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Abstract

Free radicals are unstable molecules that have an unpaired electron in their 
last orbital, which makes them highly unstable agents. In medicine, it has been 
discovered that they play an important role in cell signaling and without them some 
cells such as leukocytes or sperm could not perform their biological functions. To 
protect itself from these oxidizing agents, the cell has a defense system based on 
antioxidants; however, when this balance is lost and oxidizing agents exceed the 
cellular antioxidant capacity, the cell enters oxidative stress, which affects cellular 
components such as proteins, nucleic acids, lipids, amino acids, and carbohydrates, 
among others. In the case of spermatozoa, due to their high metabolic rate, they 
produce large quantities of oxygen reactive species (ROS), decreasing sperm 
motility, alterations in cytoplasmic components, modifications in genetic mate-
rial, or sperm death. In this chapter, a review is made of a brief history of how the 
toxicity of oxygen and free radicals was discovered, the oxidative stress in cells, and 
the effect of oxidative stress in the cytoplasmic sperm membrane, in the spermatic 
mitochondria, in the spermatic acrosome, in the sperm DNA, and in the fertility of 
the female and the male.
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1. Introduction

Semen freezing is one of the most important procedures in the development of 
biotechnologies for assisted reproduction. Among the advantages that we can find 
in artificial insemination is as follows: to keep the biological material viable for an 
indefinite time, the establishment of gene banks and the exchange of genetic mate-
rial over very long distances economically rationalize the ejaculate; improve the use 
of wild boar elite, an adequate available germinal material of economic interest for 
man; and perform the collection of semen only in the most favorable reproductive 
seasons. However, the composition of the plasma membrane of the pig sperm, the 
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large phospholipid layer (the comparison of bull sperm, which has a smaller layer of 
skin), is the cause of the sperm cell. Free radical changes that occur during freezing, 
the occasion when the effects of sperm freezing occur in the wild boar, affect the 
integrity of the plasma membrane, the acrosome, the nucleus, as well as the mito-
chondrial functions and motility of spermatozoa [1–4]. The purpose of this review 
is to publicize the main causes of ROS generation in sperm cells, as well as a brief 
explanation of how ROS is a part of sperm parts.

2. Background

Air is a vital element for any living being and is a mixture of gases based on 
nitrogen (78%), oxygen (21%), water vapor (variable between 0 and 7%), ozone, 
carbon dioxide (CO2), hydrogen, and some noble gases such as krypton, neon, 
helium, and argon. Of these, oxygen (which appeared approximately 2500 million 
years ago) plays a vital role in the processes of aerobic life, being the second most 
abundant element in the atmosphere [5–7].

Antoine Lavoisier in the eighteenth century gives the name to “oxygen” which 
means “generator of acids,” because despite having a therapeutic use, it was already 
known that it was a toxic substance, due to its great oxidizing power. In 1774, the 
toxic effects of the gas are demonstrated, and 6 years later (1780) experiments 
are made of the use of oxygen in newborns; in 1878, the toxic effect of oxygen in 
the brain is documented by Paul Bert, manifested by the presence of convulsive 
crises to more than three atmospheres, and in 1899, when trying to replicate the 
Bert effect, J. Lorrain Smith reports fatal pneumonia in rats exposed to 73% oxy-
gen for 4 days. In 1940, it is reported that babies with periodic breathing pattern 
improved with the use of oxygen to 70%, beginning the routine use of oxygen in 
premature babies. Between 1951 and 1956, it is demonstrated that oxygen was safe 
when it occurred in concentrations lower than 40%. Harman in 1954 stated that 
the life expectancy increases decreasing the degree of oxidative phenomena. Thus, 
throughout history, it has been described that the higher the toxicity of O2 is, the 
higher is the metabolic rate of the species considered [6, 8].

In veterinary and human medicine, more and more agents that cause diseases in 
the body have been discovered; some of them are derived from metabolic processes 
of oxygen, among which are the production of energy, detoxification of harmful 
compounds, and defense against pathogens, among which are free radicals (RL), 
which are highly reactive oxidation agents, which act as short-lived chemical inter-
mediates on lipids, amino acids, carbohydrates, and nucleic acids [5, 7].

The RL can be divided into the following: (i) reactive oxygen species (ROS), 
which are highly reactive molecules that constantly attack organisms through 
oxidation-reduction reactions, among which are molecular oxygen (O2), superoxide 
anion (O21) hydrogen peroxide (H2O2), hydroperoxyl (HO2), and hydroxyl radical 
(OH); (ii) the transition metals, which have unpaired electrons and can exist as RL; 
and (iii) reactive nitrogen species (ERN), which are capable of generating oxidative 
damage and cell death, among which are nitric oxide (NO), peroxynitrite anion 
(ONOO−), and nitric dioxide (NO2) [9–11].

