
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

Electrical Conductivity of Molten
Salts and Ionic Conduction in
Electrolyte Solutions
Shigeru Tamaki, Shigeki Matsunaga and Masanobu Kusakabe

Abstract

A microscopic description for the partial DC conductivities in molten salts has
been discussed by using a Langevin equation for the constituent ions. The memory
function γ(t) can be written as in the form of a decaying function with time.
In order to solve the mutual relation between the combined-velocity correlation
functions Zσ

�(t) and the memory function γ(t) in a short time region, a new
recursion method is proposed. Practical application is carried out for molten NaCl
by using MD simulation. The fitted function is described by three kinds of Gaussian
functions and their physical backgrounds are discussed. Also the electrical conduc-
tivity in aqueous solution of electrolyte has been obtained, based on a generalized
Langevin equation for cation and anion in it. This treatment can connect and
compare with the work of computer simulation. The obtained results for concen-
tration dependence of electrical conductivity are given by a function of the square
root of concentration. The electrophoretic effect and the relaxation one are also
discussed.

Keywords: conductivity of molten salts, conductivity of electrolytic solution,
Langevin equation, MD simulation

1. Introduction

The phenomena of transport properties in ionic liquids are of great important in
the industrial science and technology, as well as in physics and chemistry. In con-
nection with these, a number of experimental and theoretical studies have been
published until the present time [1–3]. Ionic liquids are mainly classified into two
categories; one is a group of molten salts and the other is a large number of
electrolytic solutions, in particular, aqueous solutions of electrolytes.

In the case of molten salts, Sundheim discovered that the ratio of the partial
conductivities of cation and anion were always equal to their inverse mass ratio,
namely, σ+(DC)/σ�(DC) = m�/m+ [4].

Later on, this golden rule or a unified rule was theoretically explained by our
group [5–9]. Detailed procedure will be shown in what follows.

Paralleling to above discovery, a number of scientific studies in molten salts have
been developed from 1960s by several researchers [10, 11].
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In order to study the structural and transport properties in molten salts, exper-
imental investigations and molecular dynamics simulations have also been carried
out from mid-70s of the last century [12–16].

Following to these, we have been engaged in the study of transport properties
in molten salts [6–9, 17]. We have carried out a theoretical study on the
electrical conductivity of molten salts, starting from the Langevin equation and
the velocity correlation functions for the constituent ions. Subsequently this
treatment was successful to obtain the golden rule σ+/σ� = m�/m+ in a microscopic
view point.

It remains, however, unclear how the adopted Langevin equation can be effec-
tively solved within a short time region, under an appropriate memory function,
because our former theory was only successful to get the partial conductivities.

We like to discuss more generally the correlation between the velocity correla-
tion functions incorporated with the partial DC conductivities and some of useful
memory functions which are closely related to the friction constants acting on
cations and anions in molten salts.

Preceding the investigation for molten salts, on the other hand, there have been
a number of studies for ionic solutions since the discovery of Faraday, in which a
typical example is electrolytic solution. During such long-termed history of electro-
chemistry, it was well established by Kohlrausch that the experimental results on
the ionic conductivities in dilute electrolytic solutions indicated the law of indepen-
dent migration of ions, Λc = Λ0 � kc1/2, where Λ0 being the conductivity in the dilute
limit and c the concentration and k the constant specified by the electrolyte
dissolved in water.

The beginning of the modern aspect, in particular, on the thermodynamic and
transport properties in electrolytic solutions might be originated from Debye-H-
ückel theory [18].

In order to explain the ionic conductivity in electrolytic solution, successful
works following to Debye-Hückel theory have been reported by Onsager [19],
Prigogine [20], and Fuoss and his co-worker [21]. In these theories, Λ0 is
treated by the Stokes law and the concentration dependence is mainly explained
by the electrophoretic effect and relaxation one. Therefore, these treatments
are based on a kind of mixing of the microscopic and partially macroscopic
view point.

Starting from the Liouville equation, statistical mechanics of irreversible
process for the ionic conductivity in electrolytic solution have been developed by
Davis and Résibois [22] and Friedman [23], although they did not derive
any explicit expressions for the friction constant in terms of inter-particle
interactions.

It has been required to investigate the static and dynamic properties of dissolved
ions in aqueous solutions from the microscopic view point. Along this requirement,
the technique of molecular dynamic simulation has been applied, using some
qualified inter-particle potentials. Various theoretical attempts have been recently
tried to establish the dynamical behaviors of dissolved ions in these solutions, which
is able to discuss parallel with results obtained by MD simulation [24–26].

