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Chapter

Dendritic Cells and Their Roles in 
Anti-Tumour Immunity
Ee Shan Pang, Christophe Macri, Timothy Patton, 

Mariam Bafit and Meredith O’Keeffe

Abstract

Dendritic cells are rare cells found in blood and throughout all organs of the 
body as resident or migrating cell populations. Dendritic cells sense danger signals 
of pathogens and host cell stress through pattern receptors expressed on the cell 
surface and within organelles of the cell. Ligation of these receptors leads to activa-
tion and production of many different chemokines, cytokines and interferons. 
Key to the function of dendritic cells is their potent capacity to present antigen 
and activate naïve T cells. These qualities, potent antigen presentation and cyto-
kine production together allow the dendritic cells to be at the forefront of danger 
responses, linking innate and adaptive immunity. Research over the last 20 years has 
clarified a role of dendritic cells in anti-tumour responses, and their location within 
the tumour environment is clear, with both deleterious and beneficial correlations, 
depending on the subset and tumour type. Harnessing the qualities of dendritic 
cells to increase anti-tumour immunity is the ultimate goal, although this will 
require extensive knowledge of different dendritic cell subsets and their regulation 
through immune checkpoints.

Keywords: dendritic cells, pattern recognition receptors, immune checkpoints, 
tumour vaccines, plasmacytoid dendritic cell, conventional dendritic cell

1. Introduction to dendritic cells

Dendritic cells (DCs) are professional antigen presenting cells (APCs), the only 
cells capable of specifically activating naïve T cells and are key orchestrators of an 
immune response. They are a rare, heterogeneous population of haematopoietic 
cells that are equipped to capture, process and present antigen (Ag) to the adaptive 
immune system.

In a non-inflamed or steady state setting, DCs constantly sample the local 
environment for Ags and have the potential to induce peripheral tolerance via T 
cell anergy or deletion [1]. DCs recognise danger via pattern recognition recep-
tors (PRR) on their cell surface, the cytoplasm and within cellular organelles [2]. 
Ligation of PRRs by pathogen associated molecular patterns (PAMPs) or damage 
associated molecular patterns (DAMPs), activates DC and licences DC to upregu-
late co-stimulatory marker expression such as CD86 and CD80 on their cell surface 
and initiate immunogenic T cell priming.
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DCs situated in non-lymphoid tissues, also known as migratory DCs, constantly 
migrate to draining lymph nodes (LNs), maturing during this process, to present Ag 
to naïve T cells. Resident DCs in lymphoid organs are immature and maintain toler-
ance during steady state, but can stimulate naïve T cells when activated in situ. The 
DC maturation process not only involves morphological changes into their charac-
teristic stellate shape with dendritic cytoplasmic processes and increased expression 
of MHC and co-stimulatory markers, but their Ag acquisition and sampling capa-
bilities are initially upregulated and then rapidly shut down while MHCII expression 
on the cell’s surface is increased due to the simultaneous up- and down-regulation 
of MHCII synthesis and turnover events respectively [3]. This allows mature DCs to 
present a snapshot of the Ag profile in its local environment prior to migration and/
or activation. Furthermore, activated DCs produce a combination of cytokines that 
modulate an immune response that is specific to the initial danger signals.

In humans, the majority of DC characterisation studies are of DCs isolated 
from the blood due to the rarity of the cell type and limited access to human tissue 
samples, although more investigations on non-lymphoid DCs in the skin, lung and 
liver have recently emerged [4–7]. DCs in the blood comprise ~1% of total periph-
eral blood mononuclear cells (PBMCs) and are traditionally identified by the high 
expression of MHCII (HLA-DR) and the lack of lineage markers CD3, CD14, CD15, 
CD19, CD20 and CD56, although the latter marker has recently been shown to be 
expressed on gut and other non-lymphoid DCs [6].

Human blood DCs can be divided into conventional DCs (cDCs) and plasma-
cytoid DCs (pDCs), which are HLA-DRhiCD11c+123− and HLA-DRhiCD11c−123+ 
respectively. Human blood cDCs are further categorised into cDC1 and cDC2 
subsets. Additionally, there are monocyte-derived DCs that originate separately 
from cDCs and pDC precursors. The recent use of whole population and single cell 
sequencing techniques has been instrumental in elucidating transcription factors 
and surface markers that are unique to each DC subset, which has helped identify 

DC subsets

cDC1 cDC2 pDC

Surface 

phenotype

CD11c+HLA-DR+

CD123−CLEC9A+

XCR1+Necl2+ 

CD141+

CD11b−CD172α−

CD11c+HLA-DR+CD123− 

CD1c+CD11b+CD172α+

CLEC10A+ with further 

subdivision based on 

CD5hiCD32B+CD163−CD36− or

CD5loCD32B−CD163+CD36+

CD11c−HLA-DR+

CD123+CD303+

CD304+CD45RA+

CD2+/−

Transcription 

factors

BATF3, IRF8 IRF4, IRF8 TCF4, SPIB, ZEB2, 

IRF4, IRF8, IRF7

PRR 

expression

TLR3, 8 TLR2, cytosolic RNA sensors (RIG-I, 

MDA-5), STING

TLR7, 9, STING

Ag 

presentation

Cross-presentation 

of cellular Ag

Cross-presentation of soluble Ag CD4+ and CD8+ T cell 

priming*

Roles in 

immunity

Potent producer of 

Type III IFN (after 

TLR3 stimulation), 

CTL priming, Th1 

response

Th1, Th17 response Potent producers of 

Type I and III IFN 

and mediating anti-

viral immunity

*Previous Ag presentation abilities by pDCs are now suggested to be contributed by contaminating AXL+Siglec6+ 
(AS) DCs.