The RL must be attenuated by different antioxidant defense systems, which 
involve enzymes and molecules. Antioxidants are divided into enzymatic, also 
called endogenous production, which are the first line of defense against the 
production of RL and are proteins with antioxidant capacity that are not consumed 
when reacting with the RL. Among the most important of this group are cata-
lase, superoxide dismutase, and glutathione peroxidase. The nonenzymatic ones 
come mainly from the diet and are small liposoluble molecules, which, unlike the 



3

Effect of Oxidative Stress on Sperm Cells
DOI: http://dx.doi.org/10.5772/intechopen.88499

enzymatic, are consumed during their antioxidant action, so they must be replaced; 
among the most important in this group are vitamins E and C, beta-carotenes, 
retinol, uric acid, pyruvate, albumin, carnitine, taurine, hypotaurine, transfer-
rin, ceruloplasmin, polyphenoids, flavonoids, and trace elements [12–16]. These 
antioxidant defense systems are linked in a cellular buffer system, where they add 
up and collaborate with each other, to deal with any oxidative aggression in cells, for 
example, nonenzymatic antioxidants can have synergistic effects in combination 
with enzymatic antioxidants, regenerating enzymatic antioxidants through the 
donation of hydrogen, neutralizing molecular oxygen, and catalyzing the synthesis 
or regeneration of nonenzymatic antioxidants [9].

When there is an imbalance and the amount of RL exceeds the balance between 
oxidant production and antioxidant capacity, a phenomenon known as oxidative 
stress (EO) is generated, which has negative consequences on multiple cellular 
processes [7, 14, 17, 18].

3. Effect of oxidative stress on cells

Due to aerobic conditions, cells maintain a high concentration of oxidant 
products in their metabolism, such as RL, which are generated as a result of cellular 
metabolism and in cellular physiological concentrations are related to cell signal-
ing processes or to fulfill their functions biological, including leukocytes that are 
recruited to the sites of infection by chemotactic factors and are able to eliminate 
microorganisms through phagocytosis, exposing them to high concentrations of 
ROS (superoxide and hydrogen peroxide) and other microbicidal products con-
tained in cell granules. However, when EO exists, ROS can mainly affect cellular 
components such as proteins, nucleic acids, sugars, and lipids [7, 9, 17].

Most of the main diseases that cause the death of animals and people or dete-
riorate their quality of life are caused by the RL. Each cell of the body suffers about 
10,000 impacts of free radicals per day. For this reason, the EO has been the target 
of intense research in recent years, mainly in the implications on how mitochondria 
produce ROS, since they are of vital importance to understand their relationship 
with the pathogenesis of several chronic diseases such as cancer, osteoporosis, 
Alzheimer’s, type 2 diabetes, neurodegenerative diseases, and cardiovascular 
diseases such as heart failure [7].

The spermatozoon was the first cell type in which the presence of ROS could be 
identified, because until a few years ago, ROS were considered toxic elements for 
sperm; however, the RL are currently known (mainly O2.-) in low concentrations 
in semen, which play a fundamental role in their biological functions during sperm 
capacitation, sperm maturation, tyrosine phosphorylation, intergame interac-
tion, and the acrosomal reaction that occurs for fertilization of the oocyte; these 
phenomena are controlled by the mechanism of defense of enzymatic and non-
enzymatic antioxidants that when this balance is broken between the RL and the 
antioxidant defense system, damages are induced in the nucleic acids, proteins, and 
lipids present in the membrane of the sperm, causing loss of mobility, decrease in 
viability, and alterations in the intermediate piece, which finally produce a decrease 
in seminal quality or sperm death [2, 7, 14, 16, 19–26]. A clear example of this is 
nitric oxide (NO), which has an important function in the sperm pathophysiology, 
since in low concentrations it favors the processes of sperm capacitation, the acroso-
mal reaction, and the union to the zona pelucida; however, in high concentrations it 
leads to the formation of peroxynitrites, which alters sperm motility [27].

It has been observed that in the ejaculate, the main sources of ROS are leuko-
cytes and abnormal sperm cells, although it has been proposed that there are other 
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possibilities on the generation of intracellular ROS in the spermatozoon, such as the 
leakage of electrons from the mitochondrial transport chain, NADPH oxidase as 
a possible source of ROS, and the generation of RL by means of nitric oxide in the 
post-acrosomal and equatorial regions, which can generate a change in the basal 
state of the oxidizing agents and induce changes in sperm activity [7].