Chandra and Bagchi [27] have developed a new theoretical approach to study
the ionic conduction in electrolytic solutions, based on the combination of the mode
coupling theory and the generalized Langevin equation, and they were successful
to obtain the Onsager equation. However, there still remains the task to obtain how
to derive the theoretical formula for Λ0 in terms of inter-particle potentials and
corresponding pair distribution functions.
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We will apply the linear response theory for the electrolytic solution and to
obtain Λ0 and the concentration dependence of the conductivity in terms of
pair-wise potentials and pair distribution functions among ions and water mole-
cules, which can compare parallel with dynamical properties of MD simulation [28].

In addition, we will also clarify how the electrophoretic and relaxation effects
treated by many researchers are explained in a microscopic view point.

From these, we will see what is similar and what is different for the case of
molten salts and that of electrolytic solutions.

2. Generalized Langevin equations for the cation and anion in a
molten salt

Let us consider a molten salt composed of the density n+ = n� = n0 (= N/V0), of
the constituent ion’s masses m+ and m�, and of the charge z+ =� z� = z = 1, where N
being the total number of cation and/or anion in the volume V0.

A golden rule, σ+(DC)/σ�(DC) = m�/m+, can be obtainable from a generalized
Drude theory, as a law of motion under an electric field [5].

As an extension, the generalized Langevin equation for an arbitrary cation or
anion in the system under an external field E is written as follows:

m�dvi
� tð Þ=dt ¼ �m�

ð

�∞

t

ξ� t� t0ð Þvi
� t0ð Þdt0 þ Ri

� tð Þ þ z�eE (1)

where ξ�(t) and Ri
�(t) are the retarded friction function in relation to the

friction force and the random fluctuating force, acting on the cation or anion i,
respectively.

After taking the ensemble average, equations of time evolution based on Eq. (1)
in respect to the partial ionic conductivities are then written as follows:

m�d<vi
� tð Þvj

� 0ð Þ> =dt ¼ �m�

ðt

�∞

< ξ� t� t0ð Þvi
� t0ð Þvj

� 0ð Þ>dt0 for i ¼ j and i 6¼ jð Þ

(2)

and

m�d<vi
� tð Þvk

∓ 0ð Þ> =dt ¼ �m�

ðt

�∞

< ξ� t� t0ð Þvi
� t0ð Þvk

∓ 0ð Þ> for i 6¼ kð Þ (3)

And the equation of time evolution in relation to the diffusion constants of
constituent ions is written as follows:

m�d<vi
� tð Þvi

� 0ð Þ> =dt ¼ �m�

ðt

�∞

< ξ� t� t0ð Þvi
� t0ð Þvi

� 0ð Þ>d t0 (4)

As was previously illustrated [9], the retarded friction function ξ�(t) cannot be
independent for the averaging procedure and we have to define new memory
functions as follows:

< ξ� t� t0ð Þvi
� t0ð Þvj

� 0ð Þ> ¼ γσ
� tð Þ<vi

� t0ð Þvj
� 0ð Þ> for i ¼ j and i 6¼ jð Þ (5)

and
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< ξ� t� t0ð Þvi
� t0ð Þvk

∓ 0ð Þ> ¼ γσ
� tð Þ<vi

� t0ð Þvk
∓ 0ð Þ> for i 6¼ kð Þ (6)

While, in the case of diffusion constants of constituent ions, that is, E = 0, we
can define

< ξ� t� t0ð Þvi
� t0ð Þvi

� 0ð Þ> ¼ γD
� tð Þ<vi

� t0ð Þvi
� 0ð Þ> (7)

It is emphasized that the memory functions γσ
�(t) is not equal to γD

�(t) as
shown in previous paper [9]. In other words, the retarded friction function,
ξ�(t � t0), is a kind of vector function and is varied with the environment such
as the existence of electric field E. Therefore, the memory function is varied in
accordance with what sort of evolution is considered in the time-dependent
correlation function [29].

