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Chapter

Supercritical-Fluids
Thermophysical Properties
and Heat Transfer in
Power-Engineering Applications
Igor L. Pioro

Abstract

Researches on specifics of thermophysical properties and heat transfer at
supercritical pressures (SCPs) started as early as the 1930s with the study on
free-convection heat transfer to fluids at a near-critical point. In the 1950s, the
concept of using SC “steam” to increase thermal efficiency of coal-fired thermal
power plants became an attractive option. Germany, USA, the former USSR, and
some other countries extensively studied heat transfer to SC fluids (SCFs) during
the 1950s till the 1980s. This research was primarily focused on bare circular tubes
cooled with SC water (SCW). However, some studies were performed with
modeling fluids such as SC carbon dioxide and refrigerants instead of SCW.
Currently, the use of SC “steam” in coal-fired thermal power plants is the largest
industrial application of fluids at SCPs. Near the end of the 1950s and at the
beginning of the 1960s, several studies were conducted to investigate a possibility of
using SCW as a coolant in nuclear reactors with the objective to increase thermal
efficiency of nuclear power plants (NPPs) equipped with water-cooled reactors.
However, these research activities were abandoned for some time and regained
momentum in the 1990s. In support of the development of SCW-cooled nuclear-
power reactor (SCWR) concepts, first experiments have been started in annular
and various bundle flow geometries. At the same time, more numerical and CFD
studies have been performed in support of our limited knowledge on specifics of
heat transfer at SCPs in various flow geometries. As the first step in this process,
heat transfer to SCW in vertical bare tubes can be investigated as a conservative
approach (in general, heat transfer in fuel bundles will be enhanced with various
types of appendages, that is, grids, end plates, spacers, bearing pads, fins, ribs, etc.).
New experiments in the 1990–2000s were triggered by several reasons: (1)
thermophysical properties of SCW and other SCFs have been updated from the
1950s–1970s, for example, a peak in thermal conductivity in the critical/
pseudocritical points was “officially” introduced in 1990s; (2) experimental tech-
niques have been improved; (3) in SCWRs, various bundle flow geometries will be
used instead of bare-tube geometry; (4) in SC “steam” generators of thermal power
plants, larger diameter tubes/pipes (20–40 mm) are used, however in SCWRs
hydraulic-equivalent diameters of proposed bundles will be within 5–12 mm;
(5) with Research and Development (R&D) of next-generation or Generation-IV
nuclear-power-reactor concepts, new areas of application for SCFs have appeared—
for example, SCP helium was proposed to be used as a reactor coolant, SCP Brayton
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and Rankine cycles with SC carbon dioxide as a working fluid are being developed,
etc. A comparison of thermophysical properties of SCFs with those of subcritical-
pressure fluids showed that SCFs as single-phase fluids have unique properties,
which are close to “liquid-like” behavior below critical or pseudocritical points and
are quite similar to the behavior of “gas-like” substances above these points. A
comparison of selected SCW heat transfer correlations has shown that their results
may differ from one to another by more than 200%. Based on these comparisons, it
became evident that there is a need for reliable, accurate, and wide-range SCW
heat transfer correlation(s) to be developed and verified. Therefore, the
objective of this chapter is to summarize in concise form specifics of supercritical-
fluids thermophysical properties and heat transfer in power-engineering
applications.

Keywords: supercritical water, carbon dioxide, refrigerant,
forced convective heat transfer

1. Introduction

1.1 Historical note on using supercritical fluids (SCFs)

The use of supercritical fluids (SCFs) in various processes is not new and,
actually, is not a human invention. Nature has been processing minerals in aqueous
solutions at near or above the critical point of water for billions of years. In the late
1800s, scientists started to use this natural process in their labs for creating various
crystals. During the last 50–60 years, this process, called hydrothermal processing
(operating parameters: water pressure from 20 to 200 MPa and temperatures from
300 to 500°C), has been widely used in the industrial production of high-quality
single crystals (mainly gem stones) such as sapphire, tourmaline, quartz, titanium
oxide, zircon and others [1].

Also, compressed water, that is, water at a supercritical pressure (SCP), but at a
temperature below Tcr ≈ 374°C, exists in oceans at the depth of�2.2 km and deeper.
If at this depth there is an active underwater volcano with the temperature of a
magma above Tcr of water, conditions for existence of supercritical water (SCW)
can be reached.

The first works devoted to the problem of heat transfer at supercritical pressures
(SCPs) started as early as the 1930s. Schmidt et al. [2] investigated free-convection
heat transfer to fluids at a near-critical point with the application to a new effective
cooling system for turbine blades in jet engines. They found that the free-
convection heat transfer coefficient (HTC) at the near-critical state was quite high,
and decided to use this advantage in single-phase thermosyphons with an interme-
diate working fluid at the near-critical point [3].

In the 1950s, the idea of using SC “steam” (actually, SCW) appeared to be rather
attractive for the Rankine power cycle. The objective was to increase a thermal
efficiency of coal-fired thermal power plants (ThPPs) (see Table 1). This change,
that is, substantially higher operating pressures in the Rankine cycle from subcriti-
cal ones, and, correspondingly to that, higher inlet-turbine temperature up to 625°C,
has allowed increasing of thermal efficiencies from 40–43% to 50–55% (gross) (in
total by 7–15%). Currently, SCP coal-fired thermal power plants (world electricity
generation with coal 38%—the largest source for electricity generation; in India—
77%; China—65%; Germany—37%; and in USA—30%) are the second ones by
thermal efficiencies after gas-fired combined-cycle ThPPs (world electricity
generation with natural gas 23%—second largest source for electricity generation; in
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Russia—59%; UK—44%; Italy—42%; and in USA—34%) [4, 5]. More details on
ThPPs can be found in Pioro and Kirillov [8] and many other sources.

Also, at SCPs there is no liquid-vapor-phase transition; therefore, there is no
such phenomenon as critical heat flux (CHF) or dryout. It is only within a certain
range of parameters a deteriorated heat transfer (DHT) regime may occur. Work in
this area was mainly performed in Germany, USA, former USSR, and some other
countries in the 1950–1980s [9].

1.2 Future applications of SCFs in next-generation nuclear-power reactors
and NPPs

At the end of the 1950s and the beginning of the 1960s, early studies were
conducted to investigate a possibility of using SCW in nuclear reactors. Several
concepts of nuclear reactors using SCW were developed in Great Britain, France,

No. Power plant Gross thermal

efficiency

1 Combined-cycle ThPP (combination of Brayton gas-turbine cycle (fuel—

natural gas or LNG); combustion-products parameters at gas turbine:

Pin ≈ 2.3 MPa and Tin ≈ 1650°C) and Rankine cycle steam-turbine

parameters: Pin ≈ 12.5 MPa and Tin ≈ 585°C (Tcr = 374°C)

Up to 62%

2 SCP coal-fired ThPP (Rankine cycle “steam”-turbine parameters

(see Figure 1): Pin ≈ 23.5–38 MPa (Pcr = 22.064 MPa),Tin ≈ 540‑625°C

(Tcr = 374°C) and steam reheat at: P ≈ 0.25�Pin and Treheat ≈ 540‑625°C)

Up to 55%

3 Subcritical-pressure coal-fired ThPP (older plants; Rankine cycle steam-

turbine parameters (see Figure 2): Pin = 17 MPa (Tsat = 352°C),Tin = 540°C

(Tcr = 374°C), and steam reheat at: P ≈ 0.25�Pin and Treheat = 540°C)

Up to 43%

4 Carbon dioxide-cooled reactor (advanced gas-cooled reactor (AGR)) NPP

(Generation-III) (reactor coolant (carbon dioxide): P = 4 MPa and

T = 290–650°C; Rankine cycle steam-turbine parameters (see Figure 2):