4. Effect of oxidative stress on the cytoplasmic sperm membrane

The spermatic membrane is asymmetric in its structure and functions. It is 
formed by an association of phospholipids, plasmalogens, and sphingomyelins in 
dynamic equilibrium with membrane proteins making it an easy target of oxidizing 
agents. Cholesterol and phospholipids are important in maintaining the structural 
integrity of membrane systems. In particular, the plasma membrane of the sperm 
possesses a large quantity of polyunsaturated fatty acids (PUFA), which are neces-
sary for the acrosome reaction and the interaction with the oocyte membrane. 
On the other hand, the high content of polyunsaturated fatty acids in the plasma 
membranes of sperm makes them very susceptible to lipoperoxidation (LP), mak-
ing it highly vulnerable to oxidative stress [7, 14, 20, 24].

The low concentrations of antioxidant enzymes (catalases, dismutases, per-
oxidases, and glutathione reductase) in the plasma membrane also convert sperm 
into cells susceptible to the attack of the RL (particularly the attack of hydroxyl 
radical (OH) and hydroperoxyl (HO2)), on all the post-acrosomal region, caus-
ing alterations in its permeability (since ROS induces LP of the phospholipids of 
the membrane, which causes the appearance of “orifices”), affecting the Na+ and 
Ca2+ pumps, causing these to enter cations into the sperm, altering the osmolarity, 
which causes the formation of few soluble calcium phosphates, depletion of ATP, 
and activation by means of Ca2+ of proteolytic and phosphoglycolytic enzymes. It 
also damages the enzymes lactate dehydrogenase, pyruvate kinase, glyceraldehyde 
3 phosphate dehydrogenase, and ATPase, generating loss or reduction in mobility, 
protein and lipid damage, alterations in deoxyribonucleic acid (DNA), anomalies in 
its morphology, fertility problems, and cell death [9, 14, 20, 23, 24, 28, 29].

5. Effect of oxidative stress on sperm mitochondria

Mitochondria are considered one of the main cellular sources of ROS, which are 
responsible for regulating physiological processes such as transduction of intracel-
lular signals, the response to oxidative stress, embryonic development, cell prolif-
eration and adhesion, gene expression, and apoptosis [7].

In the sperm mitochondria provide the highest amount of ATP, through gly-
colysis and oxidative phosphorylation, contributing to the formation of RL during 
these processes [7, 30, 31]. However, when there is disruption of the mitochondrial 
respiratory chain (during freezing), these are responsible for the formation and 
release of ROS. This interruption causes oxygen to undergo complete reductions 
producing, instead of water molecules, intermediate molecules such as superoxide 
anion, hydroxyl radical, and hydrogen peroxide, triggering a phenomenon similar 
to apoptosis, responsible for both the death of sperm and the sublethal damages 
that decrease the half-life and fertilizing capacity of the cells (Figure 1) [32].

The freezing of semen also exerts an important damage in the mitochondria, 
since it has been demonstrated that the EO induces damage in the mitochondrial 
DNA, observing that the mutation spectrum of said DNA, in the spermatozoon, can 
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be 10–100 times greater than to nuclear DNA. This can be explained by the cross-
linking of DNA proteins that cause RL, exchange of sister chromatids, damage to 
the structure of deoxyribose phosphate, oxidation of nitrogenous bases, conversion 
of bases (the deamination of cytosine into uracil and of the 5-methylcytosine in 
thymidine), ring openings, base release, and chain breaking (one or two strands). 
This leads directly to a decrease in fertility [4, 7, 9, 24, 33].

6. Effect of oxidative stress on the spermatic acrosome

The acrosome is also affected by the action of the RL during the transport of the 
sperm through the epididymis, mainly by hydrogen peroxide, since it inhibits the 
induction of the acrosomal reaction and damages the integrity of the acrosome, 
producing a malfunction at the time of fertilization of the oocyte [34].

7. Effect of oxidative stress on sperm DNA

Much of the DNA damage in the sperm is generated by the EO. The damage that 
ROS exerts directly on sperm DNA can induce mutations, affecting the paternal 
genomics of the embryo, and can be an indication of male fertility [20, 24]. To 
demonstrate this, in studies where sperm were exposed to high concentrations 
of artificially produced ROS, a significant increase in DNA damage, decreased 
sperm motility, and induction in apoptotic processes could be observed [7]. These 
damages in the chromatic sperm depend on endogenous factors such as in the 
testicles or the epididymis (during sperm maturation), and exogenous factors as 
DNA peroxidative damage, infections, immunological factors, or various chemical 
agents. These may be related to failures in packaging, nuclear maturity, chromatin 
fragmentation, aneuploidies, or DNA integrity defects [7, 24].