Assuming that the ensemble average for the fluctuating force is zero and if we
apply the following electric field,

E tð Þ ¼ Re E0 exp iωtð Þ (8)

where Re means the real part and ω is the angular frequency, then the averaged
ion’s velocity induced by this external filed is equal to

<vi
� tð Þ> ¼ Re μ� ωð Þz�eE tð Þ (9)

where μ�(ω) is the mobility of cation or anion.
Putting (9) into the equation of motion (1) after taking the ensemble average,

we have

μ� ωð Þ ¼ 1=m�
� �

1= iωþ ~γ� ωð Þ
� �� �

(10)

where

~γ� ωð Þ ¼

ð

0

∞

γ� tð Þ exp �iωtð Þdt (11)

Therefore, the current density is written as follows:

j� tð Þ ¼ nz�2e2 <vi
� tð Þ> ¼ Re nz�2e2μ� ωð ÞE tð Þ (12)

The partial conductivity is, then, equal to

σ� ωð Þ ¼ nz�2e2μ� ωð Þ ¼ nz�2e2=m�
� �

1= iωþ ~γ� ωð Þ
� �� �

(13)

and in the limit of ω = 0,

σ� DCð Þ ¼ nz�2e2μ� 0ð Þ ¼ nz�2e2=m�
~γ� 0ð Þ

� �

(14)

Therefore, ~γ� 0ð Þ is equal to the effective friction constant acting on each ion.
According to our previous studies [7–9], the following relation was recognized:

~γþ 0ð Þ ¼ ~γ� 0ð Þ � ~γ 0ð Þ (15)

where ~γ 0ð Þ is expressed as follows:
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~γ 0ð Þ ¼ α0=3μ
� �1=2

, 1=μð Þ ¼ 1=mþð Þ þ 1=m�ð Þ (16)

and

α0 ¼ n

ð

0

∞

∂
2ϕþ� rð Þ=∂r2 þ 2=rð Þ ∂ϕþ� rð Þ=∂rf g

� �

ɡþ� rð Þ � 4πr2dr (17)

ϕ+�(r) and ɡ+�(r) in this equation are the inter-ionic potential between cation
and anion and the corresponding pair distribution function, respectively.

Therefore, we have a golden rule for the partial conductivities in a microscopic
scale as follows:

σþ DCð Þ=σ� DCð Þ ¼ m�=mþ (18)

In the following sections, as a numerical example, the MD simulation on molten
NaCl at 1100 K is often utilized, for which the interionic potential functions
suggested by Tosi and Fumi [30] for a study of solid alkali halides are applied. In
order to make sure that the Tosi-Fumi potential for NaCl can be valid in the liquid
state, we have estimated the partial pair distribution functions of molten NaCl
liquid, ɡij(r) (i,j = Na+, Cl�) as shown in Figure 1, which agree with those of
experimental results obtained by Edwards et al. [31].

Using these ɡij(r), we have also estimated the total neighboring numbers around
arbitrary ions located at the distance r, which describe as nij = 4πʃ0

rr2dr, as shown in
Figure 2a–c.

The nearest neighbor number is defined as nij(r1), where r1 is the position of the
first minimum of ɡij(r).

Figure 1.
Pair distribution functions, gij(r), for molten NaCl at 1148 K, obtained by MD simulation.
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Then, the nearest neighbors around a Na+ are nearly equal to 5.0, since the
distance r1 is taken at the minimum position of ɡNa-Cl(r) as shown in Figure 2a.

The application of Tosi-Fumi potentials in the MD simulations for viscosity and
electrical conductivity is also valid to reproduce their experimental results [5].

Therefore, the following MD simulations for molten NaCl must be reliable to see
their microscopic view.

3. Linear response theory for the partial conductivities

On the other hand, according to our previous investigations [6–9, 17, 29], the
partial DC conductivities σ+(DC) and σ+(DC) are expressed as follows,

σþ DCð Þ ¼ σþþ þ σþ� ¼ 1=3kBTð Þ

ð

0

∞

< jþ tð Þ j 0ð Þ>dt (19)

σ� DCð Þ ¼ σ�� þ σþ� ¼ 1=3kBTð Þ

ð

0

∞

< j� tð Þ j 0ð Þ>dt (20)

where

σ�� ¼ 1=3kBTð Þ

ð

0

∞

< j� tð Þ j� 0ð Þ>dt (21)

σþ� ¼ 1=3kBTð Þ

ð

0

∞

< jþ tð Þ j� 0ð Þ>dt (22)

and

j tð Þ ¼ jþ tð Þ þ j� tð Þ (23)

where

jþ tð Þ ¼
X

n

i¼1

zþevi
þ tð Þ, j� tð Þ ¼

X

n

k¼1

z�evk
� tð Þ (24)

Considering the ensemble averages of (19) and (20), it is convenient to define
the velocity correlation functions Zσ

+(t) and Zσ
�(t) as follows:

Figure 2.
(a) gNa-Cl(r) and nNa-Cl(r) for molten NaCl at 1148 K, obtained by MD simulation. (b) gNa-Na(r) and
nNa-Na(r) for molten NaCl at 1148 K, obtained by MD simulation. (c) gCl-Cl(r) and nCl-Cl(r) for molten
NaCl at 1148 K, obtained by MD simulation.
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Zσ
þ tð Þ � <vi

