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Chapter

An Implementable and Stabilizing
Model Predictive Control Strategy
for Inverted Pendulum-Like
Behaved Systems
Odilon S.L. de Abreu, Márcio A.F. Martins

and Leizer Schnitman

Abstract

In control theory, the inverted pendulum is a class of dynamic systems widely
used as a benchmarking for evaluating several control strategies. Such a system is
characterized by an underactuated behavior. It is also nonlinear and presents open-
loop unstable and integrating modes. These dynamic features make the control
more difficult, mainly when the controller synthesis seeks to include constraints
and the guarantee of stability of the closed-loop system. This chapter presents a
stabilizing model predictive control (MPC) strategy for inverted pendulum-like
behaved systems. It has an offset-free control law based on an only optimization
problem (one-layer control formulation), and the Lyapunov stability of the closed-
loop system is achieved by adopting an infinite prediction horizon. The controller
feasibility is also assured by imposing a suitable set of slacked terminal constraints
associated with the unstable and integrating states of the system. The effectiveness
of the implementable and stabilizing MPC controller is experimentally demon-
strated in a commercial-didactic rotary inverted pendulum prototype, considering
both cases of stabilization of the pendulum in the upright position and the output
tracking of the rotary arm angle.

Keywords: rotary inverted pendulum, model predictive control, nonlinear system,
Lyapunov stability, feasible-optimization problem

1. Motivation

Dynamic inverted pendulum-featured apparatuses are widespread in systems
and control theory. These represent a class of nonlinear and underactuated electro-
mechanical systems, which, in turn, are composed of open-loop unstable and
integrating modes. The scale-up of inverted pendulum-based conceptual sketches in
practical mechanisms and real applications has been in progress, of which one
can cite stabilization of rocket launch, robot balance, and segway-like means of
transportation, among others [1, 2].

In control theory, inverted pendulum-type systems have enabled extensive
studies concerning controller architectures ranging from proportional-integrative-
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derivative (PID)-like classical strategies to more advanced technique ones, such as
optimal and adaptive strategies. In the middle of the advanced control strategies,
the so-called class of model predictive control (MPC) strategies has been preferred
by systematically handling system constraints. In fact, any MPC algorithm makes
explicit use of a system model to predict its outputs and to obtain an optimal control
law that minimizes the prediction error and control efforts [3–5]. Since it requires
an online solution to its associated optimization problem, it first became popular in
applications of slow dynamic systems, such as those in petroleum refineries and
petrochemical industries [6]. However, with advances in hardware development
and optimization techniques, MPC applications have been extended to fast dynamic
systems, including inverted pendulum-like mechatronic systems [7–9].

On the other hand, when one seeks to control open-loop unstable systems such
as inverted pendulum-like behaved ones, the guarantee of stability associated with
control laws plays a crucial role concerning practical implementation purposes. In
particular, the synthesis of stabilizing MPC laws deals essentially with terminal state
constraints. One of the most heavily studied stability approach is one based on a
dual-mode framework, which is composed of two distinct control modes: in the first
mode, a conventional MPC law forces the system states to converge to a certain
invariant set at the end of the finite prediction horizon, while in the second control
mode, a local state-feedback controller takes over and drives the state to the desired
operating point within this set [10]. This approach, however, requires the compu-
tation of the invariant set parameters, which is obtained from an offline numerical
procedure. Although this set can be obtained offline with standard algorithms,
undesired convergence and numerical issues may appear as the system dimension
increases. Furthermore, the control horizon should be large enough such that the
system states at the end of this horizon lie in the invariant set; otherwise the
resulting optimization problem becomes infeasible, thus compromising both feasi-
bility and control performance.