P = 17 MPa (Tsat = 352°C); Tin = 540°C (Tcr = 374°C), and steam reheat at:

P ≈ 0.25�Pin and Tin = 540°C)

Up to 42%

5 Sodium-cooled fast reactor (SFR) (BN-600; BN-800) NPP (reactor coolant

(sodium): P ≈ 0.1 MPa (above sodium level) and Tmax = 550°C; Rankine cycle

steam-turbine parameters (see Figure 3): P = 14 MPa (Tsat = 337°C);

Tin = 505°C (Tcr = 374°C) and steam reheat at: P ≈ 0.25�Pin and Tin = 505°C)

Up to 40%

6 Pressurized water reactor (PWR) NPP (Generation-III+, new reactors)

(reactor coolant (light water): P = 15.5 MPa (Tsat = 345°C) and T = 280‑322°C;

Rankine cycle steam-turbine parameters (see Figure 4): P = 7.8 MPa and

Tin = Tsat = 293°C and steam reheat at Pin ≈ 1 MPa and Tin ≈ 273°C)

Up to 36‑38%

7 Pressurized water reactor (PWR) NPP (Generation-III, current fleet)

(reactor coolant: P = 15.5 MPa (Tsat = 345°C) and T = 292–329°C; Rankine

cycle steam-turbine parameters (see Figure 4): P = 6.9 MPa and

Tin = Tsat = 285°C and steam reheat at Pin ≈ 1 MPa and Tin ≈ 265°C)

Up to 34‑36%

8 Boiling-water-reactor (BWR) or advanced BWR NPP (Generation-III and

III+, current fleet) (Pin = 7.2 MPa and Tin = Tsat=288°C (direct cycle) and

steam reheat at Pin ≈ 1 MPa and Tin ≈ 268°C (see Figure 4))

Up to 34%

9 Pressurized heavy water reactor (PHWR) NPP (Generation-III, current

fleet) (reactor coolant: Pout = 10 MPa (Tsat = 311°C) and T = 260–310°C;

Rankine cycle steam-turbine parameters: P = 4.6 MPa and Tin = Tsat = 259°C

and steam reheat at l Pin ≈ 1 MPa and Tin ≈ 240°C)

Up to 32%

Table 1.
Typical ranges of thermal efficiencies (gross) of modern thermal and nuclear power plants (NPPs) [4, 5]
(for details including schematics and T-s diagrams, see Handbook [6] and Dragunov et al. [7]).
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USA, and former USSR. However, this idea was abandoned for almost 30 years with
the emergence of light water reactors (LWRs), but regained interest in the 1990s
following LWRs maturation ([6, 9–13]).

This interest was triggered by economical considerations, because nuclear power
plants (NPPs) with LWRs (and, especially, with PHWRs) have relatively low ther-
mal efficiencies within the range of 30–36% for Generation-III reactors and up to
37% (38%) for advanced reactors of Generation-III+ (see Table 1) compared to
those of modern ThPPs (up to 62% for combined-cycle plants and up to 55% for
SCP Rankine cycle plants (see Table 1)) [6]. Therefore, NPPs with various designs
of water-cooled reactors at subcritical pressures cannot compete with modern
advanced ThPPs. Also, it should be noted that currently, water-cooled reactors are
the vast majority of nuclear-power reactors in the world [14, 15]: (1) PWRs—

No. Nuclear power plant Gross

eff., %

1 Very high-temperature reactor (VHTR) NPP (reactor coolant—helium (SCF):

P = 7 MPa and Tin/Tout = 640/1000°C; primary power cycle—direct SCP Brayton

helium-gas-turbine cycle; possible back-up—indirect Brayton or combined cycles

(see Figures 5 and 6))

≥55

2 Gas-cooled fast reactor (GFR) or high-temperature reactor (HTR) NPP (reactor

coolant—helium (SCF): P = 9 MPa and Tin/Tout = 490/850°C; primary power

cycle—direct SCP Brayton helium-gas-turbine cycle (see Figure 7); possible

back-up—indirect SCP Brayton or combined cycles (see Figures 8 and 9))

≥50

3 Supercritical water-cooled reactor (SCWR) NPP (one of Canadian concepts; reactor

coolant—SC light water: P = 25 MPa and Tin/Tout = 350/625°C (Tcr = 374°C); direct

cycle; SCP Rankine cycle with high-temperature secondary-steam superheat:

Tout = 625°C; possible back-up–indirect SCP Rankine “steam”-turbine cycle with

high-temperature secondary-steam superheat) (for details of SCP Rankine cycle, see

Table 1 Item No. 2 and Figure 1)

45–50

4 Molten salt reactor (MSR) NPP (reactor coolant—sodium-fluoride salt with

dissolved uranium fuel: Tin/Tout = 700/800°C; primary power cycle—indirect SCP

carbon dioxide Brayton gas-turbine cycle; possible back-up—indirect Rankine

steam-turbine cycle)

�50

5 Lead-cooled fast reactor (LFR) NPP (Russian design BREST-OD-300*: reactor

coolant—liquid lead: P ≈ 0.1 MPa and Tin/Tout = 420/540°C; primary power

cycle—indirect subcritical-pressure Rankine steam cycle: Pin ≈ 17 MPa

(Pcr = 22.064 MPa) and Tin/Tout = 340/505°C (Tcr = 374°C); high-temperature

secondary-steam superheat (in one of the previous designs of BREST-300 NPP

primary power cycle was indirect SCP Rankine “steam” cycle: Pin ≈ 24.5 MPa

(Pcr = 22.064 MPa) and Tin/Tout = 340/520°C (Tcr = 374°C); also, note that power-

conversion cycle in a different LFR designs from other countries is based on SCP

carbon dioxide Brayton gas-turbine cycle

�41–43

6 Sodium-cooled fast reactor (SFR) NPP (Russian design BN-600: reactor coolant—

liquid sodium (primary circuit): P ≈ 0.1 MPa and Tin/Tout = 380/550°C; liquid sodium

(secondary circuit): Tin/Tout = 320/520°C; primary power cycle—indirect Rankine

steam-turbine cycle: Pin ≈ 14.2 MPa (Tsat ≈ 337°C) and Tin max = 505°C (Tcr = 374°C);

secondary-steam superheat: P ≈ 2.45 MPa and Tin/Tout = 246/505°C; possible back-up

in some other countries—indirect SCP carbon dioxide Brayton gas-turbine cycle)

�40

*BREST-OD-300 is Fast Reactor with “NATural safety”-Test-Demonstration in Russian abbreviations
(БРЕСТ-OD-300—Быстрый Реактор с ЕСТественной безопасностью—Опытно –Демонстрационный).

Table 2.
Estimated ranges of thermal efficiencies (gross) of Generation-IV NPP concepts (Generation-IV concepts are
listed according to thermal-efficiency decrease) [6, 16].
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299 units or 68% from the total number of 441 units; (2) BWRs—65 units or 15%;
(3) PHWRs—48 units or 11%; (4) light water, graphite-moderated reactors
(LGRs)—13 units of 3%.

Therefore, six concepts of nuclear-power reactors/NPPs of next generation,
Generation-IV, were proposed (see Table 2), which will have thermal efficiencies
comparable with those of modern thermal power plants. Supercritical water-cooled
reactor (SCWR) is one of these six concepts under development in a number of
countries [6, 17]. Analysis of Generation-IV concepts listed in Table 2 shows that
SCFs, such as helium and water, will be used as reactor coolants, and SCFs such as
helium, nitrogen (or mixture of nitrogen (80%) and helium (20%)), carbon diox-
ide, and water will be used as working fluids (WFs) in power Brayton and Rankine
cycles (critical parameters of selected SCFs are listed in Table 3). However, it
should be mentioned that helium as the reactor coolant and as the working fluid in
Brayton power cycle will be at supercritical conditions, which are far above by
pressure and temperature critical parameters, that is, helium will behave as
compressed gas.

