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Chapter

Systematic Deletion of Type III 
Secretion System Effectors in 
Enteropathogenic E. coli Unveils 
the Role of Non-LEE Effectors in 
A/E Lesion Formation
Massiel Cepeda-Molero, Stephanie Schüller, Gad Frankel 
and Luis Ángel Fernández

Abstract

Enteropathogenic E. coli (EPEC) is a diarrheagenic human pathogen. The 
hallmark of EPEC infection is the formation of the attaching and effacing (A/E) 
lesion in the intestinal epithelial cells, characterized by the effacement of brush 
border microvilli and the intimate bacterial attachment to the enterocyte in actin-
rich pedestal-like structures. The locus of enterocyte effacement (LEE) in the EPEC 
genome encodes a type III protein secretion system (T3SS) that translocates mul-
tiple effector proteins into the host cell to subvert cellular functions for the benefit 
of the pathogen. These effectors are encoded both within and outside the LEE. In 
vitro cell culture infections have shown that LEE effectors are required for intimate 
bacterial attachment to the epithelial cells, whereas non-LEE effectors mostly play 
a role in modulating inflammation and cell apoptosis in the gut epithelium. We 
constructed a set of EPEC mutant strains harboring deletions in the complete reper-
toire of genes encoding T3SS effectors. Infection of human intestinal in vitro organ 
cultures (IVOC) with these mutant strains surprisingly revealed that non-LEE 
effectors are also needed to induce efficient A/E lesion formation in the intestinal 
mucosal tissue.

Keywords: A/E lesion, EPEC, effectors, infection, IVOC, T3SS

1. Introduction

1.1 Enteropathogenic E. coli

Enteropathogenic E. coli (EPEC) was the first pathotype of E. coli to be associ-
ated with human disease and is a major cause of acute and chronic diarrhea in 
infants [1, 2]. The low microbial density of the small bowel caused by the forceful 
peristalsis in this part of the intestine is overcome by EPEC, which can successfully 
colonize the small intestine of humans [3, 4]. EPEC primarily affects children 
younger than 2 years old; however some outbreaks of EPEC infection in healthy 
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adults have been associated with large inoculum ingestion [5]. The mechanism of 
transmission of EPEC is the fecal-oral route. In the 1940s and 1950s, EPEC was an 
important cause of diarrhea in developed countries with a mortality of 50% during 
outbreaks, but nowadays the infection by EPEC in industrial countries has a limited 
importance. In contrast, in low-income countries, EPEC is still an major cause of 
infant diarrhea [5, 6].

1.2 Hallmark of EPEC gastrointestinal infection

The phenotype that defines EPEC infection is the attaching and effacing 
(A/E) lesion [2, 7]. By adhering to intestinal epithelial cells, EPEC subverts 
cytoskeletal processes of the host cell and produces the histopathological feature 
of the A/E lesion. This lesion, which was first described in 1980 [8], is charac-
terized by the intimate attachment of the bacteria to the intestinal epithelial 
cells and elongation and effacement of the brush border microvilli. Later on it 
was shown that infection is also associated with cytoskeletal rearrangements, 
including the accumulation of polymerized F-actin in pedestal-like structures 
underneath the attached bacteria [9] (Figure 1). EPEC together with enterohem-
orrhagic E. coli (EHEC) and Citrobacter rodentium (CR) is a member of the A/E 
family of bacterial pathogens that colonize the gastrointestinal tract via the A/E 
lesion. EPEC and EHEC are important human pathogens, while CR is a mouse-
restricted pathogen [10–13].

Figure 1. 
Localized adherence (LA), intimate attachment, and EPEC A/E lesion formation in the intestinal epithelial 
surface. At an early stage, EPEC interacts in a non-intimate manner with the intestinal surface mainly through 
the BFP and EspA filament. After assembly of the translocation pore, EPEC injects translocated intimin 
receptor (Tir). Ser/Thr phosphorylation of Tir induces its anchoring in the enterocyte plasma membrane, 
leaving the TirM region exposed for the interaction with intimin. Subsequent Tir-intimin interaction triggers 
actin polymerization and pedestal formation underneath the attached bacterium. Tir phosphorylation of 
residue Y474 engages the host adaptor NcK, which later recruits N-WASP and WIP. N-WASP recruits the 
ARP2/3 complex, which induces actin nucleation and polymerization.
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2. EPEC virulence factors