Table 1. 
Key features of human DC subsets.
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relationships between DC subsets across species and tissues as well as corroborate 
DC functional analyses [6–9], summarised in Table 1.

2. Conventional dendritic cells 1 (cDC1)

cDC1s constitute ~0.03% of PBMCs and are found in the blood, tonsil, spleen 
and non-lymphoid tissues such as the skin. They were classically defined by the 
high expression of CD141 (blood DC antigen 3 (BDCA3) or thrombomodulin) 
[10]. However, CD141 is not a completely specific marker for cDC1 as it is also 
expressed on endothelial cells, monocytes and other DC subsets [8]. Using pheno-
typic, transcriptional and functional assays, these CD141+ DCs have been further 
characterised as CD11c+HLA-DR+CD11b−CD172a− CLEC9a+XCR1+Necl2+ cells that 
lack monocytic markers CD14 and CD16 [4, 11] identifying them as human cDC1 
[12–16].

The dependence of CD141+ DCs on Flt3 ligand (FL), an important DC develop-
mental factor, has been demonstrated in vitro and in vivo [11, 17–19] and transcrip-
tion factor BATF3 is required in vitro but not in vivo [15]. Another cDC1-defining 
transcription factor, IRF8, is also highly expressed in human cDC1, although 
patients harbouring mutations in IRF8 did not exhibit cDC1 deficiencies, suggest-
ing the involvement of other transcription factors as well [6, 20]. Furthermore, 
genome wide expression profiling and microarray analyses have revealed transcrip-
tional profile clustering between CD141+ DCs in blood and non-lymphoid tissues, 
as well as between human blood CD141+ DCs and murine CD8a+ and migratory 
CD103+ DCs [4, 21], firmly establishing CD141+ cDC as cDC1.

PRRs expressed by human cDC1s are predominantly Toll-like receptor (TLR) 
3, located in endosomes and which recognises double-stranded RNA and TLR8, 
also located in endosomes and which recognises bacterial ssRNA and mammalian 
mitochondrial RNA [10, 22]. In response to TLR3 signals [23] and also HCV in vivo 
[23, 24], the cDC1 produce large amounts of type III interferon (IFN), also known 
as IFN-lambda (λ).

The cDC1s are superior to other DC subsets in their ability to present exogenous Ag 
on MHCI, a process known as cross-presentation [2] and the activation of cytotoxic 
CD8+ T cells, crucial for anti-tumour responses. In particular, they have a specialised 
ability to cross-present Ags from dead or necrotic cells to CD8+ T cells, enhanced by 
Clec9a on cDC1 binding to actin filaments exposed on dead and dying cells [25]. The 
cDC1 are superior at inducing Th1 differentiation of CD4 helper T cells [11, 16].

3. Conventional dendritic cells 2 (cDC2)

Human cDC2, traditionally known as CD1c+ or BDCA1+ DCs, constitute ~1% 
of PBMCs and can be identified by the expression of CD11c, CD11b, CD13, CD33, 
CD172a, HLA-DR and CD45RO [2, 10, 26]. The phenotypic similarities between 
these DCs and moDCs, as well as the expression of CD1c on B cells and other DC 
subsets, have made the precise segregation of this subset quite difficult. Although 
previous studies have used CD64 to exclude monocytes from bonafide CD1c+ DCs 
in the blood, cDCs express low levels of this marker and cannot be definitively 
used to separate the cell populations [6, 7]. More recently, the use of single cell 
RNA sequencing techniques has identified additional surface phenotypic mark-
ers, such as CLEC10A, FCGR2B, FCER1A, to distinguish human cDC2 subsets 
[7, 8]. In particular, CLEC10A protein has been proposed as the cDC1 CLEC9A-
equivalent marker for cDC2s in different species and tissues. However, different 
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isoforms of Clec10A have been found in mice and should be carefully considered 
when using it across species [27]. Heterogeneity within the human cDC2 subset 
has been identified using CD5 or CD32B versus CD163 and CD36. The CD5lo or 
CD163+CD36+ ‘cDC2’ are transcriptionally more related to monocytes than the 
other cDC2 subset (CD5hi or CD32B+) [8, 28]. Like cDC1, CD1c+ cDC2s require 
FL, but also rely on transcription factors IRF4 and IRF8, for development [20, 29].

The cDC2 DCs highly express TLR2 and also express a range of cytosolic viral RNA 
sensors such as RIG-I [30, 31]. Different proposed cDC2 subsets also seem to have dif-
ferent PRR expression patterns. For example, CD5hi cDC2 express high levels of TLR7 
and 8 compared to CD5lo cDC2 and CD32B+ cDC2 express higher levels of TMEM173 
(also known as STING) in comparison to CD163+ CD36+ cDC2 subset [8, 28].

Activated cDC2s can drive Th17 immune response and can also produce high 
levels of IL-12p70, potentially inducing Th1 differentiation [2, 29]. However, cur-
rent data suggests Th17 versus Th1 driven responses may be independently driven 
by CD5+ versus CD5lo cDC2 subsets, respectively [8, 28].

