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Abstract

The endophytic microorganisms have the potential to improve the yield of 
agricultural crops. They can be used as biological control, plant growth promoter, 
or bioremediators. The action of endophytes in controlling phytopathogens, insects, 
and weeds that harm agriculture may be the result of microbial interactions with 
other organisms or the production of bioactive metabolites. Also, microorganisms 
can have the ability to favor plant growth and convert toxic compounds present 
in the soil. The presence of pollutants in the substrate reduces its quality for plant 
development, so bioremediation also impacts agricultural production. Therefore, 
prospecting endophytic microorganisms with agronomic potential may provide 
sustainable alternatives to increase crop yield.

Keywords: endophyte, agriculture, biological control, plant growth promoter, 
inoculant, bioremediator

1. Introduction

In order to apply sustainable solutions to problems related to food production, 
the biotechnological potential of endophytic microorganisms has been prospected 
in the agronomic area. The use of beneficial microorganisms in agricultural produc-
tion aims for pest control, improvement of productivity and plant development, 
and/or recovery of ecological systems. Endophytes play a role in evolution of plant 
and in resistance of stresses through the production of bioactive metabolites, 
changes in enzyme metabolism, and gene expression related to resistance [1], and 
those beneficial effects of various endophytic genera may be the combined [2].

2. Biological control

Biological control of phytopathogens occurs when living microorganisms 
repress the development of the etiological agent in the plant [3]. Endophytes can 
act inducing resistance, promoting antibiosis and/or competition in consequence 
of the mutualistic relation with the plant [4]. These processes can occur indepen-
dently, but the overlap of mechanisms may also happen [5], like is observed in the 
association of Beauveria bassiana and Metarhizium brunneum against the complex of 
Fusarium, the control ocurrs by competition and antibiosis [6].
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The physiological definition of resistance is the delay or impediment of entry 
and/or subsequent activity of the pathogen in the plant [7]. Plants have numerous 
and efficient defense mechanisms naturally triggered when exposed to elicitors [8] 
that can be stimulated by the endophytes presence. The plant defense mechanisms 
are induced after the recognition of molecular patterns associated with pathogens/
microbes (PAMPs/MAMPs), or plants’ molecular patterns associated with damage 
(DAMPs) and effectors, by proteins or by nucleotide-binding leucine-rich repeat 
(NB-LRR) [9]. Endophyte induces systemic resistance on plants providing an alert 
state, the priming [10, 11]. Priming plants exhibits faster and stronger responses 
against pathogen attacks because transcription factors and signaling proteins have 
already accumulated in cells. This defense induction is a consequence of molecular 
signaling during the establishment of plant-endophyte symbiosis [10]. An example of 
the host-induced resistance by endophytes is the frequent isolation of Curtobacterium 
flaccumfaciens in plants without symptoms of citrus variegated chlorosis, suggesting 
that this endophyte has a role in the resistance of the citrus plant [12].

A reprogrammed genetic transcription occurs in plants associated with endo-
phytes. The Epichloë festucae symbiosis with ryegrass (Lolium perenne var. Lolii) 
enhances gene expression of jasmonic acid (JA) precursors [13], and the expres-
sion of the systemic defense genes HvPr17b and HvHsp70 in barley is associated 
with the presence of the endophyte Piriformospora indica [14]. Further, presence 
of endophytes may alter pathogenesis-related proteins (PR-proteins) concentra-
tion, as chitinase, peroxidase, glucanase and cellulase in cucumber inoculated 
with Trichoderma harzianum [15], lignin and cellulose in Theobroma cacao in 
symbiosis with Colletotrichum tropicale [16], and PR2, PR6, PR15, and PR16 in rice 
with Bacillus subtilis [17]. The resistance response induced by symbiosis of plant-
endophyte is systemic. Studies have shown that gene expression or protein produc-
tion related to host defense was evidenced in plant portions distant from those 
inoculated with Klebsiella pneumoniae [18], Rhizobium etli [19], and Pseudomonas 
fluorescens [20].

