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Chapter

The Role of Extracellular Vesicles
in the Progression of ALS and
Their Potential as Biomarkers
and Therapeutic Agents with
Which to Combat the Disease
Changho Chun, Alec S.T. Smith, Mark Bothwell

and David L. Mack

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that
impairs motor neuron function, leading to severe muscular atrophy. The non-cell
autonomous and heterogeneous nature of the disease has so far hindered attempts
to define ALS etiology, leaving the disease incurable and without effective treat-
ments. Recent studies have focused on the pathologic role of intercellular commu-
nication between nerve cells to further our understanding of ALS pathophysiology.
In this chapter, we summarize recent works investigating the role of extracellular
vesicles (EVs) as a means of cellular crosstalk for ALS disease propagation, diagno-
sis, and treatment. There is growing evidence that EVs secreted by the majority of
mammalian cells serve as effective biomolecule carriers to modulate recipient cell
behavior. This underscores the need to understand the EV-mediated interplay that
occurs within irreversibly degenerating nervous tissue in ALS patients. Addition-
ally, we highlight current gaps in EV-ALS research, especially in terms of the
pathologic role and responsibilities of specific EV cargos in diseased cells, specificity
issues associated with the use of EVs in ALS diagnosis, and the efficacy of EV-
mediated treatments for the restoration of diseased neuromuscular tissue. Finally,
we provide suggestions for future EV-ALS research to better understand, diagnose,
and cure this inveterate disease.

Keywords: ALS, extracellular vesicle, exosome, propagation, biomarker,
therapeutic agent

1. Introduction

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is
a heterogeneous neurodegenerative disease that primarily impairs both upper and
lower motor neurons [1, 2]. 5000 people in the United States are diagnosed with
ALS each year, mostly between the ages of 40 and 70. The irreversibly progressive
nature of ALS leads to the death of most patients within 2–5 years of diagnosis,
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typically due to respiratory failure [1, 3]. In most patients, the cause of ALS is
unknown. Only 10% of patients have a familial history of ALS, caused by specific
mutations in their genomes, while 90% are exhibit sporadic ALS due to unknown
causal factors [1, 4, 5]. The lack of understanding concerning ALS disease mecha-
nisms has led to the development of very few FDA approved drugs. To date, those
drugs that have progressed to the US market merely slow down disease progression
by a few months and do little to restore patient’s neuromuscular function [6]. As
progressive degeneration and the non-cell autonomous nature of ALS are known to
be major reasons for this stalemate, the aim of much current ALS research is
focused on understanding the diverse interplay between neurons and non-neuronal
components in neuromuscular tissue. Among the non-neuronal components, glial
cells and their crosstalk with neurons have been major targets of study regarding
symptomatic development and progression in ALS [7–10]. Accordingly, research
into a myriad of proteins and RNAs known to be transmissible between neurons
and glial cells has been gaining interest in recent years. It is already well-established
that such agents can act as molecular ‘messengers’ to alter the behavior of nearby
cells in ALS, but the detailed mechanisms that underpin specific cargo selection,
initiation of transport, and subsequent activation of the internalized biomolecules
are not fully understood.

Extracellular vesicles (EVs) are lipid bi-layered particles, less than 2 μm in size,
secreted by the majority of mammalian cells, including nerve cells, to mediate
diverse paracrine signaling pathways [11–13]. These vesicles are typically classified
into three categories: microvesicles, apoptotic bodies, and exosomes [14].
Microvesicles and apoptotic bodies are normally 0.1–2 μm in size and bud directly
from the plasma membrane. Exosomes, on the other hand, are smaller (50–150 nm)
and are generated within cytoplasmic multivesicular bodies (MVBs) before being
secreted to the extracellular space through subsequent fusion of MVBs with the
plasma membrane [11, 15].

In many neurodegenerative disorders, EVs derived from nerve cells have been
proposed to be responsible for spreading neurotoxins to normal cells, accelerating
disease progression [16–20]. In the diseased cell, misregulated proteins serve as
‘templates’ for subsequent protein oligomerization, generating insoluble toxic
aggregates. Such aggregates are then either degraded by lysosomes using a ‘self-
clearance’ mechanism, or incorporated into MVBs and/or the plasma membrane
facilitating subsequent release into the extracellular space [21]. EV-loaded biomol-
ecules can then be transmitted to recipient cells primarily by endocytosis but also by
endosomal fusion of the EV membrane with cell’s plasma membrane [22]. For
example, exosomes facilitate the intercellular delivery of amyloid beta (Aβ) pep-
tides in Alzheimer’s disease, leading to plaque formation in the recipient cells
[19, 20]. A similar trend of EV-mediated or free protein spreading in a ‘prion-like’
manner is observed in Parkinson’s disease (PD). Specifically, studies with mice have
demonstrated that grafted cells containing aggregated α-synuclein can transfer
these protein aggregates to healthy brain tissue [23].