þ tð Þvj
þ 0ð Þ> � <vi

þ tð Þvk
� 0ð Þ> (25)

and

Zσ
� tð Þ � <vk

� tð Þvl
� 0ð Þ> � <vi

þ tð Þvk
� 0ð Þ> (26)

where < > means the ensemble average.
Using (25) and (26), the partial DC conductivities (19) and (20) are written,

respectively, as follows:

σþ DCð Þ ¼ nz2e2=3kBT
� �

ð

0

∞

Zσ
þ tð Þdt (27)

σ� DCð Þ ¼ nz2e2=3kBT
� �

ð

0

∞

Zσ
� tð Þdt (28)

On the other hand, combining Eqs. (25) or (26) and (1), we have

∂ Zσ
þ tð Þf g=∂t ¼ �

ð

0

t

γþ t� sð ÞZσ
þ sð Þds (29)

and/or

∂ Zσ
� tð Þf g=∂t ¼ �

ð

0

t

γ� t� sð ÞZσ
� sð Þds (30)

Taking the Laplace transformation of ∂{Zσ
+(t)}/ ∂t in (29) as follows,

L ∂ Zσ
þ tð Þf g=∂t½ � �

ð

0

∞

exp �iωtð Þ ∂ Zσ
þ tð Þ=∂tf g½ �dt (31)

¼ exp �iωtð ÞZσ
þ tð Þ½ �0

∞

þ iω
ð

0

∞

exp �iωtð ÞZσ
þ tð Þdt (32)

¼ �Zσ
þ 0ð Þ þ iω~Zσ

þ ωð Þ (33)

Here, we have used an evident condition Zσ
+(t = ∞) = 0.

On the other hand, the right hand side of (29) is given by the following
expressions:

L �

ð

0

∞

γþ sð ÞZσ
þ t� sð Þds

� 	

¼ �

ð

0

∞

exp �iω t� sð Þf gγþ t� sð Þd t� sð Þ

ð

0

∞

exp �iωsð ÞZσ
þ sð Þds ¼ �~γþ ωð Þ ~Zσ

þ ωð Þ

(34)

Therefore we have,

�Zσ
þ 0ð Þ þ iω~Zσ

þ ωð Þ ¼ �~γþ ωð Þ ~Zσ
þ ωð Þ (35)

~Zσ
þ ωð Þ ¼ Zσ

þ 0ð Þ= iωþ ~γþ ωð Þf g ¼ 3kBT=mþð Þ= iωþ ~γþ ωð Þf g (36)

In a similar way, we have,

~Z�
σ ωð Þ ¼ Zσ

� 0ð Þ= iωþ ~γ� ωð Þf g ¼ 3kBT=m�ð Þ= iωþ ~γ� ωð Þf g (37)
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If an appropriate memory function γ(t), which is valid for both cation and anion
in the system, is considered and its Laplace transformation is inserted into either
(36) or (37), then we can get the partial AC conductivities.

4. Microscopic representation for the Zσ

+(t) and Zσ

�(t) in a molten salt

We have already shown the microscopic expressions for Zσ
+(t) and Zσ

�(t) as
Taylor expansion forms in a molten salt in which the inter-ionic potential between
cation and anion and the corresponding pair distribution function are concerned by
Koishi et al. [7]. In these combined velocity correlation functions, it can be shown
that the odd power terms of the time t have vanishing coefficients which, it turns
out, is related to the fact that any positions and their differentiations with time are
uncorrelated in an ensemble average. In facts, the velocity auto-correlation function
can be expressed in terms of even powers of the time t [32, 33].

The short-time expansion forms of Zσ
+(t) and Zσ

�(t) are actually shown in the
following forms:

Zσ
þ tð Þ ¼ 3kBT=mþð Þ 1� t2=2

� �

α0=3μ
� �

þ over t4
� �� �

(38)

and

Zσ
� tð Þ ¼ 3kBT=m�ð Þ 1� t2=2

� �

α0=3μ
� �

þ over t4
� �� �

(39)

Thus, the partial conductivities for cation and anion in a molten salt are written
as in the following Kubo-formulae:

σþ DCð Þ ¼ n0e2=mþ
� �

ð

0

∞

1� t2=2
� �

α0=3μ
� �

þ over t4
� �� �

dt (40)

and

σ� DCð Þ ¼ n0e2=m�
� �

ð

0

∞

1� t2=2
� �

α0=3μ
� �

þ over t4
� �� �

dt (41)

Using (14), (16), (40) and (41), we have a very interesting relation written in
the following form:

1=~γ 0ð Þ ¼

ð

0

∞

1� t2=2
� �

~γ 0ð Þð Þ2 þ over t4
� �

n o

dt (42)

However, it is generally difficult to obtain Zσ
�(t) from appropriate memory

functions, by using the well-known method in statistical mechanics [33].
Under these circumstances, we explore a new method to solve Langevin

Eqs. (29) and (30), in order to clarify a detailed correlation between γ(t) and Zσ
�(t)

within the short time region, which will be shown in later section.