Another way to guarantee the closed-loop system stability of MPC controllers is
to adopt an infinite prediction horizon, the so-called infinite-horizon model predic-
tive control (IHMPC). Since the infinite-horizon problems cannot be directly han-
dled by an optimization algorithm, the realization of IHMPC controllers is obtained
from the combination between a terminal cost term and terminal equality con-
straints [11]. The terminal cost, associated with open-loop stable modes of the
system, is calculated through the solution of the Lyapunov equation, whereas the
terminal constraints are necessary to limit the objective function when the system is
composed of integrating and unstable modes. However, stability proof is only
achieved if the constrained optimization problem is feasible. The feasibility is also a
critical issue of this approach, particularly because the domain of attraction of the
controller becomes quite reduced by virtue of the associated hard constraints.
Although there is already a rich theory in this field, the applications are heavily
limited to theoretical works [12]. Among the methods developed to circumvent this
issue so far, the approach based on slacked terminal constraints seems to be more
adequate for practical implementation purposes, with recent applications reported
in the literature, one implementation in a crude oil distillation [13] and the other in
an inverted pendulum mechatronic-like fast dynamic system, namely, customized
engine control unit [14].

This class of controllers formulates optimization problems that are always feasi-
ble through the suitable inclusion of slack variables in the control laws, without
compromising their convergence and stabilizing properties. Also, these IHMPC
controllers make use of the customized state-space models, obtained from an ana-
lytical expression of the step response of the system. Because of this, their formula-
tions have been gradually developed over time. Odloak [15] focused on systems
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with open-loop stable poles, his work being extended to contemplate simple inte-
grating poles as well in [6], commonly found in systems of the process industry.
Then, Santoro and Odloak [16] encompassed time delays to the formulation pro-
posed in [6]. For open-loop stable and unstable time-delay processes, Martins and
Odloak [12] synthesized their IHMPC controller. More recently, the master’s dis-
sertation [17] included integrating poles in the last work formulation [12], such that
its associated IHMPC controller can be directly applied to rotary inverted
pendulum-behaved systems, the case understudy of this chapter. The implementa-
tion in a real system of the feasible-optimization problem-based stabilizing MPC
controller proposed in [17] has not yet been documented in the literature. This gap
will be filled in the present work.

2. System description

The objective of the MPC controller to be explored in this work is to stabilize the
pendulum rod in the upright position while it leads the rotary arm angle to the
desired positions. To this end, the rotary inverted pendulum used here will be a
commercial-didactic prototype manufactured by Quanser. This prototype is
installed in the Control Laboratory of the Center for Technological Training in
Industrial Automation (CTAI) at the Federal University of Bahia (UFBA). Figure 1
illustrates the features of such a system [18].

The rotary inverted pendulum prototype consists of a servomotor system, whose
voltage Vm applied to it is responsible for generating torque in the rotary arm of
angle (θ). The long pendulum rod is connected to the end of the rotary arm, and its
angle, α, is zero when it is upright in the vertical position (cf. Figure 1).

The governing mathematical model of this system can be obtained by the Euler-
Lagrange formalism, resulting in the following well-known equations [18]:

€θ ¼
�bcsin αð Þ _αð Þ2 þ bdsin αð Þ cos αð Þ � ce _θ

� �
þ cfVm

ac� b2 cos 2 αð Þ
,

€α ¼
adsin αð Þ � b2 sin αð Þ cos αð Þ _α

2
� �

� becos αð Þ _θ
� �

þ bfcos αð ÞVm

ac� b2 cos 2 αð Þ
,

(1)

Figure 1.
Rotary inverted pendulum prototype manufactured by Quanser (left) and the schematic diagram (right).
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where €θ, _θ, €α, and _α represent angular accelerations and velocities associated
with rotary arm angle and inverted pendulum angle, respectively. In addition, the
parameters a, b, c, d, e, fð Þ are constants related to the physical dimensions of the
various components that make up the inverted pendulum prototype. Information
about the modeling and physical parameters of the system can be referred to [18].

Since one of the control objectives aims to the stabilization of the pendulum in
the upright position, it is quite adequate to assume that α will suffer small varia-

tions, which implies that sin αð Þ≈α, cos αð Þ≈0, and _α
2
≈0. Then, after some alge-

braic manipulations in Eq. (1), applying the Laplace transform as well, one turns
out to be the following transfer function matrix (G sð Þ):

θ sð Þ

α sð Þ

" #

¼

fcs2 � fd

s ac� b2
� �

s3 þ ecs2 � ads� ed
� �

bfs

ac� b2
� �

s3 þ ecs2 � ads� ed

2

6
6
6
6
4

3

7
7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G sð Þ

Vm sð Þ: (2)

This model representation of the system in terms of transfer functions is useful
to obtain the state-space formulation to be used in the stabilizing MPC control law,
as will be shown in the next section.

