector regression-based

state-space model, equivalent

circuit, and particle filter

GRAY BOX

RUL/SOH • Gen 218,650-size LIBs

• Ch CCCV: 1.5 A CC until 4.2 V

and CV continue until 20 mA

• Dch CCCV: 2 A CC until 2.7

Aging features extracted from CV

protocol

≈65% RMSE SOH SVR-PF [mΩ] #5

(5.1) #6 (8.7) #7(6.6) #18

(5.7)

RUL prediction difference

below 4 cycles

Tian et al.

[69]

Online OCV estimation based on

FOM and FFRELS

GRAY BOX

SOH Commercial NMC

T: 10, 25, and 40°C

• Ch: 1C

• Dch: 1C, 2C, and 3C

ICA peaks 60% Capacity fade error less than

3.1%

Hu et al.

[71]

mMHE integrated to first-order

RC ECM

GRAY BOX

SOH Panasonic NCR18650B (3.35 Ah)

at 25°C with maximum voltage

and current 5 V and 100 A,

respectively

ECM parameters Not reported Relative error of capacity

within 3%

*Conditions: Ch: charge conditions; Dch: discharge conditions; CCCV: constant current-constant voltage charging protocol.
**Errors: AE: absolute error; MAE: mean absolute error; ME: maximum error; RMSE: root mean squared error.

Table 1.
Comparative summary of SOH and RUL estimation methods.

12 G
reen

E
n
ergy

a
n
d
E
n
viron

m
en
t



3.5 Brief discussion on the adaptability of EV estimation methods to SLBs
estimation methods

As it has been discussed throughout this chapter, there is a lack of literature for
SOH and RUL estimation methods validated for SLBs. In contrast, SOH and RUL
variables have been extensively studied for first-life applications for EVs. Although
some published works have developed approaches for diagnosis and prognostics of
SLBs applied to real second-life scenarios, such as [26, 51, 52, 56, 77], we wanted to
check if a SOH estimation method developed for EV application, designed for a
SOH value of 80%, could be extended to SOH values below this threshold. Hence,
the black-box method proposed by Zhou et al. [75] was used for this purpose. This
method calculates the integral under the constant current section of a current–
voltage curve, which was obtained using the constant current-constant voltage
(CCCV) charging protocol as an aging feature. Figure 5 shows the SOH estimation
for a battery with LiCoO2 chemistry until SOH values as low as 65%. An RMSE of
0.2140 was obtained. Therefore, the authors believe that SOH and RUL estimation
methods commonly employed for electric vehicle applications could be extended to
estimate these variables in SLBs. However, to guarantee a better accuracy, different
battery degradation behaviors must be considered depending on the load profile for
each future use.

4. Conclusions and final remarks

Electrochemical energy storage in the form of Li-ion batteries is proving to be a
fundamental technology to catalyze an energy transition towards renewables and
electric mobility. The EV worldwide fleet, and thus the amount of batteries, is
expected to grow considerably in the following years. When EV batteries reach

Figure 5.
SOH estimation results for battery #5 from NASA dataset [53]. Model constructed using data before battery
reach the 80% of its nominal capacity (authors’ results).
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their end of life (SOH ≈ 80%), they can still store enough energy and can be used in
other applications as second-life batteries. Otherwise, they would end up as waste.
It is in this context, under a circular economy scenario, that retired EVs are
regarded as a primary source of SLBs. In order to do this, an accurate estimation of
the state of health and remaining useful life is crucial to determine if the battery is
depleted and goes to recycling or if it may be used as a SLB. Thus, sophisticated
SOH and RUL estimation methods are needed to guarantee the correct performance
of SLBs in different applications.

In this review chapter, we classified these methods in three categories, namely,
white-box, black-box, and gray-box, which refer to the level of theoretical or
experimental knowledge needed to describe the aging process in batteries. Each
category has its advantages and disadvantages, and its implementation will ulti-
mately depend on the context it will be applied. White-box methods, which are
usually employed in laboratory environments, are important because they elucidate
what happens inside a battery in terms of aging/degradation, and, usually, the
estimation errors are lower. However, they imply the use of complex physicochem-
ical and mathematical models and require a higher computational cost. Black-box
methods, commonly employed in commercial battery management systems, make
use of mathematical and stochastic equations to establish correlations between
intrinsic electrochemical mechanisms and external variables that can be easily mea-
sured. Although their computational cost is usually low, they need a high amount of
data to establish these correlations. Finally, gray-box methods, which are hybrid
prognostics between white- and black-box methods, are considered as a promising
alternative for more accurate SOH/RUL estimation as they take into account both
internal mechanisms of batteries and data-driven models.

In conclusion, although there is a lack of literature for SOH and RUL estimation
methods for SLBs, extensive diagnostic and prognostic approaches have been
developed for EV applications. The authors believe that some of these methods
could be extended to estimate these variables in SLBs. However, to guarantee a
better accuracy, different battery degradation behaviors must be considered
depending on the energy loads of each future use. Nevertheless, batteries intended
to be repurposed in second-life applications will have to compete, at the end of their
first life, with improved battery technologies and chemistries that will be likely
produced at lower costs in the near future.
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