Human cDC2s are able to cross-present soluble Ag to naïve and memory CD8+ T 
cells at comparable levels with cDC1s [32–35]. However, the mechanism of cross-
presentation differs between both subsets [35] and cDC2 do not possess the potent 
ability to cross-present Ags from dead cells. Human cDC2 are also potent stimula-
tors of CD4+ T cells [8, 10, 16].

4. Plasmacytoid dendritic cells (pDC)

The pDCs constitute ~0.01–0.04% of PBMCs and commonly reside in second-
ary lymphoid organs localising in the follicular cortex, T cell nodules and around 
high endothelial venules [36, 37]. As their name suggests, pDCs are similar in 
morphology to that of plasma cells. Under light microscopy, pDCs are observed 
to be spherical in shape with a rounded nucleus, often predominant endoplasmic 
reticulum and present as clusters in T-cell rich regions of lymphoid tissue [36–38].

The pDCs, originally identified as ‘natural interferon producing cells’ (NIPC), 
are renowned for their ability to drive immense type I and type III IFN production 
via TLRs 7 and 9 [39–41]. This IFN production is essential to combat viral infec-
tion but pDC-derived IFN is also thought to contribute to disease in autoimmune 
diseases including systemic lupus erythematosus [42]. They are also thought to play 
a role in Th2 induction and asthma progression in humans [42]. Conversely, pDC 
have also been shown to play a major role in tolerance in vivo, through their produc-
tion of IDO and TGF-beta [42].

pDCs are recognised as being CD11c−/loCD45RA+CD123+CD303+CD304+HLA-
DR+ and can express CD56 (reviewed in [2]). pDCs may also be identified by their 
transcription factors including; TCF4 (also known as E2-2), SPIB, ZEB2, IRF8, IRF7 
and IRF4 [43–45]. Haploinsufficiency in the TCF4 gene results in Pitts-Hopkins 
syndrome, which characteristically generates defective pDCs, illustrating a depen-
dence of this factor for normal human pDC development [46].

The pDCs can be divided into 2 subsets based on CD2 expression [47]. Recent 
single cell transcriptomic profiling of blood DCs from healthy donors has revealed 
that CD2+ ‘pDC’ also express AXL and SIGLEC6 (known as AS DCs). These AS 
DCs can stimulate CD4+ and CD8+ allogeneic T cell proliferation whereas the 
segregation of pDCs away from contaminating AS DCs demonstrated potent IFN-α 
production after TLR9 stimulation and a lack of T cell priming attributes [8]. 
Whether AS DCs and pDC are 2 distinct cell types or differentiation stages of one 
another is yet to be defined.
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A rare and highly aggressive acute leukaemia known as Blastic Plasmacytoid 
Dendritic Cell Neoplasm (BPDCN) involves the malignancy of pDC precursors 
[48], driven, at least in part by the juxtaposition of the pDC-specific RUNX2 
enhancer and the MYC promotor due to the chromosomal translocation (6;8)
(p21;q24) [49]. The BPDCN can be reliably identified by immunohistochemical 
staining with TCF4 and CD123 antibodies [50]. BPDCNs most commonly present as 
skin lesions and may be accompanied by swelling of other organs such as the lymph 
nodes, bone marrow or spleen. Standard chemotherapy treatments for myeloid neo-
plasms often result in poor prognosis [51] although a toxin-conjugated anti-CD123 
drug, tagraxofusp-erzs, has recently been approved as the first FDA-approved 
BPDCN-specific treatment [52].

5. Monocyte derived DCs

Monocyte derived DC (moDC) refers to DCs induced from monocytes with 
GM-CSF in vitro. These tissue culture systems originated in the early 1990s 
based on work showing varying combination of cytokines with GM-CSF could 
induce the acquisition of antigen presentation capacity in stem cells and CD34+ 
blood precursors [53–56], and this was optimised with the addition of IL-4 [57]. 
These systems have been an immensely popular tool for more than two decades 
for in vitro research pertaining to conventional DC biology and immunological 
function. They have been particularly useful in human research due to the dif-
ficulties in obtaining large numbers of ex vivo primary human DC for research. 
However, the feasibility of these models has recently been questioned, detailed 
analyses of GM-CSF induced DC cultures reveal a heterogeneous popula-
tion of macrophages and conventional DCs, with the MHCIIhi cells the most 
DC-like [58–61].

It still remains unclear whether the moDC actually represent an in vivo equiva-
lent cell subset. They potentially represent an in vitro equivalent of an inflammatory 
monocyte known as TNF/iNOS producing DCs (TipDCs), based on their surface 
phenotype [62], cytokine profile and a shared precursor [62]. Importantly, high 
intra-tumoral expression of CD40L, TNF-α and iNOS, key phenotypes of TipDCs, 
were strongly correlated with substantially higher long term disease free survival 
rates over 10 years in patients with colorectal cancer [63]. Therefore, moDCs may 
represent a useful and relevant in vitro model of inflammatory DCs.

