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Chapter

Wavelet Neural Networks for
Speed Control of BLDC Motor
Ameer L. Saleh, Adel A. Obed, Hamza H. Qasim,

Waleed I.H. Breesam, Yasir I.A. Al-Yasir,

Naser Ojaroudi Parchin and Raed A. Abd-Alhameed

Abstract

In the recent years, researchers have sophisticated the synthesis of neural
networks depending on the wavelet functions to build the wavelet neural networks
(WNNs), where the wavelet function is utilized in the hidden layer as a sigmoid
function instead of conventional sigmoid function that is utilized in artificial neural
network. The WNN inherits the features of the wavelet function and the neural
network (NN), such as self-learning, self-adapting, time-frequency location,
robustness, and nonlinearity. Besides, the wavelet function theory guarantees that
the WNN can simulate the nonlinear system precisely and rapidly. In this chapter,
the WNN is used with PID controller to make a developed controller named WNN-
PID controller. This controller will be utilized to control the speed of Brushless DC
(BLDC) motor to get preferable performance than the traditional controller tech-
niques. Besides, the particle swarm optimization (PSO) algorithm is utilized to
optimize the parameters of the WNN-PID controller. The modification for this
method of the WNN such as the recurrent wavelet neural network (RWNN) was
included in this chapter. Simulation results for all the above methods are given and
compared.

Keywords: BLDC motor, particle swarm optimization (PSO), wavelet neural
network (WNN), speed control

1. Introduction

Brushless DC (BLDC) motors have a wide application in our life due to their
high-power density and high dynamic response. In addition, the BLDC motor is
utilized with constant loads, varying loads, and position applications with high
accuracy. This motor is generally controlled utilizing electronically commutation by
three-phase power semiconductor bridge inverter with rotor position sensors that
are required for starting and providing proper firing sequence to turn on the power
devices in the inverter bridge. Based on the rotor position, the power devices are
commutated sequentially every 60° [1, 2]. The mathematical model and the
Simulink model of BLDC motor to control the speed of a BLDC by using conven-
tional methods are introduced in Refs. [2–6]. The DC-DC converter technique is
utilized to control the speed of the motor [5, 6].
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In the past decade, artificial intelligence techniques such as neural networks,
fuzzy-neural networks, and wavelet neural networks control have been utilized to
control the speed of the BLDC motor [7–10]. Since BLDC motor is a multivariable
and nonlinear system, it is complex to obtain high performance by applying classi-
cal PID control. The main objective of this chapter is to develop wavelet neural
networks (WNNs) to control the speed of the BLDC motor, and the recurrent
wavelet neural network (RWNN). These methods lead to an enhanced dynamic
performance of the system of motor drive and are resistant to load perturbations.
The learning strategy for the wavelet neural network and PID controller is devel-
oped based on PSO algorithm.

2. Wavelet networks

The combination of wavelet principle and neural networks has led to producing
new representing network of wavelet neural network (WNN). Wavelet networks
are feedforward networks utilizing wavelets as activation functions. Wavelet net-
works substitute the sigmoid activation components of the classical feedforward
artificial neural networks (ANNs) with wavelets transform function. In wavelet
neural networks, both the translation (position) and the dilation are tuning besides
weights. The utilization of wavelet node outcomes in efficient networks are opti-
mally approximated and estimated for nonlinear and nonstationary functions
[11, 12]. There are two main types to construct the wavelet neural network:

• Wavenet (fixed grid WNs): in this type, the neural network and the wavelet
processing are accomplished separately. The input signal is first decomposed
utilizing some wavelet bases by neurons in the hidden layer with fixed wavelet
bases; positions and dilations of the wavelets are preset and only the weights
have to be adjusted by learning the network. The main problem is the choice of
wavelet frames/bases [12, 13].

• Wavelet network (adaptive WNs): this type merges the two theories, which
are the dilation and the translation of wavelets along with the summer weights
that are adjusted in conformity with some learning procedures. Generally, the
modeling of the wavelet network involves two steps: determining the network
construction (the number of neurons in each layer, the number of layers, and
the type of activations function (wavelet transform)) and modifying the
wavelet network parameters by some optimizing algorithm method [12, 13].