Nowadays, the most widely used SCFs are water, carbon dioxide, and refriger-
ants [9]. Quite often, carbon dioxide and refrigerants are considered as modeling
fluids and used instead of SCW due to significantly lower critical pressures and
temperatures, which decreases the complexity and costs of thermalhydraulic
experiments. However, they can be/will be used as working fluids in new SCP
power cycles: Brayton and Rankine ones [6] (for details, see Table 3).

Also, other applications of SCFs will be discussed in the following chapters and
are listed in Pioro and Duffey [9].

No. Fluid Molar

mass

Tcr Pcr ρcr Application in power engineering at

SCPs

kg/kmol °C MPa kg/m3

1 Carbon dioxide,1

CO2

44.01 30.978 7.3773 467.6 WF in Brayton and Rankine power

cycles (see Figures 5 and 6)

2 Ethanol, C2H6O 46.068 241.56 6.268 273.19 N/A

3 Helium,2 He 4.0026 Reactor coolant in VHTR & GFR (see

Figure 7); WF in Brayton power cycle

(see Figure 7)

4 Methanol, CH3OH 32.042 239.45 8.1035 275.56 N/A

5 Nitrogen, N2 28.013 ‑146.96 3.3958 313.3 WF in Brayton cycle (also, mixture of

N2 (80%) & He (20%) is proposed (see

Figures 8 and 9))

6 R-12, CCl2F2 120.91 111.97 4.1361 565.0 Modeling fluid in thermalhydraulic

tests

7 R-134a, CF3CH2F 102.03 101.06 4.0593 511.9 Modeling fluid in thermalhydraulic

tests

8 Water3, H2O 18.015 373.95 22.064 322.0 WF in Rankine cycle of coal-fired

ThPP; reactor coolant in SCWR; WF in

Rankine power cycle (see Figure 1)

1,2,3Thermodynamics diagrams: P-T and T-s can be found in Handbook [6].
3Thermodynamics diagrams: P-T and T-s are shown in Figure 10.

Table 3.
Critical parameters of selected fluids and gases (based on NIST [25]).
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2. Specifics of thermophysical properties of SCFs

Prior to a general discussion on specifics of forced-convective heat transfer at
critical and supercritical pressures, it is important to define special terms and
expressions used at these conditions [6, 9]. For a better understanding of these

No. Literature

source

Fluid P, MPa T, °C Properties

1 Pioro et al.

[19]

Properties of selected metals, alloys, and diamond

Properties of selected insulating materials

Radiative properties of selected materials

Properties of selected nuclear fuels

Properties of selected gases at atmospheric pressure

Properties of selected cryogenic gases

Properties of selected fluids on saturation line

Properties of selected supercritical fluids

Properties of selected liquid alkali metals

Thermophysical properties of nuclear-reactor coolants

2 Handbook [6] H2O, CO2, He ‑ ‑ T-s diagrams

H2O (BWR, PHWR,

PWR)

7, 11, 15 50‑375 ρ, k, μ, ν, cp, H, Pr, β

H2O (SCW) Pcr, 25, 30, 35,

40

350‑600 ρ, k, μ, ν, cp, H, Pr, β

CO2 (SC CO2) Pcr, 8.4, 10.0,

11.7

0‑165 ρ, k, μ, ν, cp, H, Pr, β

He Pcr and other

pressures

Range of T k, cp, β

Air, Ar, CO2, He, H2, Kr

(gases)

0.1 0‑1000 ρ, k, μ, cp, Pr, β

CO2 (AGR) 4 250‑1000 ρ, k, μ, cp, H, Pr, β

FLiNaK (MSR) 0.1

H2O/SCW (PWR/SCWR) 15.5/25

He (VHTR, GFR) 7, 9

Na, Pb, Pb-Bi (SFR, LFR) 0.1

3 Mann and

Pioro [20]

SC R-134a Pcr, 5, 10, 13,

15

‑100‑175 k, cp, β

4 Gupta et al.

[21]

SCW

SC CO2

SC R-134a (three fluids

on same graph)

25.0

8.4*

4.6*

0:5� 1:6ð Þ T
Tcr

ρ, k, μ, cp, H, Pr

5 Pioro and

Mokry [22]

H2O ‑ ‑ T-s diagram

H2O (SCW) Pcr, 25, 30, 35 350‑600 ρ, k, μ, ν, cp, H, Pr, β

R-12 (SC R-12) Pcr, 4.65 0‑350 ρ, k, μ, ν, cp, H, Pr, β

6 Pioro and

Duffey [9]

R-134a (SC R-134a) Pcr, 4.6 70‑150 ρ, k, μ, ν, cp, H, Pr, β

*Pressures for SC carbon dioxide, R-134a, and R-12 are equivalent for SCW pressure of 25 MPa, based on, so-called,

reduced-pressure scaling: P
Pcr

� �

Fluid
¼ P

Pcr

� �

SCW
.

Table 4.
Selected list of literature sources on thermophysical properties of fluids, gases, and other materials.
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terms and expressions their definitions are listed in Glossary (see below) (also, see
Figures 10–35). Specifics of thermophysical properties at SCPs are described in
Pioro et al. [23]; Handbook [6]; Mann and Pioro [24]; Gupta et al. [25]; Pioro and
Mokry [26]; and Pioro and Duffey [9] (for more details, see Table 4).

Glossary

Compressed fluid is the fluid at a pressure above the critical pressure, but at a
temperature below the critical temperature (see Figure 10).

Critical point (also called a critical state) is the point in which the distinction
between the liquid and gas (or vapor) phases disappears (see Figure 10), that is,
both phases have the same temperature, pressure, and specific volume or density.
The critical point is characterized with the phase-state parameters: Tcr, Pcr and vcr
(or ρcr), which have unique values for each pure substance.

Deteriorated heat transfer (DHT) is characterized with lower values of the
HTC compared to those for normal heat transfer (NHT); and hence, has higher
values of wall temperature within some part of a heated channel (see Figures 12,
13a, 24b, 25b, 27, 31, and 35) or within the entire heated length (see Figure 14b).

Improved heat transfer (IHT) is characterized with higher values of the HTC
compared to those for NHT; and hence, lower values of wall temperature within
some part of a heated channel (see Figures 12, 21, 25, 27b, 33, and 34) or within the
entire heated length. In our opinion, the IHT regime or mode includes peaks or
“humps” in the HTC profile near the critical or pseudocritical points.

Normal heat transfer (NHT) can be characterized in general with HTCs similar
to those of subcritical convective heat transfer far from the critical or pseudocritical
regions, when they are calculated according to the conventional single-phase
Dittus-Boelter-type correlations: Nu = 0.0243 Re0.8Pr0.4 (see Figures 12, 13a, 14a,
21, 24, 25, 27, and 30–34).

Overheated vapor is the vapor at pressures below the critical pressure, and at
temperatures above the saturation temperature, but below the critical temperature
(see Figure 10).

Pseudocritical line is the line,which consists of pseudocritical points (seeFigure 10).
Pseudo-boiling is a physical phenomenon similar to subcritical-pressure nucleate

boiling, which may appear at SCPs. Due to heating of an SCF with a bulk-fluid
temperature below the pseudocritical temperature (high-density fluid, i.e., “liquid-
like”) (see Figures 10, 11, 13b and 15), some layers near the heated surface may
attain temperatures above the pseudocritical temperature (low-density fluid, i.e.,
“gas-like”). This low-density “gas-like” fluid leaves the heated surface in a form of
variable density volumes (bubbles). During the pseudo-boiling, the HTC usually
increases (IHT regime).