Figure 1. 
Lesions resulting from the freezing of pig semen (modified from [4]).
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In any part of the spermatogenesis, a damage to the spermatic DNA can be 
induced, which despite is being a multifactorial phenomenon and not being com-
pletely delimited; some of the factors that can produce irreversible damage is the 
generation of ROS, which come from the respiratory chain, since these oxidative 
molecules react with the nitrogenous bases and with deoxyribose, causing DNA 
fragmentation, problems in the compaction and winding of the DNA inside the 
chromatin, deletions, mutations, translocations, degradation of purine or pyrim-
idic bases, rupture of chains, and cross-links between proteins and DNA. The 
magnitude of damage induced by RL during sperm transit through the epididymis 
depends on the levels of these produced by immature sperm, the presence of epi-
thelial cells or activated leukocytes in the epididymis, and the levels of antioxidant 
enzymes present in the epididymis lumen [2, 4, 21, 23, 24, 34–37].

It is important to note that there are mainly two RL that affect the DNA strand. 
The first is the OH radical, which results in the formation of 8-OH-guanine and 
8-OH-2 deoxyguanosine at the first stage, attacking the purines as pyrimidines, 
causing fragmentation of double-stranded DNA, and the second is the radical O21, 
which generally produces only guanine adducts, especially 8-hydroxyguanine, which 
affect sperm motility [4, 7, 9, 24]. If a sperm with fragmentation of double-stranded 
DNA manages to fertilize an oocyte, it is incompatible and may affect the normal 
development of pregnancy [24].

8. Effect of oxidative stress on female and male fertility

Infertility is defined as the inability of a couple to conceive after a year of sexual 
intercourse without contraceptive measures [24]. There are multiple causes of male 
infertility, which may be congenital or acquired; of all of them, idiopathic infertil-
ity is caused by multiple factors such as endocrine alterations, oxidative stress, and 
genetic or epigenetic alterations [38].

In particular, the role of EO as one of the main causes of male infertility has 
been well established, since ROS can affect all cellular components, including the 
AGP of membranes, proteins, and nucleic acids, causing in males oligozoospermia, 
prostate carcinoma, cryptorchidism, varicocele, low seminal quality, low motility 
of spermatozoa, decreased sperm concentration, and acceleration in the process of 
apoptosis of geminous cells [24, 27].

In a study conducted by Pérez [27], it was observed that in asthenozoospermic 
patients have an overexpression of the enzyme inducible nitric oxide synthase 
(iNOS), compared with the normospermic, which results in a sperm dysfunction 
and in the decrease of the fecundate capacity of sperm. It has also been shown that 
in sperm of individuals whose partners have recurrent early embryonic death, there 
is a significant increase in aneuploidies, abnormal chromatin condensation, DNA 
fragmentation, apoptosis, and abnormal sperm morphology [19].

It is important to highlight the importance of antioxidants in semen, since it 
has been observed that the low levels or deficiency of antioxidants in the seminal 
plasma leaves the sperm unprotected to the EO [20]. So the use of antioxidants has 
been proposed as a tool to protect sperm from oxidative damage, and it has even 
been proven that the addition of antioxidants (vitamin C, E or glutathione), at the 
time of the seminal conservation, produces better results in the seminal evaluation 
at the time of insemination [4, 7, 29, 39].

In the case of females, it has been suggested that ROS can participate in the 
formation of adhesions associated with endometriosis, decreasing its fertility. There 
are also alterations of folliculogenesis caused by ROS, which can deteriorate the 
quality of the oocyte and have been proposed as a cause of subfertility associated 
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with endometriosis. The EO has also been associated with numerous pathologies 
among which we can mention mastitis, edema of the udder, higher incidence of dis-
eases in the peripartum period, deficit in the synthesis of steroid horns in cows, and 
degenerative nutritional myopathy in sheep. In the case of sows, the EO can cause 
postweaning inflammatory states, modifying the status of selenium and vitamin E 
affecting the growth rate of piglets [33, 40–42].

9. Conclusions

The effect of EO on sperm cells significantly affects the fecundating capacity of 
sperm, causing infertility in males and/or low reproductive parameters in females so 
that the issue of EO in the fertilizing capacity of spermatozoa mammals is of utmost 
importance at present.
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Implications

In this paper, a review is made of a brief history of how the toxicity of oxygen 
and free radicals was discovered, the oxidative stress in cells, and the effect of oxi-
dative stress in the cytoplasmic sperm membrane, in the spermatic mitochondria, 
in the spermatic acrosome, in the sperm DNA, and in the fertility of the female and 
the male.
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