3. Structure of wavelet neural network (WNN)

The arrangement of WNN is similar to that of the neural network. The hidden
layer contains neurons, whose activation functions are driven from a wavelet basis.
These wavelet neurons are generally referred to as wavelons, whose parameters of
the inputs contain the wavelet dilation and translation elements [12, 14]. Wavelet
networks can be categorized into recurrent and nonrecurrent (feedforward) types.

3.1 Feedforward wavelet neural network (FFWNN)

The FFWNN has no feedback connection. That is, the output is calculated
straightly from the input with feedforward connections [12]. There are two
arrangements of feedforward wavelet networks:

2

Automation and Control



3.1.1 Radial basis wavelet neural network (RBWNN)

Radial basis wavelet neural network (RBWNN) is the simplest form of the
wavelet network [15, 16]. The arrangement of radial basis wavelet neural network
(RBWNN) is shown in Figure 1. This network approaches any required signal f(t)
by simplifying a linear combination of a group of daughter wavelets ψa,b, where

ψa,b are created by dilation a and translation b from mother wavelet ψ [11, 17].

ψa,b ¼ ψ
x� b

a

� �

(1)

The network output is specified as follows [10, 18]:

y ¼
X

N

n¼1

wNψaN,bN (2)

where x is the input signal, N is the number of neuron in the hidden layer, and
wN is the weights of the output. The network parameters wN, aN, and bN can be
training and optimizing by any optimization technique. In this chapter, the PSO
algorithm is used to minimize the error according to the fitness function as will be
demonstrated later.

3.1.2 Conventional wavelet neural network

The conventional WNN is a general form of radial basis wavelet neural network
[19]. Figure 2 depicts the building of the conventional wavelet network, the num-
ber of hidden layers and neurons that are selected to create an appropriate WNN,
and the parameters that are optimized by the PSO algorithm. The input layer can be
represented by a vector x ¼ x1, x2, … , xM½ �, the output layer represented by a vector

y ¼ y1, y2, … , yK
� �

, and the activation function of hidden layer is the wavelet basis
function. The output Yj can be given as follows [11, 19]:

Yj ¼ σ uj
� �

¼ σ
X

N

n¼1

wj,n ψanbn

X

M

m¼1

vn,m xm

 !

þ g

" #

(3)

Figure 1.
The building of radial basis wavelet neural network (RBWNN).
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where, j ¼ 1, 2, 3, … , K;M is the number of inputs; K is the number of output
layers; N is the number of hidden layers; g is the bias; and σ uð Þ is the activation
function of the output layer, the most common formula of activation function being
sigmoid function which can be illustrated as follows [12]:

σ uð Þ ¼
1

1þ e�u
(4)

3.2 Recurrent wavelet neural networks (RWNNs)

In recurrent WNNs, the output depends not only on the present inputs of the
network but also on the prior outputs or conditions of the network [12, 15]. Recurrent
networks have feedback and are also known as feedback networks. There are several
types of recurrent networks that depend on the feedback connection [12–22].

In the recurrent wavelet network structures, the wavelet network input involves
delayed samples of the system output y(k). The number of inputs increases with the
order of the system actuality demonstrated. Figure 3 depicts the structure of recurrent
wavelet network. Hence, the output for each layer can be calculated as [20, 23, 24]:

ψN ¼ ψ
uN � bN

aN

� �

(5)

where aN and bN are translation and dilation parameters of wavelets. The inputs
of this layer for time n can be denoted as:

uN nð Þ ¼ xN nð Þ þ ψN n� 1ð Þ �∅N (6)

where ∅N represents the weight of the self-feedback loop. The output of the
network is given as follow:

y ¼
X

N

N¼1

wNψ
uN � bN

aN

� �

(7)

u nð Þ ¼ x n� Dið Þ þ y n� D0ð Þ � rN (8)

Figure 2.
The building of conventional wavelet neural network.
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where x is the input signal, N is the number of neuron in the hidden layer, wN is
the output weight, Di, D0 is the number of delay for the input and output network,
and rn is the weight of the output feedback loop.