The resistance induction is also related with the activity of defense enzymes, 
such as phenylalanine ammonia lyase, polyphenol oxidase, superoxide dismutase, 
peroxidase, ascorbate peroxidase, and guaiacol peroxidase. Pseudomonas fluorescens 
induces resistance related to the activity of lipoxygenase, catalase, aminocyclopro-
pane carboxylate oxidase, and phenylalanine ammonia lyase [20]. Pseudomonas 
fluorescens is also capable to induce systemic resistance in plants by producing 
2,4-diacetylphloroglucinol [21].

The vast majority of endophytes are biotrophic [22]. Therefore, it is important 
to consider that when colonization of the plant by biotrophic endophytes begins, 
the salicylic acid (SA) route activates defenses, so endophytes need to be able to 
suppress this defense by specific effectors. The expression of the Ca2+/calmodulin 
kinase enzyme is capable to suppress the pathway of SA [23]. In addition, the 
possibility of recruiting gibberellic acid (GA) reduces the proportion of DELLA 
proteins, altering the salicylic acid and jasmonic acid (JA) signaling [24]. The 
suppression of the SA stimulates JA route precursors and genes, which increases 
resistance to chewing insects and necrotrophic fungi and promotes susceptibility to 
biotrophics [10, 22]. To ensure plant protection against biotrophic fungi and suck-
ing insects, endophytes have the ability to biosynthesize compounds responsible for 
antibiosis; besides they can also control these organisms through mycoparasitism 
and competition.

The endophytes are able to biosynthesize secondary metabolites, which are 
important for plant colonization processes [2] and are toxic to insects, pathogens 
[10], and algae [25]. These compounds are classified as alkaloids (amines and 
amides; indole derivatives), steroids, terpenoids (sesquiterpenes, diterpenes, 
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monoterpenes), isocoumarin derivatives, quinones, flavonoids, phenylpropanoids 
and lignans, peptides, phenol and phenolic acids, aliphatic compounds, and 
chlorinated metabolites [25]. The antagonistic activity of endophytes associated 
with antibiosis is described for different cultures, like potato [26, 27] and turmeric 
rhizome [28].

Alkaloids are an important group of metabolites produced by endophytes; 
some characterized classes are ergot alkaloids, diterpene indole, pyrrolizidines, 
and peramine. These compounds have important biological activity (antitumor, 
antimicrobial), including the reduction of insect performance [10, 13]. The resis-
tance of chickpeas (Cicer arietinum) colonized by endophytic Streptomyces spp. 
against Sclerotium rolfsii is attributed to the production of phenols and flavonoids 
by the endophyte [29]. Nematicide compounds such as 4-vinylphenol, methionine, 
piperine, and palmitic acid were evidenced to have high concentrations in soybean 
colonized by Bacillus simplex [30].

The need for nutritional factors, like carbon, nitrogen, and iron, may also 
promote biological control. Direct parasitism is a fungus-fungus antagonism, 
in which one directly attacks another and utilizes its nutrients [31]. This kind of 
control, independent of a systemic defense response, was observed with the colo-
nization of previously endophyte-free leaves of Theobroma cacao that significantly 
decreases necrosis in the local of inoculation when challenged with Phytophthora sp. 
[32]. Endophyte colonization can directly control a phytopathogen even without 
inducing defense mechanisms such as PR-proteins, like evidenced by the control of 
Trichoderma stromaticum over Moniliophthora perniciosa [33]. A scanning electron 
microscope showed that the Trichoderma endophytes cause deformities in the myce-
lia of Pythium aphanidermatum and Rhizoctonia solani, such as hyphal fragmenta-
tion, perforation, lysis, and mycelial degeneration [28]. A strain of Trichoderma 
harzianum showed in vitro growth contact points that suggest mycoparasitic 
activity against Fusarium solani [34]. Endophytic and epiphytic fungi isolated from 
fruits of organic Olea europaea were able to inhibit mycelial growth, germination, 
and sporulation and cause pathogenic hyphae abnormalities of Colletotrichum 
acutatum, particularly at mycelial contact [35]. In addition, endophytic fungi 
from Pachystachys lutea, mainly Diaporthe sp. perform antagonistic activity against 
Colletotrichum spp. and Fusarium oxysporum, in which contact interactions of the 
endophyte with the pathogen predominated [36].