3. Stabilizing MPC formulation

The stabilizing MPC control law used in this work seeks to solve an infinite-
horizon optimization problem, such that its objective function is composed of the
following terms:

Jk ¼
X∞

j¼1

y kþ jjkð Þ � ysp � δy,k �ΨunFun
j�mð Þ

δun,k � j�mð ÞΔtδi,k

�
�
�

�
�
�

2

Qy

þ
Xm�1

j¼0

Δu kþ jjkð Þk k2R þ δy,k

�
�

�
�2

Sy
þ δun,kk k2Sun þ δi,kk k2Si ,

(3)

where m is the control horizon, Δu kþ jjkð Þ∈
nu is the vector of input moves at

time step kþ j, Q y ∈
ny�ny is a positive-definite weighting matrix of the controlled

outputs, R∈
nu�nu is a positive-definite weighting matrix of the input moves,

ysp ∈
ny is the vector of references of the controlled variables, and y kþ jjkð Þ∈

ny is

the vector of the predicted outputs at time step kþ j computed at time step k,
considering a state-space model obtained from an analytical expression of the step
response of the system described as in Eq. (2), namely:

xs kþ 1ð Þ

xst kþ 1ð Þ

xun kþ 1ð Þ

xi kþ 1ð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼

Iny 0ny�nd 0ny�nun ΔtIny

0nd�ny Fst 0nd�nun 0nd�ny

0nun�ny 0nun�nd Fun 0nun�ny

0ny 0ny�nd 0ny�nun Iny

2

6
6
6
6
6
4

3

7
7
7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

xs kð Þ

xst kð Þ

xun kð Þ

xi kð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

þ

Bs

Bst

Bun

Bi

2

6
6
6
6
6
4

3

7
7
7
7
7
5

|fflfflfflffl{zfflfflfflffl}

B

Δu kð Þ,

(4)
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y kð Þ ¼ Iny Ψst Ψun 0ny�nu

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C

xs kð Þ

xst kð Þ

xun kð Þ

xi kð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: (5)

In the state-space model defined in the pair of Eqs. (4) and (5), xs kð Þ∈
ny are the

artificial integrating states introduced by the incremental form of inputs, xst kð Þ∈
nst

are the stable states of the system, xun kð Þ∈
nun are the unstable states of the system,

and xi kð Þ∈
ny are the true integrating states of the system. In and 0n are identity and

null matrices of n� n dimension, respectively. The remaining matrices (Fst,
Fun,Bs,Bst,Bun,Bi,Ψst e Ψun) are obtained from step-response coefficients of the
transfer function matrix of the system, and the details can be referred to [19, 20].

In the objective function, there are also δy,k, δun,k, and δi,k that are slack variables

introduced into the control law so as to provide additional degrees of freedom to the
resulting optimization problem, thus assuring the feasibility of the controller. These
slack variables are weighted by positive defined matrices Sy ∈

ny�ny, Sun ∈
nun�nun,

and Si ∈
ni�ni, respectively. In fact, the set of slack variables adopted in the prob-

lem formulation is responsible for softening, when necessary, terminal constraints
that are imposed to limit the infinite-horizon objective function, owing to the
existence of open-loop unstable and integrating modes.