Pseudocritical point (characterized with P and Tpc) is the point at a pressure
above the critical pressure and at a temperature (Tpc > Tcr) corresponding to the
maximum value of specific heat at this particular pressure (see
Figures 10, 11, and 13b).

Pseudo-film boiling is a physical phenomenon similar to subcritical-pressure
film boiling, which may appear at SCPs. At pseudo-film boiling, a low-density fluid
(a fluid at temperatures above the pseudocritical temperature, i.e., “gas-like”) pre-
vents a high-density fluid (a fluid at temperatures below the pseudocritical tem-
perature, i.e., “liquid-like”) from contacting (“rewetting”) a heated surface.
Pseudo-film boiling leads to the DHT regime.

Supercritical fluid is the fluid at pressures and temperatures that are higher than
the critical pressure and critical temperature (see Figure 10). However, in the
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present paper, the term supercritical fluid usually includes both terms—supercritical
fluid and compressed fluid.

Supercritical “steam” is actually supercritical water, because at supercritical
pressures fluid is considered as a single-phase substance (see Figure 10). However,
this term is widely (and incorrectly) used in the literature in relation to supercriti-
cal-“steam” generators and turbines.

Figure 1.
T-s diagram of generic SCP Rankine “steam”-turbine power cycle (modern advanced coal-fired thermal power
plants and future SCWR NPPs) [6, 7].

Figure 2.
T-s diagram of generic subcritical-pressure Rankine steam-turbine power cycle (older coal-fired thermal power
plants and AGR Torness NPP) [6, 7].
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Superheated steam is the steam at pressures below the critical pressure, but at
temperatures above the critical temperature (see Figure 10).

Also, profiles of the basic thermophysical properties (density, thermal conduc-
tivity, dynamic viscosity, specific heat and specific enthalpy) and Prandtl number
for four SCFs: water, ethanol, methanol, and carbon dioxide; at critical and one
supercritical pressure, which is 25 MPa for water and the corresponding to that
equivalent pressures for all other SCFs vs. reduced temperature (temperature) are
shown in Figures 15–20.

3. Specifics of forced-convection heat transfer at supercritical pressures

3.1 Vertical bare tubes

Water is the most widely used coolant or working fluid at SCPs. The largest
application of SCW is in SC “steam” generators and turbines, which are widely used
in the thermal power industry worldwide. Currently, upper limits of pressures and
temperatures used in the thermal-power industry are about 30–38 MPa and
600–625°C, respectively (see Table 1). A new direction in SCW application in the
power industry has been the development of SCWR concepts (see Table 2), as part
of the Generation-IV International Forum (GIF) [27] initiative (for details, see
[6, 9–13, 28–30]; and Proceedings of the International Symposiums on SCWRs
(ISSCWR) (selected augmented and revised papers from ISSCWRs have been
published in the ASME Journal of Nuclear Engineering and Radiation Science in
2020, Vol. 6 No. 3; in 2018, Vol. 4, No. 1, and 2016, Vol. 2, No. 1).

Experiments at SCPs are very expensive and require sophisticated equipment
and measuring techniques. Therefore, some of these studies (e.g., heat transfer in
fuel-bundle simulators) are proprietary and, hence, usually are not published in
open literature.

The majority of studies deal with heat transfer and hydraulic resistance of
working fluids, mainly water, carbon dioxide, refrigerants, and helium, in circular
bare tubes [9, 22, 31–34]. A limited number of studies were devoted to heat transfer
and pressure drop in annuli and bundles [9, 10, 35–45].

Figure 3.
T-s diagram of generic subcritical-pressure Rankine steam-turbine power cycle (old coal-fired thermal power
plants and SFR NPPs) [6, 7].
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Figure 4.
T-s diagram of generic subcritical-pressure Rankine saturated-steam-turbine power cycle (PWR and BWR
NPPs) [6, 7].

Figure 5.
Layout of 600-MWth VHTR NPP with SC-CO2 power cycle (based on figure from Bae et al. [17]) [18].
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New experiments in the 1990s–2000s were triggered by several reasons: (1)
thermophysical properties of SCW have been updated from the 1950s–1970s, for
example, a peak in thermal conductivity in the critical/pseudocritical points was
“officially” introduced in the 1990s; (2) experimental techniques have been
improved; (3) in SCWRs various bundle flow geometries will be used instead of
bare-tube geometry; and (4) in SC “steam” generators of thermal power plants
larger diameter tubes/pipes (20–40 mm) are used, however, in SCWRs hydraulic-
equivalent diameters of proposed bundles will be within 5–12 mm.

Accounting that SCW, SC carbon dioxide and SC R-12 are the most widely
used fluids, specifics of heat transfer, including generalized correlations, will
be discussed in this paper. Specifics of heat transfer and pressure drop at
other conditions and/or for other fluids are discussed in the book by Pioro and
Duffey [9].

All primary sources (i.e., all sources found by the authors from a total of 650
references dated mainly from 1950 till beginning of 2006) of heat transfer experi-
mental data for water and carbon dioxide flowing inside circular tubes at supercrit-
ical pressures are listed in the book by Pioro and Duffey [9].

In general, three major heat transfer regimes (for their definitions, see Section 2,
Glossary) can be noticed at critical and supercritical pressures (for details, see
Figures 12, 13a, 14, 21, 24, 25, 27, 30–35):

Figure 6.
T-s diagram for 600-MWth VHTR NPP with SC-CO2 (S-CO2) power cycle (based on Figure 5) [18].
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1.Normal heat transfer;

2. Improved heat transfer; and

3.Deteriorated heat transfer.

Also, two special phenomena (for their definitions, see Section 2, Glossary) may
appear along a heated surface: (1) pseudo-boiling; and (2) pseudo-film boiling.

Figure 7.
Schematic of 600-MWth GFR concept considered initially by GIF with direct Brayton helium cycle (Courtesy of
GIF) (see also [6]).

Figure 8.
Layout of 2400-MWth GFR NPP with He-N2 indirect combined power cycle (based on figure from Anzieu
[23]) [18].
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These heat transfer regimes and special phenomena appear to be due to significant
variations of thermophysical properties near the critical and pseudocritical points
and due to operating conditions.

Therefore, the following conditions can be distinguished at critical and SCPs:

a. Wall and bulk-fluid temperatures are below a pseudocritical temperature
within a part of (see Figure 12) or the entire heated channel (see Figures 14a,
24a, and 30);

Figure 9.
T-s diagrams of 2400-MWth GFR NPP combined power cycle (based on Figure 8) [18].

Figure 10.
Thermodynamics diagrams for water: (a) pressure-temperature and (b) temperature-specific entropy (based
on NIST [25]).
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b. Wall temperature is above, and bulk-fluid temperature is below a
pseudocritical temperature within a part of (see Figures 13a, 31, 34, and 35)
or the entire heated channel (see Figure 14b);

c. Wall temperature and bulk-fluid temperature is above a pseudocritical
temperature within a part of or the entire heated channel (see Figures 12,
13a, 21, 31–35);

d. High heat fluxes (see Figures 13a, 24 and 25);

e. Entrance region (see Figures 12, 13a, 32, and 34);

f. Upward and downward flows;

g. Horizontal flows; and

h. Effect of gravitational forces at lower mass fluxes; etc.

All these conditions can affect SC heat transfer.
Figure 13b shows bulk-fluid-temperature and thermophysical-properties (ther-

mal conductivity, dynamic viscosity, specific heat, and Prandtl number) profiles
along the heated length of a vertical bare circular tube (operating conditions in this
figure correspond to those in Figure 13a).