Competition and direct parasitism require endophyte-pathogen contact, 
but those microorganisms have very little to no direct contact with the plant. 
Because of this, contact mechanisms are not the most important biological control 
pathway [4].

3. Plant growth promoters

Endophytic bacteria promote plant growth directly or indirectly: directly, 
producing phytohormones or enzymes [37, 38] and indirectly, contributing to plant 
nutrient uptake through nitrogen fixation, phosphate solubilization, or iron trans-
formation [39, 40]. For this, the inoculant competes with an adapted indigenous 
microbiota; therefore, for the colonization of plant, some bacterial characteristics 
are important, such as motility and polysaccharide production [41–44].

Ethylene and indole-3-acetic acid (IAA) are phytohormones that are involved 
in almost all aspects of plant growth and development, from seed germination 
to shoot growth, and they control the response of the plant to stress [45, 46]. 
Plant growth is promoted by reducing ethylene levels and increasing IAA. Biotic 
and abiotic stresses result in increased ethylene production in plants, leading to 
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inhibition of root elongation, lateral root development, and root hair formation. 
Plant-associated microorganisms can increase root growth and budding of plants 
by reducing ethylene levels [47]. The endophytic bacteria can produce an enzyme 
called 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which hydrolyzes 
ACC, an ethylene immediate precursor, relieving stress and improving the growth 
of plants under disturbed conditions [42, 48, 49]. An inoculum from Burkholderia 
phytofirmans with the gene responsible for producing mutated ACC deaminase was 
unable to promote root growth of canola. The reintroduction of the ACC deaminase 
gene restored the microorganism’s ability to promote plant growth, highlighting the 
importance of the enzyme in promoting host plant growth [48]. On the other hand, 
the IAA is an auxin, a growth hormone that promotes differential cell elongation 
and functions as the plant growth regulator. Besides being produced by plants, 
IAA may also be produced by root-associated bacteria, such as Enterobacter spp., 
Pseudomonas spp., and Azospirillum spp. [50].

Endophytic bacteria can benefit the host by producing cytokines and gibberel-
lins. Corn endophytic bacteria, Azospirillum lipoferum, produce gibberellin, which 
is important in relieving plant stress [51]. Similarly, extracts of two endophytic 
bacteria from Gynura procumbens, Pseudomonas resinovorans, and Paenibacillus 
polymyxa presented cytokines [52].

Nitrogen is the most important nutrient for plant growth and productivity. 
Although abundant in the atmosphere, it is not available to plants. For this, it 
requires to be transformed by a biological nitrogen fixation (BNF) process in which 
N2 is converted to NH3 by bacteria expressing nitrogenase, such as Burkholderia 
spp., Azoarcus sp., Gluconacetobacter diazotrophicus, Herbaspirillum sp., Azospirillum 
brasilense, and Paenibacillus sp. [53–55]. Nitrogen-fixing endophytes outperform 
rhizosphere microorganisms in this process allowing plants to thrive even in 
nitrogen-limited soil environments, promoting plant health and growth [56]. 
Endophytic nitrogen-fixing bacteria can also increase the buildup and the nitrogen 
fixation rate in plants residing in soils with nitrogen limitation.