As the contents of EVs reflect the physiological status of the original cell, recent
studies have begun to evaluate the possibility of using these structures as bio-
markers with which to gauge the onset and progression of a diverse range of
neurodegenerative diseases. Issues remain with identifying tissue specificity and
cell type of origin for pathogenic EVs found in body fluids. However, convenient
sampling and improved understanding of internal cargo molecules’ function has led
to EV’s being seen as one of the strongest candidate classes for next generation
prognosis/diagnosis screening. As with other degenerative diseases of the central
nervous system (CNS), much recent work on ALS has focused on investigating the
pathological role of EVs in diseased neuromuscular tissue, as well as evaluating their
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applicability in the early diagnosis and further treatment of the disease. In this
review, we will highlight recent research studying the diverse roles of EVs in ALS
progression, diagnosis, and treatment. In addition, we will discuss possible solutions
for unsolved problems in this area and suggest future directions for ALS-EV
research to further our understanding of ALS pathology and help develop advanced
diagnosis and treatment methods using EVs.

2. EVs as dysregulated biomolecule carriers for disease propagation
in ALS

ALS tissues commonly contain cells supporting dysregulated protein aggregates
in their cytoplasm and these structures often exert detrimental effects on cell
viability and function. SOD1 (superoxide dismutase 1) and TDP-43 (transactive
DNA binding protein 43 kDa), encoded by the SOD1 and TARDBP genes respec-
tively, are the most well-studied proteins susceptible to ALS-associated aggregation.
Aggregation of these proteins, in some cases due to destabilizing mutations, are
known to be actively involved in motor neuron degeneration in both familial and
sporadic ALS [1, 24, 25]. The SOD1 enzyme resides in the cytoplasm of normal cells
to regulate oxidative stress by converting free superoxide radicals into molecular
oxygen [2]. There are more than 180 mutations reported in the SOD1 gene, and
oligomerization of the encoded proteins has been shown to cause increased intra-
cellular oxidative stress and anomalous metal binding [2]. However, the pathologic
pathway connecting SOD1 mutation, protein dysregulation, and subsequent
neurodegeneration have yet to be defined in a comprehensive manner [2, 26]. TDP-
43 is a highly conserved nuclear RNA and DNA binding protein, known to be
involved in transcriptomic regulation, primarily by RNA splicing but also by effects
on mRNA transport and stability, effects on microRNA production, and participat-
ing in DNA repair [27–31]. Approximately 97% of ALS patients have abnormally
aggregated TDP-43 in their neurons, even without direct mutation of the TARDBP
gene, leading to ALS proteinopathic characteristics in their pathology [6, 32].

Strikingly, recent ALS studies have demonstrated that abnormally transformed
proteins, such as SOD1 and TDP-43, do not merely impair the cells of origin, but
migrate to neighboring cells by means of extracellular exosome release, resulting in
a spread of their cytotoxic effect to recipient cells [33, 34]. Exosome shuttling has
been shown to be a preferred cellular mechanism for removing intracellular toxic
molecules to the extracellular space [35]. The exosomal loading of cytotoxic protein
aggregates is beneficial to host cells since it minimizes the physiological damage
caused by these structures. Such phenomena could be promoted by the host cell
recognizing an increase in intracellular protein aggregation or impaired lysosomal
autophagy. Interestingly, normal neurons cultured with TDP-43 aggregate-loaded
exosomes induce cytoplasmic redistribution of endogenous TDP-43, leading to an
exacerbation of the disease phenotype in mice [36]. Moreover, proteins packaged in
extracellular vesicles are preferentially taken up by recipient cells and exhibit a
greater detrimental physiological effect compared to free protein release, highlight-
ing a crucial role for EV and plasma membrane tethered proteins in regulating
protein internalization and functional activation [37]. These studies suggest an
important interaction between exogenous TDP-43 transported via extracellular
vesicles and endogenous TDP-43 expressed by the recipient cell. Such interactions
constitute a pre-requisite for ‘prion-like’ seeding followed by cytoplasmic protein
redistribution and offer a potential mechanism for the rapid propagation of disease
phenotypes throughout the motor neuron pool. Indeed, when insoluble TDP-43
aggregates taken from ALS brain were introduced to neuron-like SH-SY5Y cells
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endogenously expressing normal TDP-43, the treatment induced significant
aggregation of TDP-43 in recipient cells in a self-templating manner [38].
Similarly, SOD1 aggregates transferred via exosomes have been shown to work
as self-templating ‘seeds’ in recipient cells, leading to the propagation of a
misfolded protein that persists in culture over multiple passages and population
doublings [34].