4. Particle swarm optimization

Particle swarm optimization is an inhabitance-based computational procedure
motivated from the simulation of gregarious behaviors (social-psychological): fish
schooling, bird flocking, and swarm theory. PSO was firstly invented and
established by Eberhart and Kennedy [25, 26]. In the PSO algorithm, in place of
utilizing evolutionary operators such as mutation and crossover to operate algo-
rithms, the population dynamics emulates a “bird flock” behavior, where social
sharing of information takes place and individuals can yield from the finds and
prior experience of all the other companions through the search for food. Therefore,
each companion, called particle, in the population, which is called swarm intelli-
gence as shown in Figure 4, is assumed to fly in several directions over the search
space to meet the request fitness function [27, 28].

4.1 Particle swarm optimization algorithm

The PSO algorithm is one of the evolutionary computation techniques to solve
optimization troubles. In this algorithm, a swarm of individuals or entities called
particles flies over the exploration space [29, 30]. Each particle acts as a probable

Figure 4.
Swarm intelligence.

Figure 3.
The recurrent wavelet neural network.
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solution to the optimization troubles. The position of a particle is influenced by the
best position visited by itself, i.e., its own knowledge or experience and the position
of the best particle in its knowledge of neighboring particles. When the neighbor-
hood is the entire swarm, the best position in the neighborhood of the particle is
denoted as the global best position and the resulting algorithm is referred to as the
global best position PSO, where the finest prior position that gives the minimum
fitness value of any particle is called local best position (lbest). The index of the best
particle of all particles in the population is called global best position (gbest). The
algorithm is generally referred to as the lbest PSO when smaller neighborhoods are
used. For each particle, the performance is measured utilizing an objective function
that differs depending on the optimization challenge. The basic PSO algorithm is
given below according to the flow chart which is shown in Figure 5 [31–35].

Step 1. Generation of population particles
Create particles regularly distributed over x, then choose the number of parti-

cles, number of iterations, modification accelerating coefficients c1 and c2, the
inertia weight (w) and random numbers R1, and R2 to start the optimum searching.

Step 2. The initialization for each particle
Initialize the present position xi tð Þ and the velocitiy vi tð Þ for each particle.

The particles are randomly produced among the minimum and maximum limits
of parameter values. Each particle is treated as a point in a D-dimensional space.
The ith particle is denoted as xi ¼ xi1, xi2, … , xiDð Þ. The velocity for the particle i is

Figure 5.
General flow chart of PSO.
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represented as vi ¼ vi1, vi2, … , viDð Þ, then the local best position (lbest) and the
global best position (gbest) are initialization.

Step 3. Evaluation of fitness function
The overall performance (speed of convergence, efficiency, and optimization

accuracy) of the PSO algorithm counts on the objective function that observes the
optimization search. The objective function is chosen to minimize the reference
constraints. The popular performance standards based on the error condition are
integrated absolute error (IAE), integrated of time weight square error (ITSE), and
integrated of square error (ISE) that can be estimated theoretically in the frequency
domain [31, 32, 36]. In this chapter, multiobjective functions are utilized based on
the integral of the squared error (ISE) criterion and overshoot (MpÞ criterion as
follow [37, 38]:

fitness function ¼ min ISEð Þ þ min Mp

� �

(9)

where

ISE ¼

ð

e2 tð Þdt (10)

Mp ¼ max nð Þ � nrefð Þ (11)

e ið Þ ¼ D ið Þ � y ið Þ (12)

where y(i) is the system output and D(i) is the desired output, while n is the
actual speed and nref is the desired speed.

