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Chapter

Theoretical Calculations of the
Masses of the Elementary
Fermions
Nathalie Olivi-Tran

Abstract

Our universe is three-dimensional and curved (with a positive curvature) and
thus may be embedded in a four-dimensional Euclidean space with coordinates
x, y, z, twhere the fourth dimension time t is treated as a regular dimension. One can
set in this spacetime a four-dimensional underlying array of small hypercubes of
one Planck length edge. With this array all elementary particles can be classified
following that they are two-, three-, or four-dimensional. The elementary

wavefunctions of this underlying array are equal to
ffiffiffi

2
p

exp ixið Þ for xi ¼ x, y, z or to
ffiffiffi

2
p

exp itð Þ for t. Hence, the masses of the fermions of the first family are equal to 2n

(in eV/c2) where n is an integer. The other families of fermions are excited states
of the fermions of the first family and thus have masses equal to 2n: p2ð Þ/2 where n
and p are two integers. Theoretical and experimental masses fit within 10%.

Keywords: four-dimensional spacetime, masses of elementary fermions,
theoretical masses, real space theory, Grand Unified Theory

1. Introduction

Since the beginning of the twentieth century, experimental particle physics has
been making large progresses with the set up of accelerators and colliders.

The main locations of accelerators are presently: the Centre Europeen de
Recherches Nucleaires (CERN) near Geneva (Switzerland and France). Equipments
of the CERN are presently the Super Proton Synchrotron and the Large Hadron
Collider (LHC), which is a protons collider. In Germany, the DESY (Deutsche
Elektronen Synchrotron) main set up HERA is a collider between electrons or
positrons and protons. In the USA, the Stanford Linear Accelerator Center (SLAC)
main set up is PEP-II, which is a collider between electrons and positrons. Located
also in the USA, the Fermi National Accelerator Laboratory (Fermilab) uses its main
set up the Tevatron to collide protons and antiprotons. Finally, the Brookhaven
National Laboratory (USA) uses the set up Relativistic Heavy Ion Collider to study
collisions between heavy ions.

Up to now, the results obtained with colliders and accelerators fit the Standard
Model, which predicts the existence of three families of elementary fermions and
five different types of bosons. Although string theories [1] and supersymmetry [2]
try to unify all different types of elementary particles, no experimental proof has
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been made of these theories. So, we present here a new theory that aims to unify
elementary particles characteristics. The theoretical masses of the elementary
particles are compared to the experimental masses.

This book chapter is a small review of the theoretical calculations of the masses of
elementary particles in real space [3–5]. The theoretical masses that we calculated fit
the experimental masses within less than 10% for almost all elementary fermions.

Our universe is three-dimensional and has a positive curvature. So our universe
may be embedded in an Euclidean four-dimensional space. These four dimensions
are x, y, z, t where t is time [6–8]. In this four-dimensional space, we classify the
elementary particles following their geometry, that is, elementary particles may be
four-, three-, or two-dimensional [5] (see Section 2). Let us notice that for a given
particle, time and mass are linked: if the mass of a particle is zero, this particle has
no temporal dimension.

If spacetime is composed of small hypercubes of one Planck length edge, there

exist elementary wavefunctions that are equal to
ffiffiffi

2
p

exp ixið Þ if it corresponds to a

space dimension or equal to
ffiffiffi

2
p

exp itð Þ if it corresponds to a time dimension (these
elementary wave functions are obtained by calculating the eigenfunction of a par-
ticle in a one-dimensional box, that is, the edge of the underlying hypercubes). The
masses of the electron, of the electron neutrino and of the quark up (first family of
fermions) are equal to integer powers of 2 (in eV/c2) [3]. We will show that the
fermions of the second and third families are excited states of the fermions of the
first family. Indeed, the masses of all elementary fermions follow the formula
2n: p2ð Þ/2 where n is an integer [3, 4] calculated for the electron, electron neutrino
and quark up and p is another integer that corresponds to the excited states of the
elementary wavefunctions (see Section 3).