5.1 MoDC and cancer vaccines

While the ex vivo induced moDC do not recapitulate bona fide DC subsets, the 
ease of isolation and culture has made the moDC a popular vaccine candidate in 
human clinical trials since the late 1990s. However, results from clinical trials using 
moDC in cancer immunotherapies for various cancer types have been modest at 
best [64, 65]. In a more recent phase II trial of patients with surgically resectable 
liver metastatic colon adenocarcinoma, vaccination of patients with autologous 
tumour lysate pulsed moDC conferred interim protection, demonstrating a 3-fold 
increase in the median disease free survival compared to the control arm of the 
study [66]. The continued refinement of moDC preparations and the choice of 
antigens, may see future improvements of DC cancer vaccines.

The ability to present Ag and activate the adaptive immune response makes 
DCs an attractive target to re-invigorate anti-cancer immunity. There are different 
types of DC vaccines, with the most common type involving the ex vivo maturation 
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of autologous DCs. In this method, DCs are isolated from patient peripheral blood 
mononuclear cells (PBMCs) obtained via leukapheresis, incubated with maturation 
stimuli and tumour Ags, and vaccinated back into the patient. Because this method 
requires a large number of DCs, and naturally circulating blood DCs are rare, the 
majority of clinical trials have previously used moDCs for this type of DC vaccine 
and have been extensively characterised [67, 68].

Thus far, a wide variety of moDC vaccine strategies have been trialled [68]. 
moDCs have been differentiated and matured using monocyte conditioned medium 
with various supplements of cytokines (TNF-α, GM-CSF, IL-4, IFN-α), TLR 
agonists (LPS) and other factors such as prostaglandin E2 [67–69]. There is also 
variety in the type of Ags loaded into DCs such as peptides from tumour-associated 
Ags (TAA), TAA-encoding mRNA and whole tumour lysates [67]. More recently, 
the electroporation of synthetic mRNA encoding DC-maturation factors such as 
CD40 ligand, constitutively active TLR4 and CD70 together with fusion proteins 
DC-LAMP and melanoma-associated Ags into autologous moDCs (TriMixDC-
MEL) have proven safe and immunogenic in phase 1 clinical trials in metastatic 
melanoma [70]. However, the variation in the aforementioned vaccine factors as 
well as the route of DC administration (intranodal, i.v.) and lack of standardised 
method of moDC generation has shown variable efficacies of moDC vaccines in 
clinical outcomes.

6. DC vaccines

More recent clinical trials using naturally circulating blood DCs have turned 
to CliniMACS system by Miltenyi to isolate different DC subsets from patients 
(Figure 1). Two completed Phase I clinical trials have used CD1c+ DCs (cDC2) 
loaded with TAA peptides in hormone refractory metastatic prostate cancer and 
metastatic melanoma and observed good safety and immunogenicity [71, 72]. 
Another completed Phase I trial using pDCs showed the induction of tumour-Ag 
specific CTL response as well as an IFN signature [33]. On-going clinical trials, as 
summarised by Bol et al., are not only isolating single DC subsets for vaccination, 
but are also trying combination vaccines comprised of cDC2 and pDC subsets 
and using dual-activating maturation agonists such as single stranded RNA that 
stimulates TLR8 on cDC2 and TLR7 on pDCs (NCT-02993315, NCT-02574377, NCT-
02692976) [67]. However, there are still many challenges in using naturally circulat-
ing blood DCs in tumour vaccinations. The methodology for isolation of sufficient 
CD141+ cDC1 DCs, which comprise only 0.03% PBMCs, is still lacking and will be 
important to harness due to their superior ability to cross-present dead and necrotic 
Ag. Furthermore, although improved over the years, the duration of DCs spent 
ex vivo can drastically affect DC viability and functionality and the personalised 
nature of these vaccines can limit the quantity of patient access to these treatments.

Apart from the ex vivo maturation of autologous DCs, another strategy of DC 
vaccines has been receptor targeting (Figure 1). This involves the administration 
of a monoclonal Ab (mAb) specific for endocytic receptors on various DC subsets 
to deliver tumour Ags to DCs directly in vivo [73]. Tumour Ags are conjugated to 
these DC-targeting mAb either chemically, through genetic fusion, or attachment to 
nanoparticles and liposomes [74]. Importantly, the administration of adjuvant, such 
as TLR3 agonist poly I:C, in conjunction with Ag delivery, is necessary to induce 
immune priming instead of tolerance, as shown in mice [75–77]. Moreover, the tar-
geting of cross-presenting DC subsets has been particularly attractive, due to their 
ability to activate CTLs. DEC-205, a C-type lectin that is highly expressed on cDC1 
can cross-present Ag when targeted and induce tumour Ag NY-ESO-1-specific 
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cellular and humoral responses in patients with solid cancers [78, 79]. However, 
DEC-205 is also expressed on many other cell-types including CD1c+ DCs, pDCs 
and monocytes which can affect targeting specificities and efficiencies [79–81]. In 
contrast, another C-type lectin, Clec9a (also known as DNGR-1), is specifically 
expressed on cDC1 and strategies targeting this molecule have demonstrated highly 
immunogenic responses without adjuvant in non-human primates, and also supe-
rior Ag-specific cross-presentation when targeted in vitro and in vivo [79, 81, 82]. 
Based on these pre-clinical studies, the progression of vaccines targeting Clec9a into 
clinical trials is much anticipated.