Some researchers have suggested that variations in thermophysical properties
near critical and pseudocritical points result in the maximum value of HTC. Thus,
Yamagata et al. [46] found that for SCW flowing in vertical and horizontal tubes,
the HTC increases significantly within the pseudocritical region (Figure 21). The
magnitude of the peak in HTC decreases with increasing heat flux and pressure. The
maximum HTC values correspond to a bulk-fluid enthalpy, which is slightly less
than the pseudocritical bulk-fluid enthalpy.

Figure 11.
Profiles of selected thermophysical properties (density, specific heat, thermal conductivity, and dynamic
viscosity) vs. temperature for SCW at pressure of 24.0 MPa (based on NIST [25]).
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Figure 13.
(a) Temperature and HTC profiles along heated length of vertical bare tube with upward flow of SCW
(data by Kirillov et al. [26]): D = 10 mm; Lh = 4 m; points—experimental data; curves—calculated data.
Uncertainties of primary parameters are listed in Table 5; and (b) temperature and thermophysical-properties
profiles along heated length of vertical tube: operating conditions in this figure correspond to those in (a);
and thermophysical properties based on bulk-fluid temperature. Profiles of density, specific heat, thermal
conductivity, and dynamic viscosity vs. temperature for SCW at pressure of 24.0 MPa are shown in Figure 11.

Figure 12.
Temperature and HTC profiles along heated length of vertical bare tube with upward flow of SCW (data by
Kirillov et al. [26]): D = 10 mm; Lh = 4 m; qdht = 316 kW/m2 at G = 503 kg/m2s; points—experimental data;
curves—calculated data; curve for HTC is calculated through Dittus-Boelter correlation (Eq. (1)). Profiles of
density, specific heat, thermal conductivity, and dynamic viscosity vs. temperature for SCW at pressure of
24.0 MPa are shown in Figure 11. Uncertainties of primary parameters are listed in Table 5.
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3.2 Vertical annular channel, and three- and seven-rod bundles cooled
with SCW

In future SCWRs themain flow geometry will be bundles of various designs [6, 10].
Therefore, a limited number of experiments have been performed in simplified
bundle simulators cooled with SCW and heated with an electrical current [10, 35–44].

Figure 15.
Density profiles vs. reduced temperature and temperature for water, carbon dioxide, ethanol, and methanol
(based on NIST [25]) (prepared by D. Mann): (a) at critical pressures; and (b) at 25 MPa for water and
equivalent pressures for other SCFs (based on reduced-pressure scaling (for details, see Table 4 and [21])).

Figure 14.
Profiles of bulk-fluid and inside-wall temperatures, and HTC along heated length of vertical bare tube with
upward flow of SCW at various heat fluxes: (a) q = 944 kW/m2; Tb in = 313°C (entrance region can be
identified within Lh = 0–150 mm) and (b) q = 2079 kW/m2; Tb in = 308°C (data by Razumovskiy et al.). For
both graphs, qdht = 1575 kW/m2 at G = 2193 kg/m2s (based on Eq. (5) [51]: P = 23.5 MPa; G = 2193 kg/m2s;
and. Points—experimental data; curves—calculated data; curves for HTC and Tw are calculated through
Dittus-Boelter correlation (Eq. (1)). Uncertainties of primary parameters are similar to those listed in Table 6.
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Figure 16.
Thermal-conductivity profiles vs. reduced temperature and temperature for water, carbon dioxide, ethanol,
and methanol (based on NIST [25]) (prepared by D. Mann): (a) at critical pressures; and (b) at 25 MPa for
water and equivalent pressures for other SCFs (based on reduced-pressure scaling (for details, see Table 4 and
[21])).

Figure 17.
Dynamic-viscosity profiles vs. reduced temperature and temperature for water, carbon dioxide, ethanol, and
methanol (based on NIST [25]) (prepared by D. Mann): (a) at critical pressures; and (b) at 25 MPa for
water and equivalent pressures for other SCFs (based on reduced-pressure scaling (for details, see Table 4 and
[21])).
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Figure 18.
Specific-heat profiles vs. reduced temperature and temperature for water, carbon dioxide, ethanol, and
methanol (based on NIST [25]) (prepared by D. Mann): (a) at critical pressures; and (b) at 25 MPa for
water and equivalent pressures for other SCFs (based on reduced-pressure scaling (for details, see Table 4 and
[21])).

Figure 19.
Specific-enthalpy profiles vs. reduced temperature and temperature for water, carbon dioxide, ethanol, and
methanol (based on NIST [25]) (prepared by D. Mann): (a) at critical pressures; and (b) at 25 MPa for
water and equivalent pressures for other SCFs (based on reduced-pressure scaling (for details, see Table 4 and
[21])).
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Figure 20.
Prandtl-Number profiles vs. reduced temperature and temperature for water, carbon dioxide, ethanol, and
methanol (based on NIST [25]) (prepared by D. Mann): (a) at critical pressures; and (b) at 25 MPa for
water and equivalent pressures for other SCFs (based on reduced-pressure scaling (for details, see Table 4 and
[21])).

Figure 21.
Heat transfer coefficient vs. bulk-fluid enthalpy in vertical tube with upward flow of SCW at various heat
fluxes (data from Yamagata et al. [46]).
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An annulus or a one-rod (single-rod) bundle is the simplest bundle geometry
(see Figures 22a and 23), and Figure 24 shows profiles of bulk-fluid and wall temper-
atures, and HTC along heated length of vertical annular channel (one-rod bundle).
Figures 22b and 23 show three-rod-bundle flow geometry, and Figure 25 shows pro-
files of bulk-fluid and wall temperatures, and HTC along heated length of vertical
three-rod bundle. Figure 26 shows seven-rod-bundle flow geometry, and Figure 27
shows profiles of bulk-fluid andwall temperatures, andHTC along heated length of the
vertical seven-rod bundle.

Analysis of data in Figures 25b and 27b shows that all three HT regimes, which
were noticed in bare circular tubes, are also possible in annuli and bundle flow
geometries. Figures 24 and 25 show a comparison between the HTC experimental
data obtained in annulus and three-rod bundle with those calculated through the
Dittus-Boelter correlation (Eq. (1)). The comparison showed that, in general,
there is no significant difference between calculated HTC values and experimental
ones. This finding means that in spite of the presence of rod(s) with four helical
ribs in SCW flow, which can be considered as an HT enhancement surface(s),
there is no significant increase in HTC. However, when qdht values reached in
SCW-cooled annulus and 3- and seven-rod bundles were compared to those
obtained in bare tubes, it was found that qdht in bare tubes were 1.6–1.8 times lower
(see Table 7).

Figure 22.
3-D image of vertical annular channel (a) and three-rod bundle (b) cooled with upward flow of SCW (for
other details, see Figure 23) [35]: heated rods equipped with four helical ribs.

Figure 23.
Radial cross-sections of annular channel (single rod) and three-rod bundle (for other details, see Figure 22)
[35]: heated rods equipped with four helical ribs; all dimensions in mm; and Ukrainian stainless steel has been
used for heated rods, by content and other parameters, this steel is very close to those of SS-304.
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3.3 Vertical seven-rod bundle cooled with SC R-12

Figures 28 and 29 show a seven-rod bundle test section, which can be consid-
ered as a bare bundle, and Figures 30 and 31 show profiles of bulk-fluid and wall
temperatures, and HTC vs. heated length of the central rod at three circumferential
locations. Analysis of Figures 30 and 31 shows that we also have here all three HT

Figure 24.
Profiles of bulk-fluid and wall temperatures, and HTC along heated length of vertical annular channel
(one-rod bundle; rod with four helical ribs) cooled with upward flow of SCW ([36])—P = 22.6 MPa and
G = 2000 kg/m2s (bare tube qdht = 1431 kW/m2 (based on Eq. (5)): (a) qave = 2.244 MW/m2 and
Tin = 210°C; and (b) qave = 2.547 MW/m2 and Tin = 214°C). For details of test section, see Figure 23.
Points are experimental data; curves are calculated data; curves for HTC and Tw are calculated through
Dittus-Boelter correlation (Eq. (1)). Uncertainties of primary parameters are listed in Table 6.