5. Method of continued-fraction based on Mori formulae

Many years ago, Mori [34, 35] had generalized the Langevin equation starting
from the Hamilton’s canonical equation of motion in a system of a monatomic liquid
with the component’s mass as m. Along his theory, Copley and Lovesey [36] have

8
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concluded that the memory function in the generalized Langevin equation could be
expressed as follows:

∂ γn tð Þf g=∂t ¼ �

ð

0

t

γnþ1 t� sð Þγn sð Þds n ¼ 1, 2, 3, … (43)

where γn(t) is the n-th stage memory function and the first stage memory
function is equal to γ(t) in Eqs. (29) and (30). The Fourier-Laplace transform of the
above equation provides the following continued-fraction representation,

~γn ωð Þ ¼ �δn= ωþ ~γnþ1 ωð Þ½ � (44)

where the Mori coefficient δn is equal to γn(0).
The method of Copley and Lovesey [36] was able to express the short time

expansion for the velocity correlation function Z(t) (= < vi(t) vj(0)>) described as
in the following form:

Z tð Þ ¼ Z0 1� t2=2!
� �

Z2 þ t4=4!
� �

Z4 � t6=6!
� �

Z6 þ …
� �

(45)

Thus, they provided the following relations if several δn’s are known:

Z0 ¼ 3kBT=mð Þ, Z2 ¼ Z0δ1, Z4 ¼ Z0δ1 δ1 þ δ2ð Þ, Z6 ¼ Z0 δ1 þ δ2ð Þ þ δ2δ3f g, …

(46)

Therefore, the problem is ascribed to the derivation of δn’s. Because of a hard
task in such repeating calculations, it is difficult to obtain a number of δn’s. How-
ever, several applications along these procedures have been carried out [37, 38].

Instead of the method of continued-fraction described in the above, we will
provide a simple but new method to obtain the mutual relation between the com-
bined velocity correlation function Zσ

�(t) and γ(t) in a short time region, in the
following section.

6. Recursion formulae for Zσ

�(t) and γ(t)

Here, we provide a new and useful method to solve the Langevin equation based
on recursion process [29]. Its detail is shown below.

Let us consider a Langevin equation for an evolution function being equivalent
to (29) and (30), as follows:

dy tð Þ=dt ¼
ð

0

t

q t� sð Þy sð Þds (47)

The power expansion for q(t) is defined as follows:

q tð Þ ¼
X

∞

n¼0

qn=n!
� �

tn qn ¼ q nð Þ 0ð Þ

 �

(48)

and the corresponding expansion formula for y(t) is written as follows:

y tð Þ ¼
X

∞

m¼0

ym=m!
� �

tm ym ¼ y mð Þ 0ð Þ

 �

(49)
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Putting (48) and (49) into the right hand side of Eq. (47), we have
ð

0

t

q t� sð Þy sð Þds ¼
X

∞

n,m¼0

qn=n!
� �

ym=m!
� �

ð

0

t

t� sð Þnsmds

¼
X

∞

n,m¼0

qn=n!
� �

ym=m!
� �

t nþmþ1ð Þ

ð

0

1

1� pð Þn pm dp

¼
X

∞

n,m¼0

qn=n!
� �

ym=m!
� �

t nþmþ1ð ÞB nþ 1,mþ 1ð Þ

¼
X

∞

n,m¼0

qn=n!
� �

ym=m!
� �

t nþmþ1ð Þ Γ nþ 1ð ÞΓ mþ 1ð Þf g= Γ nþmþ 2ð Þf g

¼
X

∞

n,m¼0

qn=n!
� �

ym=m!
� �

t nþmþ1ð Þ n!m!ð Þ= nþmþ 1ð Þ!