7. DC in the tumour microenvironment

The tumour microenvironment (TME) is a complex niche of tumour cells, 
stromal cells and tumour infiltrating myeloid and lymphoid immune cells. The 
dynamic nature of this niche varies with different types and stages of cancer, as 
well as between patients themselves. It has been established that the infiltration of 
CD8+ cytotoxic T cells have been associated with better treatment outcomes with 

Figure 1. 
Overview of potential roles of DC in cancer therapies. To improve current cancer treatments and the activation 
of tumour-specific CTL, DC may be directly targeted in vivo (Section 6) or may themselves be the targets of 
checkpoint immunotherapies (Section 8). Ex vivo manipulation of DC (Section 6) may also be beneficial in some 
cancer patients. In vivo targeting strategies may also be combined with Flt3-L treatment to enhance DC numbers, 
and adjuvants targeting specific PRR to ensure the DC subset of interest are activated. Created with Biorender.com.
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checkpoint blockade therapies in a number of cancer types including metastatic 
melanoma [83]. However, the phenotype and role of tumour-infiltrating DCs 
(TIDCs) are less clear, possibly due to the lack of consistent markers probing DCs 
within the TME and the lack of distinctions between monocyte and putative DC 
subsets [84].

Using immunohistochemistry staining, many studies have previously used 
CD1a and S100 proteins to identify TIDCs. The higher density of these cells within 
tumours correlated with better clinical outcomes in melanoma and head and neck 
cancers [84, 85]. However, discrepancies in this correlation were reported in colon, 
breast, gastric, nasopharyngeal, lung and ovarian cancers [84, 86–88]. One major 
factor that could explain these reported discrepancies is the markers used to iden-
tify DCs. CD1a and S100 are expressed at different levels on Langerhans cells (LCs), 
interdigitating DCs and moDCs, but not on cDCs or pDCs and the expression of 
these markers on epithelial-tropic DCs such as LCs could account for the strong 
correlations observed in only the epithelial cancers [84]. Furthermore, DC activa-
tion markers CD83 and DC-LAMP were used to identify mature DCs, though CD83 
is not expressed in all DC subsets [7, 84, 89]. In breast adenocarcinoma patients, 
immature DCs were found to localise within the tumour whereas CD83/DC-LAMP+ 
mature DCs localised in the peri-tumour edges [90]. Some studies have reported 
significant correlations between the intratumoral infiltration of mature DCs with 
better clinical outcomes. For example, a recent report showed that the recruitment 
of DC-LAMPhi cells into the tumour stroma exhibited strong correlations with 
significantly higher overall and relapse-free survival in high-grade serous ovarian 
carcinoma [91]. However, this correlation has also been inconsistent in a number of 
different cancers [85, 90, 92–94].

More recently, with the establishment of The Cancer Genome Atlas (TCGA) 
program, scientists are able to compare DC-specific signatures with a publicly 
available molecular and clinical database of a vast array of cancers. In melanoma 
and breast cancer patients, DC-specific genes such as BATF3, IRF8, CLEC9A and 
FLT3 were associated with higher CTL scores and better overall survival [95–97]. 
They also exhibited positive correlations with chemokines CXCL9, 10 and 11 and 
chemokine receptor CCR7 expression [95, 96]. Furthermore, Broz et al. [98] 
observed strong associations between cDC1-derived genes within the tumour 
and better overall survival in breast cancer, head-neck squamous cell carcinoma 
and lung adenocarcinoma. This corroborates mouse tumour models showing that 
migratory cDC1 subsets are required for cross-presenting tumour Ag in tumour-
draining lymph nodes and priming of cytotoxic CD8+ T cells [97, 99].

Whilst the recent data above points towards a benefit of the infiltration of 
conventional DC into tumour sites, the correlation between tumour infiltrating 
pDCs and poor survival prognosis is clear. This has been described in breast, head 
and neck, ovarian and lung cancers [100–103] where it is thought that pDC-
induced tolerance and impaired IFN-α production contributes to a suppressive, 
non-immunogenic TME. Indeed mouse studies point to a role of TGF-β in the 
tumour environment in preventing an activatory phenotype of pDC and favouring 
a tolerising, IDO producing phenotype [104].

Further factors within the TME that have been illustrated to correlate with 
DC infiltration or function include for example, vascular endothelial growth 
factor (VEGF), a tumour angiogenic factor, inversely correlated with DC density 
and overall survival in gastric adenocarcinoma tissues [87, 105]. High serum 
VEGF levels were also associated with low blood cDC1 and cDC2 numbers 
in colorectal and non-small cell lung cancers and treatment of VEGF decoy 
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receptor, VEGF-Trap, increased the proportion of mature DCs, but not overall 
numbers or DC priming function in various solid cancer patients [106–108]. 
Direct evidence of VEGF-induced DC inhibition was also reported in DCs dif-
ferentiated from CD34+ precursors and moDCs [105, 106, 109]. Other cytokines 
such as IL-6, IL-10 and TGFβ have also demonstrated DC-inhibitory effects in 
the TME [104, 110–114].

In metastatic melanoma patients, higher active β-catenin signalling within 
the tumour was associated with low cDC1 signatures and T cell signatures [115]. 
Furthermore, the expression of fatty acid synthase was inversely correlated with 
CD11c+ DC signatures in ovarian, prostate and bladder cancers [116].

8. DC and immune checkpoint inhibitors

Chemotherapy and radiotherapy have remained the core pillars of cancer 
treatments. However, the combination of these traditional therapies with immu-
notherapies targeting immune checkpoint receptors has greatly enhanced patient 
clinical outcomes, especially in patients with immunogenic cancers, summarised in 
Table 2.