2. Dimensions of elementary particles

All the theories that aim to understand the elementary particles treat time t as a
special dimension. Thus, many physicists deal with nþ 1 space dimensions in particle
physics, where the +1 corresponds to the special temporal dimension, thus treated
differently. As previously published [3–8], time may be seen as a function of space
dimension, if our three-dimensional universe is embedded in a four-dimensional
space (due to the positive curvature of our three-dimensional universe).

So, here we will present a simple hypothesis about the classification of
elementary particles based on the fact that the space is four-dimensional and that
time t is a dimension like x, y and z. Here, this book chapter is dedicated to our
hypothesis. This classification is intuitive but next sections of this book chapter,
which deal with the masses of the elementary fermions, use and thus demonstrate
this classification.

Indeed, with simple arguments, it seems to lead to the Grand Unified Theory
(GUT). Time is a function of the fourth dimension of this four-dimensional
Euclidean space. If we apply this hypothesis to particle physics, we may say that
elementary particles are four-dimensional, three-dimensional and two-dimensional.
The coordinates (x, y, z, t) are not orthonormal. Indeed, time t evolves as log rð Þ
where r is the co-moving distance in cosmology [6]. Let us make the additional
assumption that for each of these four dimensions there are functions like exp ir j

� �

with (r j ¼ x, y, z, t) that vibrate (like in string theory). To find these elementary
functions, one has to solve the one-dimensional problem of a particle in a square
potential of edge length ℏ (the Planck constant).

So, our reasoning is simply the description of how to distribute these functions in
the four-dimensional space. In the following, the reasoning applies in real space.

2

Accelerators and Colliders



A previous paper of mine (see [3, 9]) predicts that the Higgs potential in real space is a
hypercubic box in our four-dimensional space. To obtain the first family of fermions
from the StandardModel (i.e., quark up, electron, electron neutrino), onemay say that
see Figure 1:

• the electron is four-dimensional (t, x, y, z);

• the quark up is three-dimensional (t, x, y) or (t, x, z) or (t, y, z); and

• the electronic neutrino is two-dimensional (t, x) and x, y and z are equivalent.
When this neutrino propagates, there are infinitesimal rotations between the
characteristic coordinates (leading to flavor oscillations).

To obtain the masses of the remaining fermions (fermions of the second and
third families), one has to add a second quantum number p (similar to the quantum
number obtained for a particle in a square potential of dimensions ℏ—the Planck
length). Thus, the remaining fermions of the Standard Model may be seen as
excited states of the first fermion family.

Bosons may be classified with the same assumptions see Figure 2:

• the photon is two-dimensional (x, y) but has no temporal t coordinate—no mass
(indeedwithmyHiggs potential [3, 9], time at square is proportional to themass);

• the gluon is three-dimensional (x, y, z) and has no temporal dimension—no
mass (during the strong interaction, one gluon interferes (positive
interferences) with two quarks: x on x, y on y, etc.);

• the Z and W bosons are three-dimensional with mass (t, x, y); and

• the Higgs boson is four-dimensional (x, y, z, t).

Figure 1.
Dimensions of elementary fermions.
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In all these descriptions [5], the geometrical characteristics of elementary parti-
cles have been separated from their equation of propagation. With this hypothesis,
we obtained a new geometrical classification of elementary particles. Presently,
most of the calculations have been made using Feynman graphs, that is, in the space
of functions, leading to symmetries that are not yet unified. So in our opinion, the
symmetries in the Standard Model do not give the entire description of elementary
particles.

In the following section, I will use the geometrical dimensions of the elementary
particles to calculate the masses of elementary particles.