¼
X

∞

n,m¼0

qnym
� �

t nþmþ1ð Þ= nþmþ 1ð Þ!
n o

¼
X

∞

k¼1

zk=k!ð Þtk

 

(50)

where B(n + 1, m + 1) and Γ(n + 1) mean the beta-function and the gamma-
function, respectively, and

zk ¼
X

k¼nþmþ1

qnym (51)

On the other hand, the left hand side of Eq. (47) is equal to the following
formulae:

y0 tð Þ ¼
X

∞

k¼0

yk=k!
� �

tk

( )

0 ¼
X

∞

k¼0

ykþ1=k!
� �

tk (52)

Compare both expressions (50) and (52), we can get the recursion formulae as
follows,

y1 ¼ 0; ykþ1 ¼
X

k�1

m¼0

qk�m�1ym
� �

( )

k ¼ 1, 2, …ð Þ (53)

Therefore, Eq. (49) is practically expressed in the following series:

y1 ¼ 0; y2 ¼ y0q0; y3 ¼ y0q1 þ y1q0 ¼ y0 q1;

y4 ¼ q2 y0 þ q1 y1 þ q0 y2 ¼ y0 q0
2 þ q2

� �

;

y5 ¼ y0q3 þ y1q2 þ y2q1 þ y3q0 ¼ y0 2q0 q1 þ q3
� �

(54)

and so on.
And vice versa, qn’s are expressed as follows:

q1 ¼ 1=y0
� �

y3; q2 ¼ y4=y0
� �

� q0 y2=y0
� �

¼ 1=y0
� �

y4 � q0y2
� �

g;

q3 ¼ 1=y0
� �

y5 � y2y3=y0
� �

� q0 y3
� �

(55)

and so on.
This method can be immediately applicable in the following way, comparing

with Eqs. (38) and (39).
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q0 ¼ �~γ 0ð Þ2 (56)

y tð Þ ¼ y0 1� t2=2!
� �

~γ 0ð Þ2 þ …

h i

(57)

where

y0 ¼ 3kBT=m�
� �

¼ Zσ
� 0ð Þ � Z0

�
� �

(58)

7. Fluctuation dissipation theorem on the Laplace transformation of γ(t)

Considering Eqs. (56) and (57), the memory function γ(t) can be taken as the
following form:

γ tð Þ ¼ ~γ 0ð Þ2 f tð Þ (59)

where f(0) = 1.
The Laplace transformation of (59) in the long wavelength limit is then written

as follows:

~γ 0ð Þ ¼ ~γ 0ð Þ2
ð

0

∞

f tð Þdt (60)

Therefore, we have immediately,

ð

0

∞

f tð Þdt ¼ 1=~γ 0ð Þ (61)

On the other hand, the memory function and its Laplace transformation are
described as in the following forms, by using the fluctuation dissipation theorem
[6–9],

γ tð Þ ¼ 1=3μkBTð Þ<Ri tð ÞRj 0ð Þ> (62)

and

~γ ωð Þ ¼ 1=3μkBTð Þ

ð

0

∞

exp �iωtð Þ<Ri tð ÞRj 0ð Þ>dt (63)

The most simplest expression for < Ri(t) Rj(0) > can be taken as in the follow-
ing form:

<Ri tð ÞRj 0ð Þ> ¼ <Rij
2
> h tð Þ (64)

where < Rij
2
> = < Ri(0) Rj(0)>.

Putting (64) into (62) and using (59), we have

γ tð Þ ¼ 1=3μkBTð Þ<Rij
2
>h tð Þ ¼ ~γ 0ð Þ2 f tð Þ (65)

This equation gives h(t) ∝ f(t), and if we take both functions are identical, then

<Rij
2
> ¼ 1=3μkBTð Þ~γ 0ð Þ2 (66)
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Putting this relation into (62), we obtain again the relation (59), which indicates
that the assumption, h(t) = f(t), is exactly justified.

Therefore, the general form for the memory function γ(t) is always written in
the form of Eq. (59).

8. Former theories of velocity correlation functions in molten salts

Various analytic forms for memory functions were proposed [7, 8, 12, 39–43]
and all these functions are qualitatively useful to obtain the combined velocity
correlation functions, although some of these theories cannot predict the result
obtained by MD simulation.

For example, if we use an approximate form for the memory function as

Zσ
� tð Þ ¼ 3kBT=m�

� �

exp � γ
� 0ð Þt=2

� �

cos √3 γ� 0ð Þt=2

 �h

þ γ
� 0ð Þ=2
� �

= √3 γ� 0ð Þ=2

 �n o

sin √3 γ� 0ð Þt=2

 �i

¼ 3kBT=m�
� �

1� t2=2!
� �

γ
� 0ð Þ2 � t3=3!