Figure 25.
Profiles of bulk-fluid and wall temperatures, and HTC along heated length of vertical annular channel
(three-rod bundle; each rods with 4 helical ribs) cooled with upward flow of SCW ([36])—P = 27.5 MPa;
qave = 3.07 MW/m2; G = 1500 kg/m2s (bare tube qdht = 1059 kW/m2 (based on Eq. (5)): (a) Tin = 166°C
and (b) Tin = 212°C. Bare tube qdht = 1431 kW/m2 at G = 2000 kg/m2s (based on Eq. (5)); for details of test
section, see Figure 23). Points are experimental data; curves are calculated data; curves for HTC and Tw are
calculated through Dittus-Boelter correlation (Eq. (5)). Uncertainties of primary parameters are listed in
Table 6.
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regimes plus sometimes quite significant differences in local HTC values and wall
temperatures around the central rod circumference.

4. Practical prediction methods for forced-convection heat transfer at
supercritical pressures

4.1 Supercritical water (SCW)

Unfortunately, satisfactory analytical methods for practical prediction of forced-
convection heat transfer at SCPs have not yet been developed due to the difficulty
in dealing with steep property variations, especially, in turbulent flows and at high
heat fluxes [10, 48]. Therefore, generalized correlations based on experimental data
are used for HTC calculations at SCPs.

There are numerous correlations for convective heat transfer in circular tubes at
SCPs (for details, see in Pioro and Duffey [9]). However, an analysis of these
correlations has shown that they are more or less accurate only within the particular

Figure 27.
Profiles of bulk-fluid and wall temperatures, and HTC vs. heated length; vertical seven-rod bundle (see Figure 26)
cooled with upward flow of SCW [42]: P = 22.6 MPa. Uncertainties of primary parameters are listed in Table 6.
(a) G = 1000 kg/m2s; qave = 1.29 MW/m2 (bare tube qdht = 0.69 MW/m2); Tin = 178ºC; and central and
peripheral rods; (b) G = 1000; qave = 1.29 MW/m2 (bare tube qdht = 0.69 MW/m2); Tin = 178ºC; and
G = 800 kg/m2s; qave = 1.18 MW/m2 (bare tube qdht = 0.54 MW/m2); Tin = 210ºC; and central rod.

Figure 26.
3-D view (a) and cross-sectional view of vertical seven-rod bundle (b) cooled with upward flow of SCW
[41, 42]: heated rods equipped with four helical ribs; all dimensions in mm; and Ukrainian stainless steel has
been used for heated rods, by content and other parameters this steel is very close to those of SS-304.
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dataset, which was used to derive the correlation, but show a significant deviation
in predicting other experimental data. Therefore, only selected correlations are
considered below.

In general, many of these correlations are based on the conventional Dittus-
Boelter-type correlation (see Eq. (1)) in which the “regular” specific heat (i.e.,
based on bulk-fluid temperature) is replaced with the cross-sectional averaged

specific heat within the range of (Tw � Tb);
Hw�Hb

Tw�Tb

� �

, J/kg K. Also, additional terms,

such as: kb
kw

� �k
; μb

μw

� �m
; ρb

ρw

� �n
; etc., can be added into correlations to account for

significant variations in thermophysical properties within a cross-section due to a
nonuniform temperature profile, that is, due to heat flux.

It should be noted that usually generalized correlations, which contain fluid
properties at a wall temperature, require iterations to be solved, because there are
two unknowns: (1) HTC and (2) the corresponding wall temperature. Therefore,
the initial wall temperature value at which fluid properties will be estimated should
be “guessed” to start iterations.

The most widely used heat transfer correlation at subcritical pressures for forced
convection is the Dittus-Boelter [49] correlation. In 1942, McAdams [50] proposed
to use the Dittus-Boelter correlation in the following form, for forced-convective
heat transfer in turbulent flows:

Figure 28.
Spacer grid locations and dimensions (all dimensions are in mm) [43].
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Nub ¼ 0:0243 Re 0:8
b Pr0:4b (1).

However, it was noted that Eq. (1) might produce unrealistic results at SCPs
within some flow conditions (see Figure 12), especially, near the critical and
pseudocritical points, because it is very sensitive to properties variations.

In general, experimental HTC values show just a moderate increase within the
pseudocritical region. This increase depends on mass flux and heat flux: higher heat
flux—less increase. Thus, the bulk-fluid temperature might not be the best charac-
teristic temperature at which all thermophysical properties should be evaluated.
Therefore, the cross-sectional averaged Prandtl number, which accounts for
thermophysical-properties variations within a cross-section due to heat flux, was
proposed to be used in many SC HT correlations instead of the regular Prandtl
number. Nevertheless, this classical correlation (Eq. (1)) was used extensively as a
basis for various SC HT correlations [9].

The majority of empirical correlations were proposed in the 1960s–1970s [9],
when experimental techniques were not at the same level (i.e., advanced level) as
they are today. Also, thermophysical properties of SCW have been updated since

Figure 29.
Photo of central part of 7-element bundle with spacer grid [43].
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that time (for example, a peak in thermal conductivity in critical and pseudocritical
points within a range of pressures from 22.1 to 25 MPa for water was not officially
recognized until the 1990s).

Therefore, new correlations within the SCWRs operating range, were developed
and evaluated by I. Pioro with his students (mainly, by S. Mokry et al. (bulk-fluid-
temperature approach) and S. Gupta et al. (wall temperature approach)) using the

Figure 30.
Bulk-fluid and wall temperatures, and HTC profiles along heated length of vertical bare 7-element bundle
(Dhy = 4.7 mm) cooled with upward flow of SC R-12 [43, 44]: Run 3: Pin = 4.65 MPa; G = 508 kg/m2s;
qave = 19.4 kW/m2, and Tin = 74°C.
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best SCW dataset by P.L. Kirillov and his co-workers and adding smaller datasets by
other researchers:

1.Pioro-Mokry correlation (bulk-fluid-temperature approach) [51, 52]:

Figure 31.
Bulk-fluid and wall temperatures, and HTC profiles along heated length of vertical bare 7-element bundle
(Dhy = 4.7 mm) cooled with upward glow of SC R-12 [43, 44]: Run 7: Pin = 4.64 MPa; G = 517 kg/m2s;
qave = 33.4 kW/m2, and Tin = 112°C.
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Nub ¼ 0:0061 Re 0:904
b Prb

0:684 ρw

ρb

� �0:564

: (2)

The Pioro-Mokry correlation (Eq. (2)) was verified within the following operat-
ing conditions (only for NHT and IHT regimes (see Figures 32 and 33), but not for
the DHT regime): SCW, upward flow, vertical bare circular tubes with inside
diameters of 3–38 mm, pressure—22.8–29.4 MPa, mass flux—200–3000 kg/m2s,
and heat flux—70–1250 kW/m2. All thermophysical properties of SCW were calcu-
lated according to NIST REFPROP software [25]. This correlation has accuracy of
�25% for HTCs and �15 for wall temperatures (Figure 34). Eventually, this
nondimensional correlation can be also used for other SCFs. However, its accuracy
can be less or even significantly less in these cases.