2.1 A pathogenicity island called LEE

The ability of EPEC to induce A/E lesions is related to a pathogenicity 
island (PAI) of 35 kb called the locus of enterocyte effacement (LEE) [14]. 
The LEE comprises 41 genes organized in 5 principal operons (LEE1-LEE5) 
and several smaller transcriptional units (Figure 2) [15, 16]. Orthologues of 
LEE are also found in other members of A/E pathogens [11]. The LEE encodes 
all the structural proteins necessary for the assembly of a filamentous type III 
secretion system (T3SS) injectisome on the bacterial cell envelope [17, 18]. The 
LEE also encodes transcriptional regulators (Ler, GrlR, and GrlA), translocator 
proteins (EspA, EspB, and EspD), six secreted effector proteins (including the 
translocated intimin receptor), the outer membrane protein intimin, molecular 
chaperones, and a lytic transglycosylase (EtgA) [19]. The mechanism of LEE 
regulation is complex and depends on environmental conditions, quorum sens-
ing (QS), and several transcriptional regulators encoded within and outside the 
LEE [20, 21].

Figure 2. 
Effectors of EPEC E2348/69. (A) Representation of the LEE island and effector genes espG, espZ, espH, map, 
tir, and espF. (B) Non-LEE effectors located outside the LEE are localized in integrative elements (IEs) and 
prophages (PPs). Effector genes are labeled in red. Pseudogenes are specified with asterisk. Scale of 5 kb is 
indicated at the bottom. Figure from [32].
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2.2 The type III secretion system

The type III secretion system is a macromolecular transport apparatus that 
is used by many gram-negative bacterial pathogens (e.g., Shigella, Yersinia, 
Salmonella) to translocate virulence proteins, called effectors, into the cytosol 
of infected cells, thereby subverting host cellular functions for the benefit of the 
pathogen [22]. Since pathogens use this transport apparatus to inject proteins 
into the host cells, this structure is also known as the injectisome. The EPEC T3SS 
mediates the translocation of multiple effector proteins during infection. Some of 
them are encoded in the LEE, whereas others are encoded outside of the LEE being 
generally referred to as non-LEE effectors (Nle) [23, 24]. EspA filaments link the tip 
of the injectisome in the bacterial cell wall to a 3–5 nm translocation pore, formed in 
the plasma membrane of infected cells by the translocator proteins EspB and EspD 
(Figure 1) [25, 26].

2.3 Bundle-forming pilus (BFP)

Typical EPEC is endowed with a plasmid called pMAR2 which contains a 
14-gene operon encoding the type IV pilus BFP [27, 28]. The BFP is a rope-like 
bundle, which allows EPEC to form microcolonies in a pattern called localized 
adherence and also mediates the initial interaction of bacteria with host cell surfaces 
(Figure 1) [29–31].

3. EPEC pathogenesis

EPEC tightly regulates its virulence genes in response to environmental condi-
tions such as temperature [16], the increase of the pH of the small intestine [33, 34], 
and some hormones which are released during stress conditions [20]. Upon EPEC 
interaction with enterocytes, EspB and EspD proteins are inserted into the host 
cell membrane and assemble to form a translocation pore [25, 26]. EPEC then 
injects its own receptor called Tir, which is integrated into the plasma membrane 
in a hairpin loop topology, with the loop facing the outside of the cell where it 
serves as a receptor for the bacterial adhesin intimin [35–37]. Tir-intimin interac-
tion induces clustering and dimerization of Tir, and this activates a signal cascade 
that starts with the phosphorylation of serine/threonine residues and leads to 
actin polymerization and pedestal formation underneath the attached bacterium 
[10, 38]. The most critical event for actin polymerization is the phosphorylation 
of the cytoplasmic Tir residue Y474 [39]. This induces a signal cascade which 
recruits the host cell adaptor Nck and N-WASP required to engage and activate 
the actin-nucleating ARP2/3 complex, which produces the actin nucleation and 
polymerization. Actin polymerization drives membrane protrusion and pedestal 
formation [10, 40] (Figure 1). Through the T3SS injectisome, EPEC translocates 
LEE-encoded effector proteins and additional effectors localized in mobile genetic 
element outside the LEE (Nle).