3. Masses of elementary fermions

In quantum mechanics, the wavefunction gives the most fundamental descrip-
tion of the behavior of a particle; the measurable properties of the particle (such as
its position, momentum and energy) may all be derived from the wavefunction.
The wavefunction ψ x, tð Þ can be found by solving the Schrödinger equation for the
system [10].

iℏ
∂

∂t
ψ x, tð Þ ¼ � ℏ

2

2m

∂
2

∂x2
ψ x, tð Þ þ V x, tð Þψ x, tð Þ (1)

where ℏ is the reduced Planck constant, m is the mass of the particle, i is the
imaginary unit and t is time. The square potential V x, tð Þ is equal to zero for x<L
and x>0 and for t<L and t>0. We use Von-Karman boundary conditions.
Moreover, the domain of definition of the function ψ x, tð Þ is 0,L½ � for x and also
0,L½ � for t where L is the width of the potential V x, tð Þ.

The eigenfunctions of the Schrödinger equation may be written:

ψ x, tð Þ ¼
ffiffiffi

2

L

r

exp �ikpx
� �

exp �iωtð Þ (2)

Figure 2.
Dimensions of elementary bosons.
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where
ffiffi

2
L

q

normalizes the eigenfunctions. To compute the energy levels of these

eigenfunctions, we have:

kp ¼
pπ

L
(3)

and

Ep ¼ ℏωp ¼
p2π2ℏ2

2mL2 , (4)

In order to simplify our calculations, we normalize all constants so that the
eigenfunctions are equal to:

ψ x, tð Þ ¼
ffiffiffi

2
p

exp ix j

� �

exp itð Þ (5)

To obtain the masses of all elementary fermions (elementary particles), one has
to modify the quantum number p [4] (similar to the quantum number of a particle
in a box). Thus, the remaining fermions of the Standard Model may be seen as
excited states of the first fermion family.

Straightforwardly, we make the following hypotheses:

• spacetime has an underlying hypersquare array of edge length ℏ;

• elementary wave functions (in (x, y, z, t) space) are eigenfunctions of a

particle in a square potential (reduced parameters)
ffiffiffi

2
p

exp �ixð Þ for space
ffiffiffi

2
p

exp �itð Þ for time; and

• the eigenvalues of the elementary wave functions are equal to p2

2 (with p an
integer number).

In the following subsection, I will use the preceding hypotheses to calculate
theoretically the masses of the elementary fermions.

3.1 Masses of the electron, muon and tau

The Dirac equation may be written:

iγμ∂μψ �mψ ¼ 0 (6)

with ψ the wavefunction, m the mass of the fermion and with the Dirac
matrices:

γ
0 ¼

I2 0

0 �I2

� �

, (7)

γ
1 ¼

0 σx

�σx 0

� �

, (8)

γ
2 ¼

0 σy

�σy 0

� �

, (9)
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γ
3 ¼

0 σz

�σz 0

� �

, (10)

where σν are the Pauli matrices.
Using combinatorial analysis, we obtain Eq. (11) (using the fact that electrons

are 4d [5] and that all space dimensions are equivalent).

γ1 0 0 0 0 0 0 0 0 0

0 γ2 0 0 0 0 0 0 0 0

0 0 γ3 0 0 0 0 0 0 0

0 0 0 γ3 0 0 0 0 0 0

0 0 0 0 γ1 0 0 0 0 0

0 0 0 0 0 γ2 0 0 0 0

0 0 0 0 0 0 γ2 0 0 0

0 0 0 0 0 0 0 γ3 0 0

0 0 0 0 0 0 0 0 γ1 0

0 0 0 0 0 0 0 0 0 σ0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

∂1Ψ

∂2Ψ

∂3Ψ

∂1Ψ

∂2Ψ

∂3Ψ

∂1Ψ

∂2Ψ

∂3Ψ

∂0Ψ

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

¼ m:

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(11)

There are three possibilities of arranging γ1, γ2, γ3 (the Dirac matrices) over x, y
and z (all space dimensions are equivalent) and one possibility to arrange σ0
(temporal Pauli matrix: half of γ0; because time does not go backward).