It should be kept in mind that the objective function defined in Eq. (3) can be
rewritten as follows:

Jk ¼
Xm

j¼1

y kþ jjkð Þ � ysp � δy,k �ΨunFun
j�mð Þ

δun,k � j�mð ÞΔtδi,k

�
�
�

�
�
�

2

Q y

þ
X∞

j¼1

y kþmþ jjkð Þ � ysp � δy,k � Ψun Funð Þ jδun,k � jΔtδi,k

�
�
�

�
�
�

2

Q y

þ
Xm�1

j¼0

Δu kþ jjkð Þk k2R þ δy,k

�
�

�
�2

Sy
þ δun,kk k2Sun þ δi,kk k2Si :

(6)

Then, with the aid of the state-space model used to carry out the prediction of
the system, it is possible to demonstrate that the objective function becomes:

Jk ¼
Xm

j¼1

y kþ jjkð Þ � ysp � δy,k �ΨunFun
j�mð Þ

δun,k � j�mð ÞΔtδi,k

�
�
�

�
�
�

2

Q y

þ
X∞

j¼1

xs kþmjkð Þ þ jΔtxi kþmjkð Þ þ Ψst Fstð Þ jxst kþmjkð Þþ

Ψun Funð Þjxun kþmjkð Þ � ysp � δy,k � Ψun Funð Þ jδun,k � jΔtδi,k

�
�
�
�
�
�
�

�
�
�
�
�
�
�

2

Q y

þ
Xm�1

j¼0

Δu kþ jjkð Þk k2R þ δy,k

�
�

�
�2

Sy
þ δun,kk k2Sun þ δi,kk k2Si :

(7)

It is worth emphasizing that if constraints are not imposed at the end of the
control horizon, the objective function value will increase unbounded. To this end,
the following terminal constraints are imposed on the optimization control problem:
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xs kþmjkð Þ � ysp � δy,k ¼ 0, (8)

xun kþmjkð Þ � δun,k ¼ 0, (9)

xi kþmjkð Þ � δi,k ¼ 0: (10)

Furthermore, the term associated with stable modes of the system comprises a
convergent series, giving rise to the so-called terminal cost, namely:

X∞

j¼1

Ψst Fstð Þjxst kþmjkð Þ
�
�

�
�2

Q y
¼ xst kþmjkð Þk k2Q , (11)

where Q is the terminal weighting matrix obtained from the solution to the
Lyapunov equation of the system. In symbols:

Q ¼ Fstð Þ⊤ Ψstð Þ⊤Q yΨstFst þ Fstð Þ
⊤
Q Fstð Þ: (12)

Therefore, the feasible-optimization problem-based stabilizing MPC control law
is summarized as follows:

Problem 1.

min
Δuk, δy,k, δun,k, δi,k

Jk ¼
Xm

j¼1

y kþ jjkð Þ � ysp � δy,k � ΨunFun
j�mð Þ

δun,k � j�mð ÞΔtδi,k

�
�
�

�
�
�

2

Q y

þ xst kþmjkð Þk k2Q þ
Xm�1

j¼0

Δu kþ jjkð Þk k2R þ δy,k

�
�

�
�2

Sy
þ δun,kk k2Sun þ δi,kk k2Si ,

subject to Eqs. (8), (9), and (10), and

Δu kþ jjkð Þ∈, j ¼ 0, … ,m� 1, (13)

 ¼

�Δumax ≤Δu kþ jjkð Þ≤Δumax

Δu kþ jjkð Þ ¼ 0, j≥m

umin ≤u k� 1ð Þ þ
Pj

i¼0Δu kþ ijkð Þ≤umax

8

>>><

>>>:

9

>>>=

>>>;

, (14)

where Δuk ¼ Δu kjkð Þ⊤ ⋯ Δu kþm� 1jkð ÞT
� �⊤

is the sequence of control moves

along the control horizon.
Remark 1. The slack variables play a remarkable role with respect to the feasi-

bility of the control formulation, i.e., the control law of Problem 1 will always
provide a feasible solution, either the nominal case (linear model) or plant-model
mismatch, an object under study of this work.