Immune checkpoints consist of a family of co-stimulatory and co-inhibitory 
receptors expressed by T cells that modulate their immune responses. Signalling 
from these receptors depends on their interaction with specific ligands present at 
the surface of various immune and non-immune cells. These regulatory pathways 
are a major cause of immune suppression during cancer due the high levels of 
co-inhibitory ligands being expressed in the tumour microenvironment, resulting 
in T cell immunosuppression. Monoclonal antibodies (mAb) blocking programmed 
cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4), 
two co-inhibitory immune checkpoint receptors have become routine treatment 
against many malignancies and more therapeutic molecules against members of the 
immune checkpoint family are being trialled. Here we review the role of DC in the 
response to immune checkpoint therapies.

8.1 DC and PD-1

PD-1 is expressed by activated T cells and interacts with two ligands, PD-L1 
(B7-H1/CD274) and PD-L2 (B7-DC/CD273). PD-1 engagement results in down-
regulation of T cell proliferation and function [117]. This inhibitory pathway is 
harnessed by tumour cells to escape attack by T cells through expression of PD-L1 
on their cell surface. Anti-PD-1/PD-L1 therapies have shown considerable effects 
on patients with high PD-L1-expressing tumours, boosting the effector functions of 
tumour-associated CD8+ T cells inducing tumour regression. To date, two anti-PD-1 
mAb (Pembrolizumab, Nivolumab) and three anti-PD-L1 mAb (Atezolizumab, 
Durvalumab, Avelumab) have been approved for the treatment of cancers includ-
ing advanced melanoma, non-small-cell lung cancer, head and neck squamous cell 
carcinoma, Hodgkin lymphoma and renal carcinoma [118].

The ligands for PD-1 are abundant on DC. PD-L1 expression is on pDC and 
cDC subsets and upregulated in response to inflammatory stimuli and following 
exposure to platinum-based chemotherapy drugs [84, 119]. Furthermore, PD-L1 
is also highly expressed on DC that infiltrate tumours as exemplified by the high 
PD-L1 expression measured on both pDC and multiple myeloma cells isolated from 
the bone-marrow of multiple myeloma patients [120]. PD-L2 is detectable at low 
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Checkpoint 

inhibitor (CI)

CI cell 

expression

Ligand Ligand cell 

expression

Anti-CI mAb 

clinical name

Clinical outcome

PD-1 T, B, NK cells, DC PD-L1/2 PD-L1: DC, 

monocytes, Treg, 

cells, tumour; 

PD-L2: Activated 

cDC, moDCs

Pembrolizumab, 

Nivolumab

Approved for metastatic melanoma, renal cell carcinoma, squamous-cell 

carcinoma of head and neck, Hodgkin’s lymphoma, metastatic colorectal, non-

small cell lung, Merkel cell and ovarian cancers

Improved clinical outcomes in combination with peptide/vector vaccines for 

advanced solid cancers, metastatic melanoma and HPV-16-related cancers

CTLA4 T cells, activated 

moDCs

CD80/86 (B7.1/2) APC Ipilimumab, 

Tremelimumab

Approved for metastatic melanoma, renal cell carcinoma and colorectal cancer 

treatments

Mixed results in combination with peptide and moDC vaccines

TIM-3 T, B cells, cDC, 

myeloid cells

Galectin-9, 

CEACAM-1, 

HMGB1, 

phosphatidylserine

Tumour — (pre-clinical) —

LAG-3 Activated T, NK 

cells, pDCs

MHCII APC LAG-3Ig fusion 

protein

Elevated clinical activity Phase I/II trial in combination with paclitaxel for 

metastatic breast carcinoma

ICOS Treg cells, 

activated T cells

ICOS-L APC (especially 

activated pDCs)

MEDI-570 Phase I Trial for T cell lymphoma (National Cancer Institute Clinical Trial 

NCT02520791)

Table 2. 
List of checkpoint inhibitors, their ligands, cell expression and clinical associations.
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levels on cDC only after activation and is highly expressed by moDC [121]. Whether 
PD-L2 is also expressed by DC in different TMEs and the effect of anti-PD-L2 
therapies is yet to be defined.

cDC1 play a critical role in the efficacy of anti-PD-1/PD-L1 mAb therapies. 
Single cell mass spectrometry analyses of PBMC from patients with advanced 
melanoma, before and after anti-PD-1 therapy revealed that CD141 and CD11c, 
both expressed by cDC1 are strong predictive biomarkers of clinical response 
to anti-PD-1 treatments [122]. This is consistent with several mouse studies 
reporting that cDC1-deficient mice do not respond to immune checkpoint 
blockade using anti-PD-L1 or a combination of anti-PD-1 anti-CTLA4 mAb 
[123, 124]. Furthermore, mice that possess cDC1 defective in antigen cross-
presentation fail to establish CTL responses and do not respond to anti-PD-1 
blockade [125].

The success of anti-PD-1 therapy also depends on a cross-talk between cDC1 and 
T cells in the TME. In mouse models anti-PD-1 treatment induces IL-12 production 
by tumour-infiltrating cDC1 [124, 126] which amplifies T cell effector functions. In 
melanoma patients, the clinical electroporation of an IL-12 plasmid in the tumour 
lesions enhances the CTL gene signature, thus validating the role of this cytokine in 
supporting CTL responses [126], Figure 1.