Phosphorus is an important micronutrient for the enzymatic reactions of plant 
physiological processes [57]. Although present in large quantities, most of the 
soil phosphorus is insoluble and therefore unavailable to the plant. In addition, 
almost 75% of phosphorus applied as fertilizer forms complexes in the soil, which 
prevents its absorption by the vegetable [58]. The endophytic bacteria can increase 
soil phosphorus availability to plants by solubilizing precipitated phosphates 
through mechanisms of acidification, chelation, ion exchange, and the production 
of organic acids [59]. They can also increase the availability of phosphorus in the 
soil by secreting acid phosphatase, which can mineralize organic phosphorus [60]. 
Furthermore, endophytic bacteria can prevent phosphate adsorption and fixation 
under phosphate-limiting conditions and assimilate solubilized phosphorus [61]. 
Studies show that endophytic populations of cactus, strawberry, sunflower, soy-
bean, and other legumes have the ability to solubilize phosphate [62–64]. A study 
examined the role of phosphate-solubilizing endophytic bacteria in cactus cultiva-
tion and observed that inoculated plants grew well without added nutrients and 
that their growth was comparable to fertilized plants. This indicates that endophytic 
bacteria provide the limiting nutrient to seedlings [65].

Iron is a component of proteins that control physiological processes such as 
respiration and transpiration [66]. Generally, it occurs in the ferric insoluble form, 
unavailable to the plants. The endophytic bacteria produce iron chelators called 
siderophores that may bind to insoluble ferric ions allowing this nutrient uptake by 
plants [66–68]. The action of bacterial-produced siderophores has already been cor-
related with the growth of cultivars such as corn, including shoot and root biomass 
[69], and on tomato development in hydroponic crops [70].



5

Endophytes Potential Use in Crop Production
DOI: http://dx.doi.org/10.5772/intechopen.91721

The ability to promote plant growth by endophytic bacteria may be influenced 
by host genotype [71]. However, many endophytic bacteria can have a wide range 
of hosts, such as B. phytofirmans, which promote growth of Arabidopsis thaliana, 
grapes, corn, potatoes, grass, tomatoes, and wheat [72–74]. Similarly, the bacterial 
genotype also influences the capacity and potential of stimulatory effects over host 
plants. For example, the individual ability of different B. phytofirmans strains to 
promote growth of a single potato cultivar [75] and the plant colonization by dif-
ferent Salmonella enterica isolates were observed [76]. Therefore, colonization and 
growth promotion of plants by endophytic bacteria are active processes controlled 
by genetic factors of both partners.

4. Bioremediators

The prompt development of agriculture has made it possible to increase the 
food supply all over the world. However, the intensification of agricultural activi-
ties brought serious environmental impacts, which not only affect food security 
but also have impacts on socioeconomic aspects. These impacts comprise contribu-
tion to air pollution, impacts on land, waste of water, loss of biological and ecologi-
cal diversity, and perturbation of global biogeochemical cycles. The pollutants 
generated by agricultural activities can affect the global or local scale. An example 
of global-scale agro-environmental problem is the increase in atmospheric concen-
trations of the greenhouse gasses (GHG) and carbon dioxide (CO2) through defor-
estation and nitrous oxide (N2O) arising from crop production. Agriculture is the 
largest water consumer and the main source of nitrate, ammonia, and phosphate 
pollution. These pollutants affect the local scale; some examples are the saliniza-
tion of irrigated lands and the buildup of nitrate fertilizer residues in groundwater 
and surface water [77–81].

Most of the negative environmental impacts generated by the intensification of 
agricultural activities can be reduced or prevented [77]. The use of new technologi-
cal approaches, physicochemical- or biological-based, could remove pollutants from 
nature. Biological-based methods are preferred due to the low cost and because 
they are less harmful to the environment. Atlas and Pramer [82] defined the term 
bioremediation as “the use of biological agents to reclaim soils and waters polluted 
by substances hazardous to human health and/or the environment.” In other words, 
bioremediation is a biological-based method involving the use of living organisms, 
such as plants or microorganisms (bacteria, fungi, and algae), to remove pollutants 
from the environment [83].