Although recent studies have observed intercellular protein transmission via
EVs, their specific roles in neuromuscular pathophysiology are poorly understood.
In particular, how the transfer of abnormal proteins induces subsequent neuronal
damage and a breakdown in their electrophysiological function has yet to be eluci-
dated. Furthermore, by taking into account that ALS exhibits non-neuron autono-
mous characteristics, it is essential to obtain a more comprehensive understanding
of whether and how non-neuronal nerve cells can damage neuromuscular function
via the exosomal transfer pathway. Table 1 provides an overview of the studies
performed so far relating to the role of EVs in propagating ALS pathologies to
neighboring cells and these studies are discussed in more detail throughout
this section.

Among non-neuronal cell types, astrocytes have gained significant interest as
carriers of detrimental protein aggregates in ALS tissues. Secretome analysis of
astrocytic exosomes from SOD1 (G93A) mutant mice were reported to contain
SOD1 aggregates, and the exosomal release of these structures accounted for a
larger proportion of SOD1 transport than free SOD1 release [4, 14]. In addition,
proteomic analysis has revealed that proteins involved in vesicle trafficking are
downregulated in mutant astrocytes, indicating a possible impairment of protein
disposal in ALS astrocytes. Moreover, wild-type mice transplanted with astrocyte
progenitors expressing mutant SOD1 exhibit motor neuron impairment, raising the
reasonable postulation that diseased astrocytes utilize extracellular vesicle-mediated
paracrine communication to deliver pathogenic protein aggregates to motor neu-
rons [4, 14]. Another quantitative proteomic analysis of EVs derived from ALS
nervous tissue showed a relative absence of the microglial marker (CD11b) but
positive expression for the astrocyte marker (GLAST) and the synaptic marker
(SNAP25), indicating that astrocytes and neurons may constitute the major cell
types involved in EV-mediated communication in the CNS [7]. However, as the
main function of microglia in the CNS is immune response regulation under pro-
inflammatory conditions, microglia might also actively secrete EVs within an
immune-active environment to modulate the immune response of other nerve cells.
Since ALS is reported to have autoimmune disease characteristics as well [39, 40],
a pathogenic role for EVs secreted from diseased microglia in ALS tissue could be
another important subject to explore.

Do skeletal muscle cells also secrete EVs for neuronal uptake? The breakdown of
neuromuscular junctions (NMJs; the synapses connecting lower motor neurons
and skeletal muscle fibers) is a critical early indicator of pathological onset in ALS.
However, it remains unclear whether NMJ breakdown occurs due to general ill
health of the motor neuron or some aberrant signaling between these neurons and
their afferent synaptic contacts. If the latter is true, a reasonable hypothesis would
be that ALS progression is affected by paracrine communication between skeletal
muscle and motor neurons. To this point, an interesting study in 2017 described the
involvement of skeletal muscle in EV-based crosstalk in neuromuscular tissues. In
ALS muscle biopsies, noticeable accumulation of MVBs containing exosome-like
vesicles were measured, with significant increases in vesicular protein concentra-
tions reported when compared with controls. In addition to the denser protein
accumulation reported in the EVs, ALS skeletal muscle-derived EVs were shown to
exclusively damage neuronal viability in vitro [4, 14].
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Role of EV Study method Source of EV Significance Unknowns Reference

Dysregulated

protein and

RNA carrier

In vitro study

with astrocytes

and mouse

motor neurons

Directly

differentiated

astrocytes from

fALS

(C9ORF72)

patient-derived

fibroblast

Micro-RNAs in

ALS astrocyte-

derived

extracellular

vesicle (EV)

caused neuronal

network

degeneration

and growth

cone impairment

The role of

C9ORF72 protein

for dysregulated

miRNA

encapsulation in

EV

Varcianna

et al. [41]