The large matrix M (see Eq. (11)) containing all combinations has a dimension

9X4þ 2 ¼ 38. We see that, with the coordinate vectors
ffiffiffi

2
p

exp �itð Þ and
ffiffiffi

2
p

exp �ixð Þ (eigenfunctions of a particle in a square potential), we have to
multiply the modified Dirac equation by the Jacobian corresponding to these new

coordinates. This Jacobian is equal to
ffiffiffi

2
p 38

where 38 is the dimension of the large
matrix [3]. We multiply the mass of the first particle of this family by the
eigenvalues of the eigenfunctions (of the particle).

We decompose the eigenvalues into prime numbers [4]. The number of
eigenvalues for the ground state (electron) is 38 (the dimension of the large matrix

M). For the other particles, we take into account the spinor 1, 0ð ÞT corresponding
to the σ0 Pauli matrix. So except for the electron, there are 37 eigenvalues for each
particle [4].

• The mass of the electron is equal to
ffiffiffi

2
p 38 ¼ 219 eV/c2 = 219: 1

2
2

� �19
: 22

2

� �19
¼

0:524MeV/c2 ≈ 0.511 MeV/c2.

• The mass of the muon is equal to 219:202/2 = 219: 2
2

2 :
22

2 :
22

2 :
22

2 :
52

2 :
1
2
2

� �16
: 22

2

� �16
¼

104:8MeV/c2 ≈ 105.6 MeV/c2.

• The mass of the tau is equal to 219:822/2 = 219: 41
2

2 : 2
2

2 :
22

2 :
1
2
2

� �17
: 22

2

� �17
¼

1:76GeV=c2 ≈ 1.78 GeV/c2.

The values in italic are the experimental masses [11].

We see that for the tau particle, one of the eigenvalues 412

2

� �

is much larger than

the others. This may explain the short lifetime of this particle.
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The masses (theoretical and experimental) of the electron, muon and tau are
summarized in Table 1.

3.2 Masses of the quarks

For quarks, we have

iγμ∂μψ ¼ mψ (12)

The Dirac matrices are representative of infinitesimal rotations within the
wavefunction of a given elementary particle.

Using combinatorial analysis, we obtain Eq. (13) (using the fact that quarks are
3d [5] and that all space dimensions are equivalent). There are three possibilities for
arranging γ1, γ2, γ3 (the Dirac matrices) over x, y and z (all space dimensions are
equivalent). There is one possibility to arrange σ0 (temporal Pauli matrix; half of γ0,
because time does not go backward) for each combination of spatial Dirac matrices
(x, y; x, z; and y, z). We have to take into account that the quarks are three-
dimensional. So, the matrix M containing all combinations has a dimension equal to
9X4þ 3X2 ¼ 42.

γ1 0 0 0 0 0 0 0 0 0 0 0

0 γ2 0 0 0 0 0 0 0 0 0 0

0 0 γ3 0 0 0 0 0 0 0 0 0

0 0 0 σ0 0 0 0 0 0 0 0 0

0 0 0 0 γ2 0 0 0 0 0 0 0

0 0 0 0 0 γ3 0 0 0 0 0 0

0 0 0 0 0 0 γ1 0 0 0 0 0

0 0 0 0 0 0 0 σ0 0 0 0 0

0 0 0 0 0 0 0 0 γ3 0 0 0

0 0 0 0 0 0 0 0 0 γ1 0 0

0 0 0 0 0 0 0 0 0 0 γ2 0

0 0 0 0 0 0 0 0 0 0 0 σ0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

∂1Ψ

∂2Ψ

∂3Ψ

∂0Ψ

∂1Ψ

∂2Ψ

∂3Ψ

∂0Ψ

∂1Ψ

∂2Ψ

∂3Ψ

∂0Ψ

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

¼ m

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(13)

We see that, with the coordinate vectors
ffiffiffi

2
p

exp �itð Þ and
ffiffiffi

2
p

exp �ixð Þ
(eigenfunctions of the underlying hypersquare array), we have to multiply the
modified Dirac equation by the Jacobian corresponding to these new coordinates.