4. LEE effectors

Six effector proteins (EspG, EspZ, EspH, Map, Tir, and EspF) are encoded in 
the LEE island (Figure 2). Most of these, except EspZ, have important functions 
destabilizing the physiology of the intestinal epithelium, triggering cytoskeleton 
reorganization, inducing cytotoxicity and electrolyte imbalance which lead to 
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diarrhea [11, 41]. The rapid onset of EPEC-induced diarrhea is likely induced by 
the cooperative action of Tir, Map, and EspF, which inhibits the sodium-D-glucose 
transporter (SGLT-1), the major water pump of the small intestine responsible 
for about 70% of the total fluid uptake [42]. In addition, Map and EspF reduce 
Na + absorption by the sodium-hydrogen exchanger (NHE3) [43], and EspG1/2 
proteins alter the membrane targeting of the Cl-/OH-exchanger (DRA), resulting 
in reduced Cl-uptake. These processes result in the accumulation of salts in the gut 
lumen, which drives water loss from the mucosa [44].

Inhibition of endosomal trafficking by EspG1/2 reduces the level of cell sur-
face receptors [45]. In addition, EspF and EspG induce mislocalization of aqua-
porins (AQP), thereby reducing epithelial water absorption [46]. Furthermore, 
EspB, Tir, EspF, and Map induce microvillus effacement, and this reduction 
of absorptive surface likely exacerbates EPEC diarrhea [47]. While EspF and 
Map synergistically disrupt TJs [48], EspG1/2 induces microtubule disruption 
contributing to TJ disruption [49]. The effector protein NleA also disrupts TJs by 
blocking the delivery of new TJ proteins [49–51]. The disruption of TJs increases 
intestinal permeability and thereby likely contributes to EPEC-induced diarrhea 
[52] (Figure 3).

5. Non-LEE effectors

In EPEC prototype strain E2348/69, 17 functional Nle effectors are encoded in 
different integrative elements and prophages, frequently associated in gene clusters, 
with some effectors having duplicated gene copies and/or paralogs in different 
clusters [53] (Figure 2). EPEC infection is characterized by a weak inflamma-
tory response [54]. Previous studies have shown that most Nle effectors and some 
LEE effectors inhibit the host immune response, which favors bacterial survival 
(Figure 4). Although NleF and NleH2 activate the NF-κB inflammatory pathway 
during early infection (ref), EPEC translocates several effectors that dampen the pro-
inflammatory pathways of the cell [11]. Thus, a large number of Nle effectors inhibit 
host inflammation by different mechanisms, such as inhibition of the NF-κB (NleB, 
C, E, and H) and MAPK proinflammatory pathways (NleC and D) [55–58], inhibition 

Figure 3. 
EPEC effector proteins altering epithelial cell function and inducing water loss and diarrhea. Tir, map, and 
EspF inhibit the sodium-D-glucose transporter. EspF reduces expression of the sodium-hydrogen exchanger 
NHE3. EspG and EspF induce mislocalization of aquaporins (AqP). EspG1/EspG2 alters membrane targeting 
of the Cl-/OH-exchanger. EspF, map, NleA, EspG1, and EspG2 disrupt tight junction complexes (TJ). EspB, 
Tir, EspF, and map induce microvilli effacement.
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of the canonical (NleA) and noncanonical (NleF) inflammasomes [59], and inhibi-
tion of proliferation of lymphocytes and interleukin production (LifA) [60, 61].