In addition to its ligands, expression of the PD-1 receptor on DC has been 
reported during cancer. In hepatocellular carcinoma patients, detectable levels of 
PD-1 were reported on peripheral blood cDC1, cDC2 and pDC whereas PD-1 was 
only present on cDC1 in healthy donors. This was confirmed with microscopy 
analyses of cancerous liver tissues showing co-expression of PD-1 and the DC 
marker CD11c [127]. In line with this data, co-expression of PD-1 and PD-L1 
was detected on CD11c+ DC isolated from the tumours of non-small cell lung 
cancer patients [128]. However, in this case, PD-1 was absent from DC isolated 
from the PBMC of either cancer patients or healthy donors, suggesting that PD-1 
is upregulated locally on DC in response to the immunosuppressive tumour 
 environment [128].

Mouse studies support an inhibitory role of PD-1 on DC [127]. This finding 
however contrasts with a recent study revealing that PD-1 can establish cis-
interactions with both PD-L1 and PD-L2 at the cell membrane. PD-L1/PD-1 cis-
interaction disrupts PD-L1 binding to PD-1 on T cells, thus resulting in increased 
T cell activities. However, whether this mechanism exists in DC in the setting of 
cancer remains unknown [128]. Similarly, several reports have shown that PD-L1 
can interact in cis with the immune checkpoint ligand CD80/B7.1 [129–131] and 
this occurs on several types of APC, including cDC1 and cDC2 [131]. The PD-L1/
CD80 cis-interaction limits the binding of PD-L1 to PD-1 on T cells and ultimately 
promotes T cell immune responses [131]. Altogether, these data show that, while 
trans-interactions between PD-L1 and PD-1 at the interface of DC and T cells 
promote T cell immune suppression, cis-interactions between PD-L1 and other 
molecules on DC show opposite effects and could potentially promote cancer 
immunity.

Combining anti-PD-1/PD-L1 therapy with DC-based vaccines, or vaccines that 
target DC in situ, or include a DC growth factor, is a logical strategy to increase 
responses to checkpoint blockade in cancer patients. Several studies in mice have 
reported that such combination leads to higher protection by boosting the antigen-
specific T cell immune response induced by different type of vaccines [18, 123, 
132–134]. Several vaccines containing peptides or viral vectors, in combination with 
anti-PD-1 mAb Pembolizumab or Nivolumab, have shown encouraging results in 
early clinical trial with patients with advanced solid cancers, melanoma and Human 
Papillomavirus 16-Related Cancer [135–138].
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8.2 DC and CTLA4

The co-inhibitory immune checkpoint CTLA4 (CD152) is constitutively 
expressed by regulatory T cells (Treg) and by effector T cells upon activation. 
CTLA4 is highly homologous to the co-stimulatory receptor CD28 and binds the 
same ligands CD80 and CD86 (B7.2), however with a much higher affinity. As 
such, CTLA4 outcompetes CD28 for ligand binding and reduces CD28-mediated 
co-stimulation of T cell functions. CTLA4 blockade promotes anti-tumour 
immunity by increasing the activation of effector T cells and by depleting Treg in 
the TME. The CTLA4 blocking mAb Ipilimumab and Tremelimumab have been 
approved for the treatment of metastatic melanoma, renal cell carcinoma and 
colorectal cancer [118].

CTLA4 on T cells directly alters DC functions by removing the CTLA4 
ligands (CD80/86) from their cell surfaces. When human moDC are co-cultured 
with CTLA4+ T cells, CD80/86 levels on DC decrease rapidly in a CTLA4-
dependent manner. This mechanism, named trans-endocytosis, involves the 
physical capture of CTLA4 ligands by the receptor and their degradation. This 
process is upregulated by TCR engagement [139, 140]. Mouse in vivo studies 
show that trans-endocytosis is primarily carried out by regulatory T cells and 
impacts the migratory cDC1 and cDC2 [141]. In addition, CTLA4 interaction 
with CD80/CD86 on DC induces immunosuppression through reverse signalling. 
MoDC stimulated with soluble CTLA4 or agonistic anti-CD80/86 Ab produced 
indoleamine 2,3-dioxygenase (IDO), which is able to inhibit allogenic T cell 
activation [142]. IDO is expressed by human pDC [143], hence similar immu-
nosuppressive pathways are likely to be induced downstream of CD80/86 in this 
subset, as reported in mouse pDC [144].

Besides their regulation through CTLA4-CD80/86 interaction, moDC also 
express the CTLA4 molecule upon activation by TLR stimuli. Treatment of these 
cells with an agonistic anti-CTLA4 Ab induced increased production of IL-10, 
reduced expression of IL-8 and IL-12 and decreased T cell stimulation capac-
ity [145]. MoDC are also able to secrete CTLA4 in extracellular microvesicles. 
Microvesicular CTLA4 has been shown to downregulate CD80 and CD86 on 
moDC [146].