This Jacobian is equal to
ffiffiffi

2
p 42

where 42 is the dimension of the matrix [3]. We
multiply the mass of the first particle of the quarks family by the eigenvalues of the
eigenfunctions (of the particle). We decompose the eigenvalues into prime

Table 1.
Theoretical and experimental masses of the electron, muon and tau.
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numbers [4]. The number of eigenvalues for the ground state (quark up) is 42
(the dimension of the large matrix M, see Eq. (13)). For the other quarks, we take

into account the spinor 1, 0ð ÞT corresponding to the three σ0 Pauli matrices. So
except for the quark up, there are 39 eigenvalues for each quark [4].

• The quark up has a mass equal to
ffiffiffi

2
p 42 ¼ 221 eV/c2 = 221: 1

2
2

� �21
: 22

2

� �21
¼

2:09MeV/c2 ≈ 2.2 MeV/c2.

• The quark down has a mass equal to 221: 2
2

2 = 221: 2
2

2 :
1
2
2

� �19
: 22

2

� �19
¼

4:19MeV=c2 ≈4:7MeV=c2.

• The quark strange has a mass equal to 221: 9
2

2 ¼ 221: 3
2

2 :
32

2 :
22

2 :
1
2
2

� �18
: 22

2

� �18
¼

84:9MeV/c2 ≈ 96 MeV/c2.

• The quark charm has a mass equal to 221: 36
2

2 ¼

221: 3
2

2 :
32

2 :
22

2 :
22

2 :
22

2 :
22

2 :
22

2
1
2
2

� �16
: 22

2

� �16
¼ 1:35GeV/c2 ≈ 1.27 GeV/c2.

• The quark bottom has a mass equal to 221: 63
2

2 ¼

221: 3
2

2 :
32

2 :
22

2 :
22

2 :
72

2 :
1
2
2

� �17
: 22

2

� �17
¼ 4:16GeV/c2 ≈ 4.18 GeV/c2.

• The quark top has a mass equal to 221: 405
2

2 ¼

221: 3
2

2 :
32

2 :
32

2 :
32

2 :
52

2 :
22

2 :
22

2 :
22

2 :
22

2 :
1
2
2

� �15
: 22

2

� �15
¼ 171:9GeV/c2 ≈ 173 GeV/c2.

The values in italic are the experimental masses [11].
The theoretical and experimental masses of the quarks family are summarized in

Table 2.

Table 2.
Theoretical and experimental masses of the quarks family.

Table 3.
Theoretical masses of the neutrinos and upper limits of experimental masses.
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3.3 Masses of the neutrinos

Up to now, there is no theoretical propagation equation for the neutrinos.
If we use the eigenvalues of the elementary wave functions like for quarks and

electrons, muons and taus, we may write [4]:

• the mass of the electron neutrino is equal to 2 eV/c2;

• the mass of the muon neutrino is equal to 2: 412
2

2 ¼ 4122 eV/c2 ¼ 169keV=c2; and

• the mass of the tau neutrino is equal to 2: 3937
2

2 ¼ 39372 eV/c2 ¼ 15:4MeV/c2.

Hence, we found theoretical values of the masses of the neutrinos, which are in
good agreement with the experimental masses (Table 3).

4. Conclusion

In this chapter, the calculations of the masses of all the known elementary
fermions are made in real space. At the beginning of this book chapter (Section 2),
I presented a classification of elementary particles over all space and temporal
dimensions. Using this geometrical classification (which is intuitive), we found the
theoretical values of masses for all the elementary fermions (electrons, muons and
taus; all quarks and all neutrinos). The theoretical masses are in good agreement
with the experimental masses (the differences between theoretical and experimen-
tal masses are less than 10% except for the quarks down and strange). To conclude,
our theory unifies all elementary fermions: we use the same approach to all these
fermions (geometry and the underlying hypersquare array of spacetime). In the
future, there is a possibility to analyze the symmetries of these particles and com-
pare them to the symmetries of the Standard Model.
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