2.Pioro-Gupta correlation (wall temperature approach) [53]:

Nuw ¼ 0:0033 Re0:941w Prw
0:764 μw

μb

� �0:398
ρw

ρb

� �0:156

(3)

Eq. (3) has an uncertainty of about �25% for HTC values and about �15% for
calculated wall temperatures within the same ranges as those for Eq. (2). Also, it was
decided to add an entrance effect to make this correlation even more accurate. This
entrance effect was modeled by an exponentially-decreasing term as shown below:

Nuw ¼ Nuw 1þ exp �
x

24D

� �h i0:3
, (4)

Figure 32.
Temperature and HTC profiles along 4-m circular tube (D = 10 mm) with upward flow of SCW (data by
Kirillov et al. [26]) [54]: Pin ≈ 24 MPa, G = 500 kg/m2s; qave = 287 kW/m2; comparison of calculated HTC
values through the “proposed correlation”—Eq. (2) with experimental data within Normal Heat Transfer
(NHT) regime.
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where, Nuw is calculated using Eq. (3). It should be noted that this HT correla-
tion is also intended only for NHT and IHT regimes.

The following empirical correlation was proposed by I. Pioro and S. Mokry for
calculating the minimum heat flux at which the DHT regime appears in vertical
bare circular tubes:

Figure 34.
Wall temperature and HTC profiles along vertical circular tube (D = 8 mm and L = 2.208 m) with upward
flow of SC CO2 (data by I. Pioro): P = 8.8 MPa; G = 940 kg/m2s; q = 225 kW/m2, and Tin = 30°C.

Figure 33.
Temperature and HTC profiles along circular tube (D = 7.5 mm) with upward flow of SCW (data by
Yamagata et al. [46]) [54]: Pin = 24.5 MPa; G = 1260 kg/m2s; qave = 233 kW/m2; comparison of calculated
HTC values through the “proposed correlation”—Eq. (2) with experimental data within normal and improved
heat transfer (NHT and IHT) regimes.
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Pioro-Mokry correlation for qdht [51]:

qdht ¼ �58:97 þ 0:745 � G, kW=m2: (5)

Correlation (Eq. (5)) is valid within the following range of experimental param-
eters: SCW, upward flow, vertical bare tube with inside diameter 10 mm, pressure
24 MPa, mass flux 200–1500 kg/m2s, and bulk-fluid inlet temperature 320–350°C.
Uncertainty is about �15% for the DHT heat flux.

Wang et al. [33] have evaluated 15 qdht correlations for SCW, and they have
concluded that Pioro-Mokry correlation (Eq. (5)) “may be used for preliminary
estimations.”

A recent study was conducted by Zahlan et al. [55, 56] in order to develop a heat
transfer look-up table for the critical/SCPs. An extensive literature review was
conducted, which included 28 datasets and 6663 trans-critical heat transfer data
(Figure 35). Tables 8 and 9 list results from this study in the form of the overall-
weighted average and root-mean-square (RMS) errors: (a) within three SC sub-
regions; and (b) for subcritical liquid and superheated steam. Many of the correla-
tions listed in these tables can be found in Zahlan et al. [55, 56] and Pioro and
Duffey [9]. In their conclusions, Zahlan et al. [55, 56] determined that within the SC
region, the latest correlation by Pioro-Mokry [51] (Eq. (2)) showed the best

Figure 35.
Wall temperature and HTC profiles along vertical circular tube (D = 8 mm and L = 2.208 m) with upward
flow of SC CO2 (data by I. Pioro): P = 8.8 MPa; G = 2000 kg/m2s; q = 428 kW/m2, and Tin = 29°C.

Parameters Uncertainty

Test-section power �1.0%

Inlet pressure �0.25%

Wall temperature �3.0%

Mass-flow rate �1.5%

Heat loss ≤3.0%

Table 5.
Uncertainties of primary parameters [51].
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prediction for the data within all three sub-regions investigated (based on RMS
error) (see Table 8). Also, the Pioro-Mokry correlation showed quite good pre-
dictions for subcritical-pressure water and superheated steam compared to other
several correlations (see Table 9). Also, it was concluded that Pioro-Gupta correla-
tion (Eq. (3)) was quite close by RMS errors to the Pioro-Mokry correlation.

Chen et al. [57] has also concluded that the Pioro-Mokry correlation for SCWHT
“performs best” compared to other 14 correlations.

4.2 Supercritical carbon dioxide

The following correlation was proposed by S. Gupta (an MASc student of I.
Pioro) [21] for SC carbon dioxide flowing inside vertical bare tubes:

Nuw ¼ 0:0038Re0:957w Prw
�0:14 ρw

ρb

� �0:84 kw
kb

� ��0:75
μw

μb

� ��0:22

(6)

Uncertainties associated with this correlation are �30% for HTC values
and � 20% for calculated wall temperatures (see Figures 36 and 37). Ranges of
parameters for the dataset used to develop Eq. (6) are listed in Table 10.

Table 11 list mean and root-mean square (RMS) errors in HTC and Tw for
proposed correlations using equations shown below:

It was also decided to develop the qdht correlation for SC carbon dioxide based on
the dataset obtained by I. Pioro in vertical bare tube with upward flow, which
ranges are listed in Table 10 [58]. Therefore, based on the identified 41 cases of

Parameters Maximum uncertainty

Measured Inlet pressure �0.2%

Bulk-fluid temperature �3.4%

Wall temperature �3.2%

Calculated Mass-flow rate �2.3%

Heat flux �3.5%

HTC �12.7%

Heat loss ≤3.4%

Table 6.
Maximum uncertainties of measured and calculated parameters [35–40].

No. Test section Operating conditions qdht, MW/m2 Increase in qdht value

compared to that of

bare tube

1 Bare tube P = 24.1 MPa and G = 2000 kg/m2s 1.43 1.8

2 Annulus P = 22.6 MPa and G = 2000 kg/m2s 2.55

3 Bare tube P = 24.1 MPa and G = 2700 kg/m2s 1.95 1.6

4 Three-rod bundle P = 22.6 MPa and G = 2700 kg/m2s 3.20

5 Bare tube P = 24.5 MPa and G = 800 kg/m2s 0.54 1.8

6 Seven-rod bundle P = 24.5 MPa and G = 800 kg/m2s 0.96

Table 7.
Comparison of DHT values in bare-tube, annular channel (one-rod), and three-rod and seven-rod bundles
[35, 42].
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No. Correlation Regions

Liquid-like Gas-like Critical or pseudocritical

Errors, %

Ave. RMS Ave. RMS Ave. RMS

1 Dittus-Boelter [49] 24 44 90 127 ‑ ‑

2 Sieder and Tate [59] 46 65 97 132 ‑ ‑

3 Bishop et al. [60] 5 28 5 20 23 31

4 Swenson et al. [61] 1 31 ‑16 21 4 23

5 Krasnoshchekov et al. [62] 18 40 ‑30 32 24 65

6 Hadaller and Banerjee [63] 34 53 14 24 ‑ ‑

7 Gnielinski [64] 10 36 99 139 ‑ ‑

8 Watts and Chou [65], NHT 6 30 ‑6 21 11 28

9 Watts and Chou [65], DHT 2 26 9 24 17 30

10 Griem [66] 2 28 11 28 9 35

11 Koshizuka and Oka [67] 26 47 27 54 39 83

12 Jackson [68] 15 36 15 32 30 49

13 Mokry et al. [51, 52] ‑5 26 ‑9 18 ‑1 17

14 Kuang et al. [69] ‑6 27 10 24 ‑3 26

15 Cheng et al. [70] 4 30 2 28 21 85

16 Gupta et al. [53] ‑26 33 ‑12 20 ‑1 18

In bold—minimum values.

Table 8.
Overall-weighted average and RMS errors within three supercritical sub-regions (correlations are listed
according to the year of publication, that is, from early ones to the latest ones) [55, 56].