The control of the epithelial cell death response to microbial infection is pivotal 
for pathogens and the host. Pathogens that are colonizing the epithelium need to 
prevent cell death to preserve their replicative foothold; by contrast, the host needs 
to eliminate infected cells in order to minimize tissue damage [62]. During infec-
tion of the intestinal epithelial cells, surface properties of EPEC are recognized by 
cell surface death receptors and induce extrinsic apoptotic pathways, while T3SS 
effectors (Map and EspF) trigger cytochrome c release, activation of caspases, and 
downstream intrinsic apoptotic pathways [11, 24]. Interestingly, early stages of 
apoptosis can be observed during EPEC infection, but late stages are not evident 
because EPEC translocates effector proteins that antagonize these pro-apoptotic 
effects. NleD and NleB interfere with the pro-apoptotic death receptor signaling and 
disrupt the downstream extrinsic apoptosis [63, 64]. NLeH1/2 and EspZ also inhibit 
intrinsic apoptosis and promote host cell survival [65–67] (Figure 4). NleF directly 
inhibits caspases involved in both intrinsic and extrinsic apoptosis pathways, 
including caspases 4, 8, and 9 [68]. In addition, EspZ localizes to the cytoplasmic 
side of the plasma membrane at the site of bacterial attachment and interacts with 
the translocator protein EspD. It has been proposed that EspZ indirectly prevents 
cell death by downregulating protein translocation and protecting cells from an 
overdose of effector proteins. Consistently, a ΔespZ mutant was found to be highly 
cytotoxic [69]. EPEC effectors are injected in a regulated manner to guarantee the 
success of infection. While the pro-survival effector EspZ is translocated at the early 
stages of infection, the pro-apoptotic effectors EspF and Map follow later [70].

6. Classical methodologies to study effector functions

Most research on EPEC effectors has been conducted by generating dele-
tion mutants in a single or a few effector genes that are later complemented with 

Figure 4. 
Schematic representation of multifunctional and overlapping effectors to control host immune response. The 
NF-κB proinflammatory pathway is activated by NleF and NleH2 and is inhibited by NleE, NleB, NleH1, 
Tir, and NleC. NleC and NleD inhibit the MAPK proinflammatory pathway. EspF, EspJ, EspH, and EspB 
prevent macrophage phagocytosis. NleA disrupts inflammasome activation, and LifA inhibits IL-2 and IL-4 
production and lymphocyte proliferation. While EspF and map induce intrinsic apoptosis, EspZ counteracts 
these effects by stabilizing mitochondrial membrane potential. NleH1/NleH2 and NleF inhibit intrinsic 
apoptosis, and NleF, NleD, and NleB counteract extrinsic apoptosis.
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multicopy plasmids overexpressing the effector(s). In addition, ectopic expression 
of individual effectors by plasmid transfection of the host cell has been applied. 
Both situations are prone to effector overexpression resulting in nonphysiological 
levels of effectors inside the host cell, which could alter effector activities. In addi-
tion, effectors often have synergistic and overlapping functions that cannot be fully 
appreciated by single mutations and individual transfection experiments [11, 54]. 
In order to overcome these limitations, we employed a marker-less gene deletion 
strategy to delete the whole repertoire of known effector genes found in the genome 
of the prototypical EPEC strain E2348/69 [32]. The genome engineering method for 
sequential deletion of EPEC effectors was based on the marker-less gene deletion 
technique described by Posfai et al. [71] and is illustrated in Figure 5.

Using this strategy, a set of EPEC mutants with sequential deletions of effec-
tors was generated (Table 1), ultimately resulting in strains expressing only Tir 
and EspZ (EPEC2), Tir (EPEC1), and the effector-less strain EPEC0 (Table 1). 
This approach proved to be effective to specifically modify the genome of EPEC 
E2348/69, avoiding the introduction of unintended alterations in the genome and 
leaving no sequence “scars” or antibiotic resistance genes in the chromosome as 
demonstrated by whole-genome sequencing [32]. Besides, the deletion mutant 
strains showed normal growth and maintained functional T3SS injectisomes. In 
addition, they allowed the translocation of individual effectors from single-copy 
chromosomal genes under endogenous regulation, showing the expected phe-
notypes without the background of the other effectors [32]. Hence these mutant 

Figure 5. 
Marker-less gene deletion strategy of EPEC effector genes. Deletions using pGE-suicide plasmids with I-SceI 
sites and mutant alleles assembled by fusing homology regions (HRs) flanking the targeted effector gene(s). 
Co-integrants are identified by the Kanamycin resistance phenotype. Expression of the I-SceI in vivo from helper 
plasmid induces double-strand brakes that are repaired by homologous recombination. Depending on the HRs 
involved in this second recombination, either the WT or the mutant allele can be obtained. Figure from [32].
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strains are an excellent tool to investigate the role of individual effectors and specific 
combinations maintaining physiological protein levels in the context of infection.