In vitro/ex vivo

study for whole

tissue vesicle

isolation

Brain- and

spinal cord

tissue from

NTg and SOD1

mutant mice

Brain-derived

astrocytes and

neurons, but not

microglia, were

the main EV

source in CNS

Detailed cargo

modification

pattern of EVs in

the diseased cells

Silverman

et al. [7]

Clinical

research with

sporadic ALS

patients’ body

fluid for EV

analysis

Venous blood

of sALS

patients

Microvesicles of

ALS patients

were enriched

with potentially

pathological

protein (SOD1,

TDP-43, FUS),

while exosomes

did not show any

protein changes

Contradictory

result with other

(in vitro) studies

that suggested

huge loading of

dysregulated

proteins in

exosomes of ALS

mutant cells

Sproviero

et al. [59]

In vitro study

with ALS

mouse muscle-

derived

exosomes

treated to

primary/iPSC-

derived motor

neurons

Skeletal muscle

cells from

SOD1 mutant

mouse

EVs derived

from ALS

myotubes

encapsulated

H2-AX

(neurotoxin)

which suggests

possible

dissemination of

various

neurotoxic

molecules from

diseased skeletal

muscle to

normal neurons

Is H2-AX a major

neurotoxin in

human ALS

skeletal muscle as

well?

Gall

et al. [60]

In vitro study

using Neuro2a

and primary

neurons to

study the role

of exosomes in

ALS

proteinopathy

Primary

neurons and

Neuro2a cells

from ALS

mouse brain

Exosome

secretion was

beneficial in

neuronal

clearance of

pathological

TDP-43, but also

it might be

responsible for

the propagation

of the toxic

TDP-43

aggregates to the

other cells

Should we inhibit

exosome secretion

to prevent

aggregated TDP-43

propagation or

promote the

secretion for TDP-

43 clearance in

neurons?

Iguchi

et al. [36]

In vitro co-

culture of NSC-

34 with cortical

Mutant DPR

(dipeptide

repeat

proteins)

DPRs can be

transmitted to

neurons and glial

cells with/

Difference

between

propagated DPRs

and other

Westergard

et al. [61]
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Although dysregulated protein transfer is of major interest in ALS-EV research,
the role of transmissible miRNAs in facilitating ALS progression should not be
overlooked. EVs obtained from astrocytes derived from ALS patient post-mortem
tissue (C9ORF72 mutation) have been shown to display a neurotoxic phenotype,
inducing mouse motor neuron degeneration, though fewer EVs were secreted from
diseased astrocytes than normal controls [41]. Dysregulated miR-494-3p was iden-
tified as a main component of the diseased EVs. This astrocyte-specific miRNA is

Role of EV Study method Source of EV Significance Unknowns Reference

neurons and

astrocytes

transfected

NSC-34 cells

without

exosome

involvement

dysregulated

proteins (TDP-43,

SOD1) in terms of

their

neurodegeneration

effect?

In vitro study

using ALS

patient-derived

exosomes and

human glioma

cell line (U251)

CSF from 18

sALS patients

ALS-CSF

incubation with

U251 cells

increased mis-

located TDP-43

in the glioma

cells and induced

their apoptotic

behavior and

macro

autophagy

process

Connection

between

propagated TDP-

43 and autophagy

mechanism in

recipient cells

Zhou et al.

[62]

In vitro study

using primary

neurons and

TDP-43

transfected

HEK cells

ALS post-

mortem lysate,

primary

cortical mouse

neurons and

HEK cells

TDP-43

oligomers were

present in EVs

and showed that

microvesicular

TDP-43 exerts

higher toxicity

than free

TDP-43

EV encapsulating

pathway of

neurotoxic TDP-43

oligomers

Feiler et al.

[37]

In vitro study

with

neuroblastoma

cells with brain

tissue obtained

from ALS/FTD

patients

Neuroblastoma

cells expressing

TDP-43 and

SOD1

Misfolded wild-

type proteins

could traverse

cell-to-cell as a

self-templating

‘seed’ either as

free protein

aggregates or

loaded on the

surface of

exosomes

Which specific

receptors control

the uptake of

misfolded TDP-43/

SOD1 presented on

exosomes?

Nonaka

et al. [38]

In vitro study

analyzing

neurotoxic

effect and

amount of

SOD1 protein

encapsulated in

astrocytic

exosomes

Primary

astrocytes from

mouse

expressing

human mutant

SOD1

Mutant SOD1

astrocytes

released

increased

number of

exosomes, which

were toxic for

motor neurons

Protein factors

which involved in

mutant SOD1

astrocytic exosome

Basso et al.