Step 4. Update the swarm
The updating of the velocity vi tð Þ and the present position xi tð Þ for each particle

in the swarm is done according to Eqs. (13) and (14). Then the main loop and the
objective function are calculated for updating positions of particles. If the new value
is improved than the previous lbest, the new value is fixed to lbest. Similarly, gbest
value is also updated as the best lbest. Velocity of each agent can be modification by
the following:

vkþ1
i ¼ w ∗ vki þ c1 ∗R1 ∗ lbesti � xki

� �

þ c2 ∗R2 ∗ gbesti � xki
� �

(13)

And, the present position can be modification by the following:

xkþ1
i ¼ xki þ vkþ1

i (14)

where xki is the present position of particle i at iteration k, vki is the velocity of
particle i at iteration k, w is the inertia weight which can be represented in Eq. (15),
c1, c2 represent positive acceleration constants and R1, R2 are random variables
uniformly distributed in the range [0; 1].

w ¼ wmax �
wmax �wminð Þ

itermax
(15)

where, wmin is the inital weight, wmax is the final weight, itermax is the maxi-
mum iteration number.

Step 5. Stopping criteria
If the current iteration number reaches the predetermined maximum iteration

number, then exit. Otherwise, execute another initialization for each particle and
reiterate the process.
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5. Speed control of BLDC motor based on wavelet neural network

The WNN-PID controller based on PSO is proposed in this section, which
combines the ability of the artificial neural networks for learning with the ability of
wavelet for identification, control of dynamic system, and also having the capability
of self-learning and adapting [10, 11, 19, 37]. Two types of wavelet network are
modified in this section, feedforward WNN and proposed recurrent WNN with
online tuning optimization using PSO algorithm [22–24].

5.1 WNN-PID controller based on PSO

In this type of controller, the WNN is utilized with PID controller based on PSO
algorithm. WNN-PID controller utilizes online learning by PSO algorithm, where
the PSO learning algorithm is used to train the translation parameters ak and bk,
weights connection in the WNN, and the parameter (kp, ki, kd) of PID controller
on-line with the model of BLDC motor to control the speed at the desired value.
There are two major issues to implement any wavelet neural networks. First, the
network architecture is used and second, the algorithm is used to learn the network
by the PSO algorithm. Figure 6 depicts the block diagram of the BLDC motor with
WNN-PID based on PSO algorithm. The structure and the design of the WNN-PID
controller will be given in the next subsection.

5.2 Design of the structure of WNN-PID controller based on PSO training
algorithm

1. Design of PSO algorithm: the PSO algorithm is discussed in Section 5, where
each particle parameters are initiated to make a population and then the
algorithm is accomplished according to the flow chart given in Figure 6,
which includes training the parameters of this controller to guarantee the
minimization of an objective function. The objective fitness is evaluated as
follows:

fitness function ¼ min ISEð Þ þ min Mp

� �

(16)

where ISE is the integrated of square error and Mp is the maximum peak
overshoot.

2. Design of WNN-PID controller: to design the WNN-PID controller, the
type of WNN must be selected as shown in Section 3 and also the number of
layers and neurons and the wavelet function type must be selected [16]. In this
chapter, the input layer has two inputs: the speed error and the change of this
error. One hidden layer with four neurons is used. Three types of mother
wavelet functions are used and they are: the Mexican hat function is
[10, 11, 22, 37, 39]

ψ xð Þ ¼ 1� x2
� �

e
�x2

2 (17)

The first partial derivative Mexican hat is

ψ xð Þ ¼ �xð Þe
�x2

2 (18)
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The Morlet's basic wavelet function is

ψ xð Þ ¼ Cos w xð Þe
�x2

2 (19)

where x is the desired signal and w is a variable value, which was adopted to
satisfy the admissibility condition. w = 5 is chosen. The output layer contains one
output which is the sum of PID controller and WNN outputs. The parameters
values of the WNN-PID controller, such as the dilation factors ak0s and the transla-
tion factors bk0s of the mother wavelet function, the weights connection wk0s of the
WNN, and PID parameters (kp, ki, kd), are optimized online in PSO algorithm. The
results given in this chapter are for Mexican hat function only. The results for the
rest functions are similar to that in Mexican hat and are not given.