7.  LEE effectors are sufficient for intimate adhesion of EPEC to the 
epithelial cells in vitro

When EPEC bacteria adhere in vitro to cultured cells, there is an accumulation 
of actin filaments in the cytoplasm beneath the adherent bacteria, due to a signal 
cascade triggered by intimin-Tir interaction [35, 38]. Using the effector deletion 

Figure 6. 
Infection of HeLa cells with EPEC WT and effector mutant strains. Immunofluorescence confocal  
microscopy of HeLa cells infected with EPEC WT, EPEC2, EPEC1, and EPEC0 for 1.5 h using a MOI of  
200. EPEC is labeled with anti-intimin-280 serum (green), actin is stained with TRITC phalloidin (red), and 
cell nuclei are labeled with DAPI (gray). Actin polymerization beneath adherent bacteria is observed in EPEC 
WT, EPEC2, and EPEC1. Scale bar 5 μm. Figure from [32].

Strain Effector genes remaining*

WT All

EPEC2 espZ and tir

EPEC1 tir

EPEC0 None

EPEC9 espZ + tir + IE2 + IE5 + IE6 + PP2 + PP3 + PP4 + PP6

EPEC2-LEE+ espZ + tir + map + espH + espF + espG
*Encoded effectors in the indicated IEs and PPs.

Table 1. 
EPEC mutant strains generated with the marker-less deletion strategy.
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mutants of EPEC, we demonstrated that the LEE effector Tir along with intimin is 
necessary and sufficient to induce these cytoskeletal rearrangements during in vitro 
infection of HeLa cells. Strains EPEC2 (bearing EspZ and Tir) and EPEC1 (bear-
ing only Tir) were able to induce actin-pedestal formation underneath attached 
bacteria similar to the EPEC wild type (WT) (Figure 6). As expected because of 
the essential role of Tir in this process, infection of HeLa cells with the effector-less 
mutant EPEC0 did not induce any actin-pedestal formation (Figure 6). These data 
demonstrate that the individual translocation of Tir by EPEC1 is sufficient to trigger 
actin pedestals in HeLa cells and that non-LEE effectors are dispensable for this 
phenotype during in vitro infection of cultured cells.

8.  Non-LEE effectors are required for efficient A/E lesion formation in 
intestinal tissue

EPEC pathogenic mechanisms have been widely investigated by in vitro 
infection of cultured epithelial cell lines, albeit in most cases these cells are 
non-polarized and are not from intestinal origin. In addition, EPEC infection 
studies in vivo are hindered because EPEC is a human-restricted pathogen [72]. A 
surrogate model established to investigate A/E pathogenesis in vivo is the mouse 
pathogen Citrobacter rodentium (CR) [12, 13]. Although Citrobacter infection 
in vitro requires Tir phosphorylation for actin-pedestal formation in cell lines, Tir 
phosphorylation-deficient mutants still colonize the mouse gut and induce A/E 
lesion formation and crypt hyperplasia typical of CR infection [73]. This result 
highlights the necessity of a model for EPEC infection closer to the in vivo condi-
tions in the human gut. A good established model to study EPEC-host interactions 
is the infection of in vitro cultured human intestinal biopsies, which allows the 
formation of A/E lesions undistinguishable from those observed in vivo in biopsies 
of patients with EPEC-induced diarrhea [4, 36, 74]. Similar to results obtained 
in CR-infected mice, Tir phosphorylation was not necessary for EPEC A/E lesion 
formation in human intestinal biopsies [75]. Surprisingly, when EPEC2 and 
EPEC1 deletion mutants were used to infect human duodenal biopsies, none of 
the infected biopsies showed A/E lesions (Table 2 and Figure 7), which contrasts 
with the pedestal formation observed in HeLa cells. Thus, intimin and Tir are not 
sufficient to induce A/E lesions in the intestinal tissue, and the IVOC model was 
used to identify additional LEE or non-LEE effector(s) required for A/E lesion 
formation. For this purpose, two additional effector mutant strains were tested: 
EPEC2-LEE+ (carrying all LEE effectors) and EPEC9 (carrying EspZ, Tir, and 