[26]

Table 1.
Overview of the recent findings regarding roles for extracellular vesicles in ALS disease propagation.

6

Amyotrophic Lateral Sclerosis - Recent Advances and Therapeutic Challenges



known to negatively regulate semaphorin-3A expression, which is highly involved
in axonal growth and maintenance [41]. Similarly, exosomes secreted by mouse-
derived motor neuron-like cells (NSC-34) transfected with a human SOD1 mutant
variant were enriched with miR-124. This miRNA was in turn transmissible to the
microglia, where it induced impairment of their phagocytic ability and an increase
in pro-inflammatory gene expression [42]. These results indicate the presence of a
multi-directional intercellular communication network in ALS that is mediated by
miRNAs encapsulated in EVs. Researchers have only begun to scratch the surface of
EV-mediated miRNA transfer in ALS and this area requires more comprehensive
study to fully disentangle the pathologic milieu that exists among the different types
of nerve cells in ALS nervous tissue.

Research investigating EV-mediated ALS pathophysiology is in an incipient
stage, and impressive results in previous studies are still raising a number of impor-
tant questions that must be addressed. For example, it is unclear whether the
beneficial effect of elimination of intracellular toxic proteins outweighs the delete-
rious effects of uptake of those proteins by neighboring cells. Understanding this
point will be critical when designing therapeutic methods to inhibit the propagation
process. Furthermore, to promote extracellular disposal of toxic protein aggregates
while inhibiting their uptake by neighboring cells, we need to fully understand the
interactions between surface proteins on detrimental EVs and those on the plasma
membranes of motor neurons. Alternatively, efforts could be focused on enhancing
lysosomal degradation process over EV-mediated protein disposal in diseased cells,
but it is unclear whether the majority of detrimental contents in their multivesicular
bodies can alternatively be delivered to autophagosomes for degradation. Another
gap in EV-ALS research is a lack of studies focused on analyzing motor neuron-
derived EVs to understand the phenotypic effect of transmitting neuron-originated
proteins to other neurons and/or non-neuronal cells within ALS tissues. As motor
neurons are the main target in ALS pathogenesis, pathogenic proteins are likely to
be enriched in motor neuron-derived EVs and could potentially directly damage glia
and/or NMJ structures, or even directly affect skeletal muscle contractility. We
believe that answering these questions, in addition to better characterizing non-
neuronal EV cargos, should constitute the principle focuses of future studies aimed
at improving our understanding of EV-mediated ALS progression. The results of
such work would doubtlessly provide invaluable insights into ALS pathophysiology
and help identify suitable targets for future therapeutic development.

3. Can EVs serve as reliable biomarkers for ALS?

There is no reliable biomarker established for ALS, neither for confirming dis-
ease onset nor for characterizing disease progression [43]. The lack of a reliable
biomarker for ALS makes the correct prognosis challenging, and even limits diag-
nosis to relatively late stages, after patients recognize their neuromuscular symp-
toms. As the typical life expectancy for ALS patients is approximately 2–5 years
after disease onset, early and accurate diagnosis is crucial not only for developing
early-stage applicable therapies, but for improving quality of life for patients during
their follow-up period. A new detection method should be robust and convenient
for clinical settings, and, critically, have sufficient detection sensitivity, specificity,
and reproducibility to ensure confidence in the result. Meeting all these require-
ments simultaneously is an extremely challenging goal, given the extremely hetero-
geneous nature of the disease. Recent studies are evaluating ALS patient-derived
EVs as potential biomarkers of ALS for prognosis, early diagnosis, and patient
stratification. RNAs collected from patient’s blood or cerebrospinal fluid (CSF;
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often used as a surrogate for nervous tissue sampling) are the main target of
analyses so far and advanced RNA-sequencing techniques are being employed to
analyze deregulated RNAs exclusively in ALS patient-derived EVs. Recently, Otake
et al. reported a new methodology using highly sensitive exoRNA-sequencing for
comprehensive analysis of exosomal mRNAs in patient CSF, to identify abnormally
expressed mRNAs in exosome samples from ALS patients [43]. The technique
identified 543 mRNAs exhibiting statistically different expression patterns com-
pared to normal samples. In particular, this analysis revealed that the gene CUEDC2
was only detected in ALS patient-derived exosomes. As the gene is known to
regulate the ubiquitin-proteasome pathway as part of the inflammatory response,
its abnormal expression is postulated to cause potential neuroinflammation in ALS,
making CUEDC2 mRNA a strong biomarker candidate [43]. Follow-up studies are
necessary to demonstrate a specific causal relationship between exosomal CUEDC2
mRNA presence (rather than free intracellular CUEDC2 expression) and ALS
development. Furthermore, work demonstrating an omnipresence of the same RNA
mis-regulation in EVs from other ALS patients is also required. However, the
described study highlights how exosomal mRNAs could be attractive biomarker
candidates, given their stability within body fluids, as well as the convenience of
sample collection and ease of subsequent data analysis. Efforts to date to character-
ize EV cargos as ALS biomarkers, including those discussed in detail above and
below, are summarized in Table 2.