Degradation of pollutants by a microorganism demands favorable conditions of 
nutrients, temperature, pH, and oxygen. Bacteria and fungi are commonly used in 
bioremediation strategies, because they are ubiquitous and capable in withstand-
ing different environmental conditions, so they can be used for a broader range of 
application. There are two main mechanisms of bioremediation: biosorption and 
bioaccumulation. Biosorption involves sequestration of pollutants thought bind-
ing onto surfaces, such as the cell wall. Bioaccumulation involves transport and 
accumulation of pollutants in the cells and, in some cases, the transformation of 
pollutants into less harmful compounds [78, 83]. The degradation of target pollut-
ants can also be achieved by employing nonliving subcellular entities of biological 
origin as bioremediators [84]. To overcome the instability due to the rapid decline 
in the inoculated cell amount during its competition with indigenous microorgan-
isms, some authors have proposed solutions. For example, a new strategy for the 
efficient removal of phenylurea herbicides from contaminated soil uses transgenic 
plants. Transgenic Arabidopsis thaliana plants expressing a bacterial N-demethylase 
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(PdmAB) that demethylated isoproturon were constructed. The synergistic rela-
tionship between the transgenic plant and Sphingobium sp., which is capable of 
mineralizing the intermediate of isoproturon excreted from the transgenic plant in 
the rhizosphere, is an innovative strategy of treatment [85].

Endophytes can remove pollutants by employing either the biosorption or the 
bioaccumulation mechanisms [83, 86–90]. They have the ability of decreasing and/
or removing contaminants from soil, water, sediments, and air. Endophytic fungi 
have a great potential to manage toxic pollutants; many studies report those fungi 
to clean up environmental pollutants, such as white rot fungi like Phanerochaete 
chrysosporium that can degrade pesticides, dyes, and xenobiotics [91, 92]. There 
are several examples of endophytic microorganisms with promising applications 
in bioremediation [93]. As an example, symbiotic fungal endophytes from agricul-
tural, coastal, and geothermal native grasses colonized tomato plants and conferred 
disease, salt, and heat tolerance, respectively. Coastal plant endophyte colonized 
rice and conferred salt tolerance. In addition, coastal and geothermal plant endo-
phytes conferred drought tolerance to monocot and eudicot hosts [88]. In legumi-
nous plants including soybean, salinity is correlated with poor yield and reduction 
in plant growth [94]. Basidiomycetous endophytic fungus Porostereum spadiceum 
was reposted to produce six types of gibberellins that reduce the effects of salinity 
in soybean by modulating endogenous phytohormones of the seedlings [95].

Heavy metals are one example of pollutants generated by agricultural activity that 
bioremediators can remove. The use of some pesticides and fertilizers can introduce 
into the environment copper (Cu), and some insecticide and herbicides can contain 
lead (Pb). Fungi have emerged as potential biocatalysts to access heavy metals and 
transform them into less toxic compounds [92, 96]. Endophytic fungi isolated of 
Portulaca oleracea growing in metal-contaminated soils increased the biomass Brassica 
napus. The results indicated that the endophytic fungus strain had the potential to 
remove heavy metals from contaminated water and soils [97]. Bioremediation of 
Pb-contaminated soil occurs by cultivation of Solanum nigrum combined with Mucor 
circinelloides [22]. Endophyte isolates from Phragmites also showed potential to metal 
tolerance and absorption of Cu, Pb, and chromium (Cr) [98].