6. Simulink implementation and results for a BLDC motor drive based
on WNN-PID controller

6.1 Speed control based on feedforward WNN-PID controller

The feedforward WNN with PID controller (FWNN-PID) is utilized to
control the speed of the BLDC motor as shown in the Simulink model in Figure 7.
The inputs of the WNN are the speed error and the change of this error, while the
hidden layer has four neurons and one output in the output layer. The translation
and dilation factors, weights connection for WNN, and PID parameters are learning
on-line in PSO algorithm. The output of WNN is given by Eq. (2).

The PSO parameters are given in Table 1. These parameters are chosen to get
optimal parameters for the PID controller and the wavelet neural network; when it
is tuned on-line in PSO algorithm and BLDC motor drive, the optimal values for the
PID controller parameters and the WNN parameters (a's, b's, w's) are given in
Tables 2 and 3, respectively.

The BLDC motor drive is implemented in Simulink/Matlab program as shown in
Figure 6 with the optimal values of PID controller parameters and the optimal

Figure 6.
Block diagram of the BLDC motor with WNN-PID controller based on PSO algorithm.
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values of WNN parameters. Figure 8 shows the speed response of the BLDC motor
due to change in reference speed. The motor is started at a speed of 500 rpm and
then is changed in step to a speed of 500 rpm for every 0.2 s. The actual speed of the
motor is tracking the desired speed with a good response. The system starts at no
load and suddenly a torque 2 N m (full load) is added at t = 0.4 s. Figure 9 shows the
speed response of the BLDC motor at 2000 rpm during no load and load condition.
The developed torque during no load and load condition is shown in Figure 10. The
position signal, the torque-speed characteristics, the phase current ia, Phase Back-
emf ea voltage, and line voltage vab are given in Figures 11–15, respectively.

PSO_Parameters Value

Size of the swarm “no of birds” 50

Maximum iteration number 50

Dimension 15

PSO parameter c1 1.2

PSO parameter c2 1.2

Wmax 0.9

Wmin 0.3

Table 1.
PSO parameter values.

Parameters Kp Ki Kd

Values 6.958 3.241 0.006274

Table 2.
PID parameters tuned using PSO for WNN-PID controller.

WNN dilation parameters WNN translation parameters WNN weights parameters

a1 a2 a3 a4 b1 b2 b3 b4 w1 w2 w3 w4

4.535 1.227 3.013 3.141 1.248 0.314 2.576 1.352 3.632 3.321 2.2843 2.4722

Table 3.
WNN parameters tuned using PSO.

Figure 7.
Simulink model of WNN-PID controller.
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6.2 Speed control based on proposed recurrent WNN-PID controller

The RWNN that is proposed here is similar to that of feedforward WNN with
feedback connections. The RWNN consists of three layers, with two inputs in the

Figure 8.
Step change in speed response with feedforward WNN-PID controller.

Figure 9.
Speed response of the BLDC motor with WNN-PID controller.

Figure 10.
Developed torque of BLDC motor with feedforward WNN-PID controller.

11

Wavelet Neural Networks for Speed Control of BLDC Motor
DOI: http://dx.doi.org/10.5772/intechopen.91653



input layer, the hidden layer has four neurons, with one output in the output layer
and feedback connection for each layer. In this section, the feedback connection is
called “Fully feedback.” Besides, the RWNN contains a number of delay samples in
the input and output layers as shown in Figure 16. The translation and dilation
factors, weights and PID parameters are learning on-line to utilize PSO method in

Figure 11.
Position stair signal of BLDC motor with WNN-PID controller.

Figure 12.
Torque-speed characteristics of BLDC motor with feedforward WNN-PID controller.

Figure 13.
Phase current ia of BLDC motor with feedforward WNN-PID controller.
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the same manner used in the previous subsection and the results are given in
Tables 4–6. The output of WNN is described by Eqs. (7) and (8).

The BLDC motor drive system with RWNN-PID controller is simulated in
Matlab/Simulink program as shown in Figure 6. The time period that is assumed in

Figure 14.
Phase back-emf ea voltage for BLDC motor with WNN-PID controller.