As non-coding RNAs are also reported to be involved in ALS onset and progres-
sion, miRNAs loaded in EVs represent another candidate biomarker class for ALS
diagnosis. Study of free miRNA for ALS detection has been previously reported.
Microarray analyses were performed on ALS mutant mouse-derived cells and
patient serum, and the results identified the expression of 10–13 dysregulated
miRNAs in diseased samples [44, 45]. In addition to free-miRNA analyses, Saucier
et al. tried identifying ALS-associated miRNA signatures in EVs to discriminate
blood between healthy and ALS individuals. Extensive exosomal RNA analysis
using high-throughput sequencing coupled with droplet digital PCR enabled the
identification of a group of dysregulated miRNAs, including miR-183-5p, miR-9-5p,
miR-338-3p and miR-1246, which were all remarkably downregulated in ALS
patient-derived exosomes [45].

EV-based biomarker studies in ALS have so far given promising results and
strong motivation for follow-up studies to further specify molecular candidates
with higher disease relevancy. However, limited information on the exosomal
RNAs, in terms of the specific signaling pathways they regulate, is currently avail-
able. This lack of understanding makes it difficult to determine the relevance of
each when attempting to define a diagnostic EV-RNA signature for ALS. Also, as
significant difficulty lies in identifying the cellular origin of EVs collected from
body fluids, their practical application in diagnostics could be challenging, espe-
cially if the same miRNAs secreted from different cells of origin reflect different
states of the disease. Furthermore, the RNA profile in different subtypes of EVs,
such as exosomes versus microvesicles, that exist in patient’s body fluids has not yet
been investigated. As such, more comprehensive RNA analysis, using entire EV
populations, might give discordant results to those reported from exosomal RNA
analysis. Additionally, to date there has not been any analysis of when specific
RNAs arise during ALS disease progression and whether certain expression patterns
are indicative of certain stages of the pathology. Such an understanding is crucial in
determining whether expression of certain RNAs can be employed effectively as
diagnostic tools or as methods to chart disease progression. Finally, as hundreds of
exosomal RNAs in ALS patient body fluids have been found to exhibit significant
differences in their expression levels relative to normal controls, clinically
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Role of EV Study method Source

of EV

Significance Unknowns Reference

Biomarker Sequencing

exosomal mRNAs

in CSF

CSF of ALS

patients and

normal

donors

A new methodology

for comprehensive

analysis of

exosomal mRNAs

in human CSF using

newly developed

exoRNA-seq, which

showed potential

applicability to

identify specific

ALS biomarkers

Specificity level

of mRNAs

detected in ALS

exosome using

the technique

Otake

et al. [43]

Clinical study

comparing the

expression of miR-

27a-3p in serum-

derived exosomes

Serum of

ALS patients

and healthy

subjects

The expression of

miR-27a-3p in

patients with ALS

was significantly

downregulated than

that in healthy

human serum

exosomes

Specific role of

miR-27-3p in the

expression of

disease

phenotypes in

ALS

Xu et al.

[63]

Clinical analysis of

miRNA profile in 16

ALS patients

Serum of

ALS patients

and healthy

controls

Distinct miRNA

expression profile

was observed in

ALS patient’s

serum-derived

exosomes compared

to healthy controls

Are ALS-

associated

miRNAs

actually

involved in

post-

transcriptional

regulation of

neurons?