� �

3 γ� 0ð Þ3=8þ over t4
� �

h i

(67)

As shown in our previous results [29], the calculated Zσ
+(t) for cation by using

Eq. (67) agrees with that of MD simulation [7] qualitatively and semi-
quantitatively.

However, the time expansion forms of Zσ
�(t) are essentially equal to the even

powers expansion forms, which contradicts to the expression of (67). It is, there-
fore, necessary to seek an appropriate memory function which can be expanded as
the even powers of the time t, even though the obtained result is numerically very
close to the expression of γ(t) = ~γ(0)2 exp{�~γ(0)t}.

9. Application of recursion method for the derivation of γ(t)
from Zσ

�(t)

So far, we are successful to obtain the mutual relation between γ(t) and Zσ
�(t)

within a short time region to satisfy the Langevin equations in molten salts.
There are several works to obtain the auto-velocity correlation functions in

monatomic liquids from appropriate memory functions γ(t) [39, 41, 42].
However, it is not known what sorts of model functions are suitable for the

combined velocity correlation function Zσ
�(t) until the present time. In order to

elucidate this question, we will try to calculate the coefficients ym’s of simulated
Zσ

�(t) of molten NaCl in a short time region, and from these the corresponding γ(t)
will be obtained.

Previously we have already carried out the MD simulation for the combined
velocity correlation functions Zσ

�(t) [7].
We try two types of power expansion forms in order to fit the combined correla-

tion functions Zσ
�(t) by MD simulation. One is an arbitrary expansion form given by

the even power series of the time t, which is theoretically exact for the combined
correlation function. Another one is the series of even and odd powers for higher
order terms over t2 one. Practical reason for the use of latter case will be given below.

In the case of the utilization of only even powers, it was quite difficult to get to
the simulated Zσ

�(t) even if the power’s number is taken up to 36th order of time t.
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On the other hand, we can get an agreement if we use even and odd serial
powers over t2 up to t9. This fact encourages us that the combined velocity correla-
tion functions Zσ

�(t) in molten systems must be practically analyzed in terms of
even and odd powers of the time over t2.

Therefore, the method utilizing the odd and even power series has a more rapid
convergence for obtaining Zσ

�(t), in comparison with the method utilizing only
even power series.

The fitting parameters, which are equal to ym’s, are obtained by the non-linear
least mean square method as so-called Levenberg-Marquart method [44].

The primary value in this non-linear least mean square method is inferred by
utilization of simplex method.

It is inevitable that the coefficients of ym’s (m = 3, 4, … ) are slightly variable
because of the termination effect in the expansion form. But we have no difficulty
to elucidate γ(t) in an appropriate short time range.

By using these obtained ym’s, it is immediately possible to obtain qn’s. And
thereafter we can get a fitted curve indicating the curve of γ(t) within a short
time region. In this figure, the fitting curve of γ(t) is obtained for the time range of
0 < t < 5.0 � 10�14 seconds, from the expansion form of Zσ

�(t) up to t15.
It is therefore emphasized that the utilization of odd terms within the short

time region is necessary for the derivation of qn’s from the ym’s obtained by MD
simulation.

For references, several analytic functional forms describing γ(t) can also be
given. The following two-types of functional forms are known as model functions
being suitable for the auto-velocity correlation functions in liquids.

a� 1ð Þ γ tð Þ ¼ ~γ 0ð Þ2 sech π=2ð Þ~γ 0ð Þtf g (68)

a� 2ð Þ γ tð Þ ¼ ~γ 0ð Þ2 exp � π=4ð Þ~γ 0ð Þ2t2
n �o

(69)

The γ(t) is expressed by the form of ~γ(0)2exp{�~γ(0)t} agrees, at least within the
short time region, with that of MD simulation.

However, an inevitable fact is that the theoretical memory function must be an
expansion form of only even powers of the time, even though it is numerically close
to the exponentially decaying function which includes the odd powers.

Is it possible to get a model function to fit the obtained curve of γ(t) by MD
simulation? To answer this question, we have carried out the fitting procedure by
using a combination of poly-Gaussian functions [29]. Practically, the following
form composed of three kinds of Gaussian functions is good enough to reproduce
the obtained curve of γ(t) under the condition of Eq. (61) for molten NaCl at
1100 K,

γ tð Þ ¼ ~γ 0ð Þ2
X

3

i¼1

ai exp � π=4ð Þbi~γ 0ð Þ2t2
n �o

(70)

where

X

3

i¼1

ai ¼ 1, and b2b3ð Þ1=2a1 þ b3b1ð Þ1=2a2 þ b1b2ð Þ1=2a3
n o

= b1b2b3ð Þ1=2 ¼ 1 (71)

Using (70) and (71), we could reproduce the obtained curve of γ(t) by MD
simulation in molten NaCl at 1100 K. And these are approximated to as {a1 = 0.2,
a2 = 0.3 and a3 = 0.5}, which values correspond to the existing fractions of each short
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range configuration i = 1, i = 2, and i = 3, respectively. And values of {b1 = 97.50,
b2 = 6.52, and b3 = 0.38} correspond to their structural decaying speeds,
respectively.