Combinatorial approaches of anti-CTLA4 mAb with cancer vaccines have been 
tested in clinics and have yielded mixed results. In melanoma patients, peptide 
vaccines, in combination with anti-CTLA4 Ipilimumab did not show better clinical 
outcomes compared to Ipilimumab alone [127, 147, 148]. However, other strategies 
using DC vaccines have provided promising results. For instance, the co-admin-
istration to melanoma patients of autologous moDC that have been pulsed with 
tumour peptide, together with Tremelimumab, resulted in objective and durable 
tumour responses [149]. Furthermore, a phase II study using Ipilimumab and 
moDC electroporated with synthetic mRNA (TriMixDC-MEL) has been tested in 
advanced melanoma patients and has shown an encouraging rate of highly durable 
tumour response [150].

8.3 DC and TIM-3

T cell immunoglobulin mucin-3 (TIM-3) is a co-inhibitory immune check-
point receptor expressed by all T cell populations as well as B cells and a large 
variety of myeloid cells. Four TIM-3 ligands have been identified, including 
Galectin-9, CEACAM-1, HMGB1 and phosphatidylserine. Engagement of TIM-3 on 
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tumour-infiltrating T cells induces exhaustion and suppresses tumour immunity. 
Preclinical studies have reported high therapeutic activities of blocking anti-TIM-3 
antibodies against various types of malignancies and clinical trials with TIM-3 
inhibitors are currently underway [128].

High TIM-3 expression has been reported on cDC1 and cDC2 from peripheral 
blood [151–153] and on tumour-associated cDC1 and cDC2 from mammary 
tumour biopsies [152]. Mouse models indicated that blocking TIM-3 on cDC1 leads 
to an increase in the T cell chemoattractant CXCL9. Moreover, cDC1 expressing 
TIM-3 correlated with CXCL9 expression in human breast cancer biopsies and was 
positively associated with CD8+ T cell infiltration. These data suggest that TIM-3 
blocking in these cancers could potentially enhance CD8+ T cell recruitment to the 
TME [152].

8.4 DC and LAG-3

Lymphocyte activation gene-3 (LAG-3) is a co-inhibitory immune check-
point receptor expressed on activated T cells and NK cells that recognise MHCII 
molecules on APCs as a ligand. LAG3 negatively regulates T cell activation and is 
frequently co-expressed with PD-1 on exhausted T cells in the TME. Several LAG-
3-targeting cancer immunotherapies are currently in different phases of clinical 
development [154].

The interaction between MHCII and LAG-3 not only has effects in T cells, 
but also induces reverse signalling in DCs that is stimulatory. This was shown 
using the soluble LAG-3-Ig fusion protein that activates moDC, as indicated by 
the upregulation of co-stimulatory molecules, the production of several pro-
inflammatory cytokines and chemokines and increased allogenic T cell activation. 
However, Ab-mediated MHCII ligation does not activate moDC, thus showing 
that the MHCII: LAG-3 interaction is required in this process [155–157]. Soluble 
LAG-3-Ig fusion protein in combination with the chemotherapy drug Paclitaxel 
has demonstrated elevated clinical activity in metastatic breast carcinoma during 
a phase I/II trial. This treatment also strongly stimulated the patients’ APC, as 
evidenced by the increase in the number and activation of monocytes, pDC and 
cDCs [158].

Notably, LAG-3 itself has been found expressed by DC, specifically by a sub-
population of circulating pDC in healthy donors. LAG-3+ pDC are also found in the 
tumour lesions and in the tumour-draining lymph nodes of melanoma patients and 
are thought to contribute to the immunosuppressive environment. Engagement 
of LAG-3 on pDC provides an activating signal, independent of TLR signalling, 
inducing low IFN-α and high IL-6 expression [159]. Hence, LAG-3-specific mAb 
in cancer immunotherapies may enhance the anti-tumour immune response by 
inhibiting LAG-3 signalling in both T cells and DC.

8.5 DC and ICOS

Inducible T cell costimulatory (ICOS) belongs to the co-stimulatory immune 
checkpoint receptor family and similarly to CD28, enhances the proliferation and 
effector functions of T cells. ICOS is expressed on activated T cells and constitu-
tively on a subpopulation of Treg [160] while ICOS-L is present at the surface of 
APC. High ICOS expression on T cells has been particularly observed during anti-
CTLA4 therapies and the co-administration of agonistic ICOS-specific mAb further 
improves the efficacy to CTLA4 blockade [161].
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pDC are able to induce immunosuppression though ICOS stimulation. ICOS-L 
is strongly upregulated by human blood pDC, but not CD11c+ cDC, in response to 
TLR stimuli or IL-3 [162]. Co-cultures of pDC with allogenic T cells induced IL-10 
expression through a mechanism mediated by ICOS-L-ICOS interaction [162] and 
similar observations were reported with pDC isolated from ovarian carcinoma 
[163]. Furthermore, pDC are able to induce Treg proliferation though ICOS stimu-
lation [160] and this mechanism likely explains the dramatic accumulation of ICOS+ 
Treg in ovarian, breast, liver and gastric tumour tissues, in close proximity with 
ICOS-L+ pDC [101, 164–166].

9. Summary

DCs are rare, heterogeneous cells with clear roles in anti-tumour immunity. 
As summarised in Figure 1, understanding how best to activate DC to gain 
optimal anti-tumour adaptive immune responses will likely involve careful 
optimisation of adjuvants, checkpoint immunotherapies and DC targeting 
strategies. Emerging studies will likely examine checkpoint receptors and their 
ligands on DC, lymphocytes and other cells in tumour environments, in order to 
design targeted therapies for optimal antigen presentation, DC activation and 
anti-tumour response.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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