No. Correlation Subcritical liquid Superheated steam

Error, %

Ave. RMS Ave. RMS

1 Dittus and Boelter [49] 10 23 75 127

2 Sieder and Tate [59] 28 37 84 138

3 Hadaller and Banerjee [63] 27 36 19 34

4 Gnielinski [64] ‑4 18 80 130

5 Mokry et al. [51] ‑1 19 ‑5 20

In bold—minimum values.

Table 9.
Overall average and RMS error within subcritical region [55, 56].

P, MPa Tin, °C Tout, °C Tw, °C q, kW/m2 G, kg/m2s

7.57‑8.8 20‑40 29‑136 29‑224 9.3‑616.6 706‑3169

Table 10.
Ranges of parameters of dataset used to develop Eq. (6).
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Figure 36.
HTC and Tw variations along L = 2.208 m circular tube (D = 8 mm): q = 90.7 kW/m2 P = 8.4 MPa, and G =
1608 kg/m2s. Wall Approach Corr. is Eq. (6) and Mokry et al. Corr. – Eq. (2).

Figure 37.
HTC and Tw variations along L = 2.208 m circular tube (D = 8 mm): q = 161.2 kW/m2 P = 8.8 MPa, and G =
2000 kg/m2s. Wall Approach Corr. is Eq. (6) and Mokry et al. Corr. – Eq. (2).
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DHT within the SC carbon dioxide dataset, the following correlation for the mini-
mal heat flux at which deterioration occurs was proposed:

qmin ¼ 66:81þ 0:18 � G (7)

In general, the total pressure drop for forced convection inside a channel can
be calculated according to expressions listed in Pioro andDuffey [9] andPioro et al. [71].

5. Conclusions

Supercritical fluids are used quite intensively in various industries. Therefore,
understanding specifics of thermophysical properties, heat transfer, and pressure
drop in various flow geometries at supercritical pressures is an important task.

In general, three major heat transfer regimes were noticed at critical and super-
critical pressures in various flow geometries (vertical bare tubes, annulus, three-
and seven-rod bundles) and several SCFs (SCW, SC carbon dioxide, and SC R-12):
(1) normal heat transfer; (2) improved heat transfer; and (3) deteriorated heat
transfer. Also, two special phenomena may appear along a heated channel: (1)
pseudo-boiling; and (2) pseudo-film boiling. These heat transfer regimes and spe-
cial phenomena appear to be due to significant variations of thermophysical prop-
erties near the critical and pseudocritical points and due to operating conditions.

Comparison of heat transfer-coefficient values obtained in bare circular tubes
with those obtained in annulus (one-rod bundle)/three-rod bundle (rod(s)
equipped with four helical ribs) shows that there are almost no differences between
these values. However, the minimal heat flux at which deterioration occurs (qdht) in
annulus, and three- and seven-rod bundles are in 1.6–1.8 times higher compared to
that recorded in bare tubes.

The current analysis of a number of well-known heat transfer correlations for
supercritical fluids showed that the Dittus-Boelter correlation [49] significantly
overestimates experimental HTC values within the pseudocritical range. The Bishop
et al. [60] and Jackson [68] correlations tend also to deviate substantially from the
experimental data within the pseudocritical range. The Swenson et al. [61] correla-
tion provided a better fit for the experimental data than the previous three correla-
tions within some flow conditions, but does not follow up closely the experimental
data within others.

Therefore, new correlations were developed by Pioro with his students Mokry et al.
[51] (bulk-fluid-temperature approach) and Gupta et al. [21] (wall temperature
approach), which showed the best fit for the experimental data within a wide range of

Errors in HTC (for the reference dataset), %

Mean Error RMS

Proposed new correlation (Tb approach) 0.9% 22.4%

Proposed new correlation (Tfilm approach) 0.2% 21.7%

Proposed new correlation (Tw approach—Eq. (6)) 0.8% 20.3%

Swenson et al. [61] correlation 89% 132%

Mokry et al. [51] correlation for SCW 68% 123%

Gupta et al. [53] correlation for SCW 78% 130%

Table 11.
Mean and RMS errors for HTC values of proposed correlations (values in bold represent minimum errors) [21].
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operating conditions. These correlations have uncertainties of about �25% for HTC
values and about�15% for calculated wall temperature. Also, based on an independent
study performed by Zahlan et al. [55, 56], Pioro-Mokry correlation (given as Eq. (2)) is
the best for superheated steam compared to other well-known correlations. Also, this
correlation showed quite good predictions for subcritical-pressure fluids.
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Nomenclature

A area, m2

cp specific heat at constant pressure, J/kg K
cp averaged specific heat within the range of

(Tw – Tb);
Hw�Hb

Tw�Tb

� �

, J/kg K

D inside diameter, m
G mass flux, kg/m2s; m

Afl

� �

H specific enthalpy, J/kg
h heat transfer coefficient, W/m2K
k thermal conductivity, W/m K
L heated length, m
m mass-flow rate, kg/s; ρ � Vð Þ
P, p pressure, Pa
Q heat transfer rate, W
q heat flux, W/m2; Q

Ah

� �

s specific entropy, J/kg K
T, t temperature, °C
Tfilm film temperature, °C; TwþTb

2

� �

V volume-flow rate, m3/s
v specific volume, m3/kg
x axial coordinate, m

Greek letters

α thermal diffusivity, m2/s; k
cp� ρ

� �

β volumetric expansion coefficient, 1/K
Δ difference
η efficiency, %
μ dynamic viscosity, Pa�s
ρ density, kg/m3

υ kinematic viscosity, m2/s; μ

ρ

� �

Non-dimensional numbers

Nu Nusselt number; h �D
k

� �

Pr Prandtl number;
μ �cp
k

� �

¼ υ
α

� �
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Pr cross-sectional average Prandtl number within the

range of (Tw – Tb);
μ �cp
k

� �

Re Reynolds number; G �D
μ

� �

Subscripts or superscripts

ave. average
b bulk
cal calculated
corr. correlation
cr critical
dht deteriorated heat transfer
fl flow
h heated
hy hydraulic-equivalent
in inlet
max maximum
min minimum
out outlet
pc pseudocritical
sat saturation
th thermal
w wall

Abbreviations and acronyms

AECL Atomic Energy of Canada Limited
AGR advanced gas-cooled reactor
ASME American Society of Mechanical Engineers
Ave. average
BN fast sodium (reactor; in Russian abbreviations)
BWR boiling water reactor
CHF critical heat flux
CFD computational fluid dynamics
corr. correlation
CRL Chalk River Laboratotries (AECL)
DHT deteriorated heat transfer
GFR Gas-cooled fast reactor
GIF Generation-IV International Forum
HT heat transfer
HTC heat transfer coefficient
HTR high-temperature reactor
HPT high-pressure turbine
IAEA International Atomic Energy Agency
ID inside diameter
IHT improved heat transfer
IHX intermediate heat exchanger
LFR lead-cooled fast reactor
LGR light-water-cooled graphite-moderated reactor
LNG liquified natural gas
LPT low-pressure turbine
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LWR light water reactor
MSR molten salt reactor
N/A not applicable
NIST National Institute of Standards and Technology (USA)
NHT normal heat transfer
NPP nuclear power plant
OD outside diameter
PHWR pressurized heavy water reactor
PWR pressurized water reactor
REFPROP REFerence PROPerties
RMS root-mean square (error)
S-CO2 (SC-CO2) supercritical carbon dioxide
SC supercritical
SCF supercritical fluid
SCP supercritical pressure
SCW supercritical water
SCWR supercritical water-cooled reactor
SFR sodium-cooled fast reactor
SS stainless steel
TC thermocouple
TECDOC TEChnical DOCument
ThPP thermal power plant
UK United Kingdom
USA United States of America
USSR Union of Soviet Socialist Republics
VHTR very high temperature reactor
WF working fluid
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