Saucier

et al. [45]

In vitro study with

NSC-34 and N9

microglia to

discover ALS

specific miRNAs

Motor

neuron like

NSC-34 cells

with mSOD1

expression

Increased level of

miR-124 in

circulating

exosomes of NSC-

34 may be used as

potential biomarker

of motor neuron

degeneration in

ALS

miR-124

expression in

other health

state? (false

positive issue)

Pinto

et al. [42]

Therapeutic

agent

In vitro study using

adipose-derived

stem cells and

human SOD1

overexpressing

mouse NSCs

Adipose-

derived

stem cells

Adipose-derived

stem cell exosomes

showed paracrine

effect to SVG

neurons to alleviate

their disease

phenotypes and

mitochondrial

dysfunction in ALS

Major exosomal

cargos that exert

each of

therapeutic

effects on

recipient

neurons

Lee

et al. [48]

In vitro study

assessing efficacy of

stromal cell-derived

exosomes on NSC-

34 cells expressing

hSOD1 mutants

Murine

adipose-

derived

stromal cells

The ASC-derived

exosomes were able

to protect motor

neuron-like NSC-34

(SOD1 mutant)

from oxidative

stress and increase

their viability

Where does the

beneficial effect

of ASC-

exosomes come

from?

Bonafede

et al. [50]

Proteomic profiling

of exosomes

derived from mASC

Murine

adipose-

Proteomic analysis

revealed mASC-

derived exosomes

Exosomal effect

on actual

restoration of

Bonafede

et al. [47]
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applicable diagnosis will be difficult until we better understand the physiological
outcomes of those misregulated RNAs in neuromuscular tissue maintenance and
function. Future research elucidating the expression patterns of EV cargos across
diverse ALS populations at different disease stages, as well as studies of the signal-
ing pathways regulated by EV-RNAs in ALS tissue, are therefore necessary before
the value of these molecules in ALS diagnostic medicine can be fully evaluated.

4. EVs for therapeutic agents in ALS treatment

EVs hold distinct advantages for function as stable biomolecule carriers. Their
lipid bilayers, decorated with transmembrane proteins, protect cargo molecules
from enzymatic degradation in the extracellular space as well as making them
immune-tolerant. Functional transmembrane proteins also promote EV internali-
zation into recipient cells, which naturally occurs through active fusion of EV
membranes with cell’s plasma membranes. This in turn facilitates release of EV
molecular cargo to recipient cell cytoplasms or induces endosome uptake for func-
tional activation [23, 46].

Accordingly, an attractive hypothesis is that therapeutic molecules loaded in
vesicles could be delivered to target cells to subsequently modulate phenotypes in
neurodegenerative disease. In such a model, cargo molecules could encompass pro-
teins and mRNAs, or non-coding RNAs for post-transcriptional protein regulation,
or even specific compounds for sustained activation with avoidance of enzymatic
attack. Research efforts to test this hypothesis are summarized in Table 2 and
discussed in detail below. As very few drug candidates with a proven efficacy for
treating ALS exist, research on ‘drug-loaded EVs’ has not yet begun in earnest.
However, adipose-derived stromal cells and stem cells have shown a capacity to
generate exosomes capable of conferring a therapeutic effect on defective neurons.
Exosomes from murine adipose-derived stromal cells alleviated oxidative stress and
reduced hydrogen peroxide-induced apoptosis in NSC-34 cells overexpressing a
human SOD1 mutant variant [47]. Safe availability and a capacity to migrate to
damaged tissues for their reparative processes make stromal cells good candidates
for EV sources. Although the study demonstrated that stromal cell-derived EVs can
reverse SOD-1 induced cell death, such applications have not yet been specifically
targeted to restore electrophysiological phenotypes in ALS neurons. Consequen-
tially, the applicability of stromal cell-derived EVs may be limited if the specific
cargo molecule responsible for restoring motor neuron function is not identified.

Retaining the remarkable therapeutic potential of stem cells, while avoiding
issues with tumorigenicity, insufficient therapeutic specificity, and substantial cell
loss during treatment, stem cell-derived EVs offer an exciting alternative to direct
stem cell therapy. Indeed, EVs obtained from undifferentiated stem cells have
shown a capacity to alleviate disease phenotypes in ALS mutant neurons. Specifi-
cally, exosomes from adipose-derived stem cells reduced SOD1 aggregation and

Role of EV Study method Source

of EV

Significance Unknowns Reference

with in vitro assay

of exosome

treatment on

NSC-34 cells

derived

stem cells

contain proteins for

cell adhesion and

negatively regulate

cell apoptosis

neuronal

function

Table 2.
Summary of the applications of extracellular vesicles in ALS diagnosis and treatment.
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rescued normal mitochondrial protein expression in mouse neurons [48]. Another
adipose-derived stem cell study performed proteomic analysis of EVs and found 189
exosomal proteins, mainly involved in regulating cell adhesion and negative regu-
lation of apoptosis. Stress response proteins, such as SOD1, were also included in
these exosomes and were found to replace the enzymatic function of mutant SOD1 in
NSC-34 cells. Additionally, the study reported the presence of ribonuclease RNase 4
in the examined exosomes. This could represent a potential neuroprotective molecule
applicable in ALS, as RNase 4 has been reported to have angiogenic, neuroprotective
properties [49, 50].