Figure 15.
Line voltage vab for BLDC motor with feedforward WNN-PID controller.

Figure 16.
Simulink model for a proposed recurrent WNN-PID controller.
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this model is 1 s. The WNN-PID controller can be utilized for speed control in a
wide range between 0 and the rated value, with better performance and more
flexibility in the controller. Figure 17 depicts the step change in speed of the BLDC.
The motor is started at a speed of 500 rpm and then is changed in step to 500 rpm
each 0.2 s. The actual speed of the motor is tracking the desired speed with a good
response. The system starts at no load and suddenly a torque 2 N m (full load) is
added at t = 0.4 s. Figure 18 shows the speed response of the BLDC motor at
2000 rpm during no load and load conditions. The developed torque during no load
and load conditions is shown in Figure 19. The position signal, the torque-speed
characteristics, the phase current ia, Phase Back-emf ea voltage and line voltage vab
are given in Figures 20–24, respectively.

Parameters Kp Ki Kd

Values 4.8256 2.6003 0.0105

Table 4.
PID parameters tuned using PSO for RWNN-PID controller.

Feedback parameters of RWNN

qq1 qq2 qq3 qq4 qL

0.2957 0.4738 1.0581 4.2460 3.6623

Table 6.
Feedback parameters of RWNN tuned using PSO.

Figure 17.
Step change in speed of BLDC motor with RWNN-PID controller.

WNN dilation parameters WNN translation parameters WNN weights parameters

a1 a2 a3 a4 b1 b2 b3 b4 w1 w2 w3 w4

2.1781 3.0484 3.0181 1.9509 0.1266 5.3694 1.8668 3.2328 0.8769 3.2828 2.7151 0.04124

Table 5.
RWNN parameters tuned using PSO.
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Figure 18.
Speed response of the BLDC motor with RWNN-PID controller.

Figure 19.
Development torque of BLDC motor with RWNN-PID controller.

Figure 20.
Position stair signal of BLDC motor with RWNN-PID controller.

15

Wavelet Neural Networks for Speed Control of BLDC Motor
DOI: http://dx.doi.org/10.5772/intechopen.91653



Figure 21.
Torque-speed characteristics of BLDC motor with RWNN-PID controller.

Figure 22.
Phase current ia of BLDC motor with RWNN-PID controller.

Figure 23.
Phase back-emf ea voltage of BLDC motor with RWNN-PID controller.
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7. Comparison of two methods for speed control of BLDC motor drive

Comparing among various wavelet neural network schemes shows that the
WNN-PID is a preferable method to overcome the nonlinearity in this model with
high reliability, more robustness and being good with better performance than the
RWNN method as shown in Table 7. In addition, the performance of the WNN
controller in the real application tends to make the system more robust and less
sensitive as well as high precision and excellent flexibility.

8. Conclusion

In this chapter, the WNN is used with the PID controller to make an adapted
controller named as the WNN-PID controller. This controller is utilized to control
the speed of BLDC motor in an extensive range and can stock preferable perfor-
mance than a traditional controller. Two schemes of wavelet neural network are
modified for speed control of BLDC motor such as WNN and RWNN. PSO algo-
rithm is utilized for tuning and learning the parameters of the two controllers. The
two methods are implemented and tested for different conditions and the perfor-
mance is compared as shown in Table 7. From the simulation results, one can
conclude that the proposed WNN controller with PID controller is the best scheme
in performance and stability. In addition, using the proposed WNN controller to
control the speed of BLDC motor gives better results compared to traditional
methods.

Figure 24.
Line voltage vab for BLDC motor with RWNN-PID controller.

Performance WNN-PID RWNN-PID

Rise time (s) 0.0035 0.0038

Settling time (s) 0.03 0.04

Steady state error 3 � 10�3% 2 � 10�3%

Overshoot 0.12% Approximately 0%

Table 7.
Performance of speed control of BLDC motor in each methods.
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