Remark 2. The weighting matrices Sy, Sun, and Si (additional tuning parameters
when compared to conventional MPC strategies) should be carefully selected. For
instance, the values of Sy should be chosen sufficiently large, e.g., orders of magni-

tude larger than Q y (≥ 103Q y), to guarantee that the solution of the slacked

optimization problem will only use the slack vector when the terminal constraints
need to be softened. While δun,k and δi,k do not need to be minimized a priori, by
issues of achieving the closed-loop stability as fast as possible, one seeks their
minimization weighted by large enough values of positive-definite Sun and Sin
(≥ 102Q y) in order to enforce them to zero in a finite number of steps.
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Remark 3. From the stability point of view, the master’s dissertation [17] dem-
onstrates the conditions necessary to prove that the objective function behaves as a
Lyapunov function, thus assuring that the control actions obtained from the solu-
tion of Problem 1 drive the system asymptotically to the reference value (desired
steady state), if it is reachable; otherwise, the system will converge to an equilib-
rium point (reachable steady state) lying at a minimum distance from the desired
steady state.

4. Results and discussion

This section is devoted to present the implementation results of the feasible-
optimization problem-based stabilizing MPC controller (Problem 1) in the rotary
inverted pendulum prototype described in Section 2. The ultimate goal of the
controller is to maintain the pendulum rod in the upright position after it has been
swung up to this position by the energy-based swing-up control scheme embedded
in the system. In addition, the IHMPC controller is simultaneously designed to track
the desired positions to be configured for rotary arm angles. In Quanser apparatus,
an unconstrained linear-quadratic regulator (LQR) controller makes up the control
system, besides the swing-up control strategy. The existing LQR strategy will be
replaced by the IHMPC controller, and this scheme is depicted in Figure 2.

The architecture used for this real-time implementation of the IHMPC controller
is summarized in Figure 3. From this figure, it is possible to note the information
exchange among software-hardware-equipment mechanisms of the prototype. The
control law is solved at each sampling time on the computer i7-8550H with 1.80GHz
processor and 16GB of RAM, using Matlab script and Quarc real-time control tool-
box. The software-hardware interface is done via USB communication through the
Q8-USB acquisition board. This acquisition system acts, in turn, as an interface
between the digital part of the system (controller) and the analogic one that is
composed of the amplifier (VoltPAQ-X1).

For the experimental results presented as follows, we consider a scenario of
square wave-type tracking on the rotary arm, while the controller must maintain
the pendulum rod around the upright vertical position, even in the existing
unmeasured disturbance scenarios. The constraints associated with the control
signal and control actions (decision variables) are those established in Table 1.

Figure 2.
Schematic representation of the application of the IHMPC controller in the rotary inverted pendulum prototype.
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Note that there is a strict condition of �1 V on the control actions. Also, the IHMPC

tuning parameters considered were sampling period Δt = 2 milliseconds, Q y ¼

diag 1, 6� 102
� �

, R ¼ 9:8� 10�2, Sy ¼ diag 105, 104
� �

, Sun ¼ diag 102, 6� 104
� �

, and

Si ¼ 102. The state estimator used here was the Kalman filter, whose tuning param-
eters associated with process noise and measurement noise were the following

covariance matrices Q Kalman ¼ I9�9 and RKalman ¼ 2:4� 10�6I2�2, respectively.
Finally, a control horizon of m ¼ 9 has been adopted as an appropriate value to
attain the desired control performance, which was chosen from a sensitivity
analysis, as will also be shown here.

The closed-loop system results are depicted in Figures 4 and 5. From Figure 4,
one can see that after about 5.5 seconds, the time necessary that the swing-up
control acted to lead the pendulum rod to its upright position, the IHMPC controller
takes over and performs quite well both tasks associated with the rotary arm angle
tracking and the stabilization of the pendulum rod within an acceptable range lying
at about �2∘. It is also noteworthy that after the execution of the square-wave
trajectory on the rotary arm angle, the controller had a great performance
concerning impulse-like external disturbances inserted in the pendulum rod since
the controlled variables are momentarily moved away from their set points, but
soon they are brought back to their original positions.

Even though the stability of the IHMPC controller is only related to the nominal
case (linear model), it proved to be very sufficient in a realistic plant-model
mismatch scenario, including nonlinearities existing in the rotary inverted
pendulum apparatus, such as dead zone, friction, backlash, hysteresis, and so on.
This model uncertainty scenario was responsible for non-prohibitive oscillations,
within a practical implementation purpose, on the constrained control signal
(cf. Figure 5), which were reflected in the controlled outputs.