The field of EV-mediated therapeutics for ALS treatment is still in its infancy.
However, since glial cells and neural stem cells are responsible for regulating neuron
differentiation, protection, and synaptic function [13, 51–54], EVs derived from
those cells could constitute attractive subcomponents for therapeutic agent devel-
opment. As mentioned above, EVs possess distinct advantages for therapeutic
development, including sustained cargo delivery and avoidance of physiological
degradation. Naturally derived EVs, as well as engineered EVs loaded with optimal
therapeutic materials, therefore represent a powerful candidate for the future of
ALS treatment. However, the following issues should be addressed to facilitate the
practical application of EVs in treating this disease. First, since EVs secreted from
one type of cell usually do not target a specific cell type for cargo delivery, higher
delivery specificity to eliminate potential off-target effects is essential. EV mem-
brane engineering to attach proteins with exclusive affinity to target neuron cell
surfaces could be an attractive approach to consider [55–58], if reliable surface
markers for diseased cells can be defined. Second, a lack of information regarding
the physiological function of specific cargo molecules in glia or stem cell-derived EV
limits their applicability in ALS treatment. As disease phenotypes in ALS are
extremely heterogeneous, investigating the role of each EV-loadable molecule with
more categorized efficacy studies beyond cell viability is also highly required. Pro-
duction scale of EVs is a critical issue for the actual application of this technology in
ALS clinics. Although EV collection technology continues to advance to minimize
EV loss and reduce collection time and cost, most EV experiments are still done in
small-scale benchtop studies. This is not a huge issue during these early stages of
research and development, but will cause a critical problem for scale up and

Figure 1.
Schematic summary of the major role EVs play in ALS propagation, diagnosis, and treatment.
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administration as we move closer to clinical trials and subsequent distribution.
Lastly, cargo molecule purity is another significant issue. Even with a single cell
source, EV cargo composition is likely to be different based on culture conditions,
and may fluctuate due to other unknown factors; especially if cell-derived EVs is
advanced to large-scale production (Figure 1).

5. Conclusions

Current EV research in relation to ALS is weighted toward investigating the
pathogenic role of intercellularly transmissible vesicles, with a particular focus on
dysregulated protein propagation. This is likely due to the fact that SOD1 and TDP-
43 mutant cells are already known to produce neurotoxic protein aggregates, which
makes the hypothesis that their dissemination via EVs contributes to the nature of
irreversible degeneration of neuromuscular tissue in ALS a straightforward one.
Several studies have demonstrated that EVs collected from ALS patient’s body fluids
and from mutant non-neuronal cells can be internalized by healthy cells. Their
capacity to induce neurodegenerative behavior in these cells supports the notion
that these structures contribute to the rapid disease progression characteristic of
ALS. However, the effect of collected EV components in specific ALS disease
phenotypes is currently quite ambiguous, especially for correlating neuromuscular
tissue level abnormalities with defined EV component expression. To address this,
EV-mediated interplay, occurring at the diseased NMJ may be a good potential
target for future investigations. EVs secreted from skeletal muscle and motor neu-
rons are known to contribute significantly to the development of normal synaptic
formation at the NMJ and better understanding how these signaling processes are
disrupted in ALS could significantly improve our understanding of early disease
etiology. Work in these early stages of ALS and EVs has also highlighted the poten-
tial for using EVs as either a biomarker for ALS diagnostics or even a potential
therapeutic agent. Although evidence of a causal relationship between misregulated
EV-RNAs and functional impairments in ALS neurons is currently sparse, notable
differences in ALS EV-RNA expression patterns detected by next generation
sequencing does support their potential as future diagnostic tool. EV’s exogenous
nature and pre-established cellular internalization mechanism also provides sub-
stantial motivation to continue research that applies these vesicles in therapy
development, either as a molecule carrier or as a naturally-derived drug in and of
itself. Further studies addressing the non-specificity of EV delivery and issues with
production scale will raise their status as a potent therapeutic means to combat ALS
in the future.
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