Strain Effector genes remaining* Biopsies with A/E lesions 

positive/total (%)

WT All 13/17 (76)

EPEC2 espZ and tir 0/6 (0)

EPEC1 tir 0/6 (0)

EPEC0 None 0/5 (0)

EPEC9 espZ + tir + IE2 + IE5 + IE6 + PP2 + PP3 + PP4 + PP6 5/6 (83)

EPEC2-LEE+ espZ + tir + map + espH + espF + espG 0/5 (0)
*Encoded effectors in the indicated IEs and PPs.

Table 2. 
Human duodenal biopsies infected by EPEC WT and EPEC effector mutants.
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all non-LEE effectors). Whereas infection with EPEC2-LEE+ did not reveal A/E 
lesions, infection with EPEC9 induced A/E lesions to a similar level as the wild-
type strain (Table 2 and Figure 7). It was previously reported that the LEE island 
is sufficient to confer the A/E phenotype to E. coli K-12 in the infection of colon 
carcinoma cell lines [76]. However, our results indicate that the LEE is not suffi-
cient for A/E lesion formation in human mucosal tissue and that non-LEE effectors 
are required [32].

9. Conclusions and future perspectives

The marker-less gene deletion strategy enabled the generation of effector-less 
strains of EPEC O127:H6 using the prototypical strain E2348/69 [32]. Given the 
conservation of the recombination machinery among E. coli strains, it is likely that 

Figure 7. 
Scanning electron microscopy of human duodenal biopsies infected with EPEC WT and mutant strains EPEC2, 
EPEC1, EPEC0, EPEC9, and EPEC2-LEE+. EPEC WT and EPEC9 induce characteristic A/E lesions with 
bacterial microcolony formation (asterisk) and microvilli elongation around bacterial colonies (arrowheads). 
In contrast, biopsies infected with EPEC2, EPEC1, EPEC0, and EPEC2-LEE+ lack adherent bacteria and A/E 
lesions and show a normal microvillous brush border. Scale bar 2 μm. Figure from [32].
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this strategy could be applied to other A/E pathogens, E. coli pathogens, and other 
bacteria. The effector mutant strains can be useful to study the role of individual 
effectors and of combinations of effectors in pathogenesis. An individual effector 
or a defined combination can be inserted in the effector-less strains in their endog-
enous genomic loci to obtain physiological expression levels and regulation. In cell 
culture infections, all EPEC effector mutant strains carrying intimin and Tir were 
able to trigger actin-rich pedestal-like structures underneath attached bacteria. 
On the other hand, when the infection was performed in human intestinal tissues, 
translocation of Tir alone was insufficient to induce A/E lesions. Furthermore, an 
EPEC deletion mutant maintaining all LEE effectors and devoid of all non-LEE 
effectors (EPEC2-LEE+) was still unable to induce A/E lesions in human intestinal 
biopsies. In contrast, an EPEC strain producing the complete repertoire of non-LEE 
effectors and devoid of LEE effectors, except Tir and EspZ, formed A/E lesions in 
intestinal tissue at wild-type levels [32]. Thus, these experiments revealed that non-
LEE effectors are needed for A/E lesion formation in human intestinal tissue.

In addition to their potential for basic studies, the EPEC effector mutant 
strains may have different applications. For instance, EPEC (and other patho-
genic) strains lacking multiple effectors are likely to be strongly attenuated, 
but they maintain the external antigenicity of the wild-type strain. Thus, an 
EPEC mutant strain with a functional T3SS and the minimum set of effectors 
necessary to colonize the intestinal surface could be a good vaccine candidate. 
Further, EPEC mutant strains with the ability to attach to the human intestine 
could also be engineered to translocate heterologous protein antigens to gener-
ate protection against other enteric pathogens causing diarrhea, including 
EHEC strains [77–80]. Lastly, the EPEC effector mutant strains may also have 
the potential to deliver therapeutic proteins to the intestinal epithelium, for 
instance, to combat inflammation and autoimmune disorders in the gastrointes-
tinal tract [81].
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