Phytoremediation is the process that uses plants associated with microorgan-
isms to remediate contaminants from soil, sludge, sediments, wastewater, and 
groundwater [92, 96]. Plants naturally harbor endophytes that may have natural 
tolerance and adaptation toward the pollutants. Studies explored the potential of 
using endophytes associated with plants for removal of pollutants in this process 
of phytoremediation [86, 88, 96, 99]. Plants growing in metal-contaminated soils 
accumulate the pollutant consumed directly or indirectly by humans and animals 
[100, 101]. Besides the human risk, polluted soil slows plant growth and reduces 
the biomass accumulation, compromising some crop productivity [102, 103]. 
Endophytic fungi resistant to different metals, including cadmium, lead, zinc (Zn), 
chromium, manganese (Mn), and cobalt (Co), are associated with plant species 
present in contaminated sites, indicating that these microorganisms have metal 
bioremediation potential [83, 97–99, 104, 105]. Chromium toxicity influences a 
number of processes that can lead to low yield. The accumulation of Cr from indus-
trial activities in soil is a serious threat to some crops [106–108]. To minimize the Cr 
effects from contaminated soils, it is possible to use plants that harbor endophytic 
fungi that act as bioremediators. In experiments, strains of Aspergillus fumigatus, 
Rhizopus sp., Penicillium radicum, and Fusarium proliferatum isolated from healthy 
plants were able to remove Cr from soil and culture media as well as biotransform it 
from highly toxic hexavalent to least toxic trivalent form, instead of simply storing 
it. Roots of Lactuca sativa colonized by those endophytes restored its normal growth 
into Cr-contaminated soil, making them potential candidates as biofertilizer 
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in Cr-contaminated soil. Likewise, Rhizopus sp. and F. proliferatum reduced the 
translocation of Cr to the leaves, making it safer for human consumption [102]. 
Other biofertilizer candidates to be used in fields affected with heavy metals are the 
endophytic Mucor sp. MHR-7 that presented tolerance to chromium, manganese, 
cobalt, copper, and zinc by biotransformation and/or accumulation of those metals 
in its hyphae. Co-cultivation of MHR-7 reduced in 90% the Cr absorption and 
promoted growth in mustard cultivation [103].

Studies reported the use of Mucor sp. in another remediation strategy called 
phytoextraction. Phytoextraction refers to the removal of heavy metal from the 
soil through their uptake by a metal-accumulating plant. One limitation is the long 
growth cycle of those plants. One strategy is to combine plants with endophytes 
that promote stress tolerance to toxicity and high biomass accumulation, increasing 
metal accumulation in plant tissues. Oilseed rape plants combined with Mucor sp. 
strains promoted stress tolerance to Cd and Pb, increasing biomass of plants and 
reducing the concentrations of those metals in the soil [109]. Similar results were 
found using the fungal endophyte Peyronellaea associated with maize under heavy 
metal stress [110], and the Microsphaeropsis sp. strain isolated from Solanum nigrum 
has also been studied for their biosorption capacity of cadmium [111]. Mercury 
volatilization and bioaccumulation of this metal in plant tissues mediated by 
endophytic fungi were demonstrated with Aspergillus sp. A31, Curvularia geniculata 
P1, Lindgomycetaceae P87, and Westerdykella sp. P71 on maize and Aeschynomene 
fluminensis [112].

Similar to metal pollutants, triphenylmethane (TPM) dyes are water-soluble 
organic compounds extensively used in industrial processes and have adverse 
effects on living organisms. TPM is phytotoxic for several cultivated plants, such as 
Sorghum bicolor, Triticum aestivum, Vigna radiata, Lemna minor, and Zea mays [83]. 
A Diaporthe sp. endophyte presented biosorption and biodegradation potential on 
TPM dyes. The microorganism removed TPM dyes through biodegradation and 
biosorption [113]. Other endophytes, Pleurotus ostreatus, Polyporus picipes, and 
Gloeophyllum odoratum, also demonstrate potential to remove TPM dye [114, 115].

5. Conclusion

Endophytic microorganisms are inestimable natural resources for solving prob-
lems in different areas such as human health, veterinary, industrial and ecological 
systems, and agronomy. In contrast to current agricultural practices that degrade 
systems and produce food with high concentrations of various contaminants, 
endophytes are a sustainable alternative to increase crop productivity. For this, they 
can be exploited by the ability to control pests, to promote plant growth, and by the 
bioremediation potential. This is possible because these microorganisms are able to 
induce resistance mechanisms in the host, release compounds with biological activ-
ity, compete for space and nutrients with pathogens, provide nutritional elements 
present in the soil, stimulate the production of phytohormones and cytokines, and 
neutralize the presence of pollutants in the system. Ultimately, bioprospecting and 
the use of endophytes in agriculture are a viable alternative to the need of increased 
food production with quality and sustainably.
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