Figure 3.
The architecture used in communication among software-hardware-equipment mechanisms.

Variables Minimum value (V) Maximum value (V)

Control signal �12 12

Control actions �1 1

Table 1.
Constraints on system inputs.
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Furthermore, it is worth mentioning that fulfilling a tighter constraint (�1V) by
a conventional stabilizing MPC controller, e.g., [11, 21], could result in an
unfeasibility scenario; however, since IHMPC controller used here is based on a
feasible-optimization formulation, its control law always will provide a feasible
solution while the system is controllable, thus becoming it implementable in prac-
tice. The IHMPC controller uses its additional degrees of freedom (slack variables),
when necessary, in order to comply with the terminal constraints. Figure 6 illus-
trates the use of the slack variables in the control problem. It is observed that the
controller makes use of these variables immediately after a perturbation in the
system occurred namely, set-point changes and unmeasured disturbance entrance,
situations in which it can be hard to comply with non-slacked terminal constraints.

Figure 4.
Controlled variables: rotary arm angle (θ) and pendulum rod angle (α).

Figure 5.
Behavior of the control signal (tension applied to the servomotor).
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However, as the system goes to an acceptable cyclic steady state around its set
point, due to the noise degree intrinsic to the system, the slack variables converge to
the origin very fast and systematically.

On the other hand, in order to obtain a satisfactory performance as in the results
presented earlier, an effort with respect to the controller tuning was necessary.
This tuning task is easier in the stabilizing MPC controllers than the conventional
finite-horizon MPC ones [13], as demonstrated in what follows. In this case, it was
sufficient to handle only the control horizon. In inverted pendulum-like fast
dynamic systems, when one applies a more aggressive control policy, i.e., small
control horizon, it can cause undesired overshoots, while adopting large control
horizons, it cannot have time sufficient to act with control action properly, thus
bringing unnecessary oscillations or even causing the instability of the closed-loop
system.

To work around this trade-off, we proceeded with sensitivity analysis on the
control horizon, keeping the same remaining tuning parameters shown in the

Figure 6.
Behavior of the slack variables associated with the feasible-optimization formulation of the IHMPC controller.
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preceding experimental results. Figure 7 summarizes the aforementioned analysis.
Note that as the control horizon increases, the oscillations decrease until the control
horizon m ¼ 9. However, a value greater than m ¼ 9 makes the closed-loop system
go back to having undesired and larger oscillations, thus jeopardizing the use of
energy associated with the control signal. Therefore, the use of the IHMPC control-
ler enabled a simple analysis concerning only one tuning parameter, which yielded
an appropriate value to meet the desired control performance in the real case.

5. Conclusions

In this chapter, we have investigated the application of an implementable and
stabilizing model predictive control model strategy in a commercial-didactic rotary
inverted pendulum apparatus, hitherto unexplored in the literature. Although the

Figure 7.
Sensitivity analysis on the control horizon of the closed-loop system.
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guarantee of stability of the controller is devoted to the nominal case (linear model),
its formulation based on a feasible-optimization problem allows it to be used in any
plant-model mismatch scenario in practice, such as one series of nonlinearities
existing in the real system, namely, dead zone, friction, and backlash, among other
unmodelled dynamics. The experimental results showed the effectiveness and
robustness of the controller in the aforementioned plant-model mismatch setting by
performing quite well its task in the rotary arm angle tracking and stabilization of
the pendulum rod around the upright position as well as in the optimum use of
energy associated with control efforts.

A simple tuning procedure was adopted by virtue of using a stabilizing MPC
controller, which allowed us to handle only one tuning parameter through sensitiv-
ity analysis on the control horizon. The value found was quite adequate to attain the
control objectives in terms of the trade-off existing between the performance on the
controlled variables and the use of energy related to the control signal.

The future direction for this research is to further extend this controller to
guarantee the stability of the nonlinear case, including the energy-based swing-up
control schemes.
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