Figure 3.
(a) A stable short range configuration of 6 Cl� ions around a Na+ ion. (b) Another stable short range
configuration of 4 Cl� ions around a Na+ ion.

Degree of

stability

Configuration type

Coordination of 4

Cl� ions

Coordination of 5

Cl� ions

Coordination of 6

Cl� ions

Existing

probability, ai

i = 1 0.2 0.2

i = 2 0.3 0.3

i = 3 0.15 0.35 0.5

Table 1.
Local configuration types of Cl� ions around a centered Na+ ion.

Figure 4.
(a) A rather unstable short range configuration of 5 Cl� ions around a Na+ ion. (b) Another unstable short
range configuration of 4 Cl� ions around a Na+ ion.
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According to Figure 2a, the averaged nearest neighbor’s number around the Na+

ion is equal to 5.0. Any local coordination numbers around a Na+ are possible to be
4, 5, and 6 under the condition of density fluctuation in the liquid state.

It is possible to consider that stable short range configurations seem to be two
types. One is the case of cubic structure-type configuration having with the coordi-
nation of 6 chlorine ions around the centered sodium ion as shown in Figure 3a,
which is similar to the solid type configuration with a sort of lengthen fluctuation of
the interionic distance.

The other is close to a tetrahedral coordination of chlorine ions around the
centered sodium ion as shown in Figure 3b.

For simplicity, here we assume that the decaying or releasing of these two types
of rather stable short range configurations is nearly the same, then the combined
configurational decaying is given by i = 3 and b3.

On the other hand, there exist two types of rather unstable short range configu-
rations as shown in Figure 4a and b, respectively, in which the surrounded Cl� ions
around a Na+ ion are spatially asymmetric.

Totally, the local configuration types of Cl� ions around a centered Na+ ion are
listed in Table 1.

10. Discussion and conclusions in the case of molten salts

As shown in the previous section, the combined velocity correlation functions
Zσ

�(t) can be analyzed in terms of odd and even powers over t2 in their expansion
forms and the corresponding memory function includes the terms of odd and even
powers in its expansion form.

In addition, it is emphasized that the γ(t) obtained from the simulated Zσ
+(t)

agrees completely with that from Zσ
�(t). This fact means that the memory func-

tions for cation and anion are identical and Eq. (15) is automatically justified by the
present new type of experiment such as computer simulation.

In conclusion, we have newly obtained the mutual relation between the memory
function γ(t) and the combined velocity correlation function Zσ

�(t), by using a
recursion method to solve the Langevin equation and it may be applicable for
finding a suitable memory function in all liquid matters.

11. Generalized Langevin equation in electrolytic solution

Hereafter, we will consider the strong electrolytic solution composed of N+

cations, N� anions and X water molecules in a volume VM. For simplicity, we take
that N+ = N� = N and ions charges are equal to z+ = � z� = z. Then the number
densities of ions and water molecules are equal to n+ = n� = n = N/VM and x = X/VM,
respectively. And furthermore we assume that the dissociation of electrolyte is
complete under the condition of N ≪ X.

In the present system, a generalized Langevin equation for the cation (or anion)
i under an external field E is written as follows:

m�dvi
� tð Þ=dt ¼ �m�

ð

0

t

γ� t� t0ð Þvi
� t’ð Þdt0 þ z�e Eþ Fð Þ þ z�eεi tð Þ (72)

where γ�(t) is the memory function incorporating with the friction force acting
on its cation (or anion). F is the induced internal field yielded by the change of ion’s
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distribution which is resulted from the applying external field E, and εi(t) is the
random fluctuating force acting on the ion i.

According to Berne and Rice [16], the internal field F induced by the asymmetric
ion’s distribution in an ionic melt is expressed as follows:

F ¼ �δ � E ¼ �4πn=3kBT
ð

d

∞

dϕþ� rð Þ=dr
� �

ɡþ� rð Þ r3dr � E (73)

where ɡ+�(r) is the pair distribution function between cation and anion, and d is
the hard-core contact distance between cation and anion. Hereafter, we will use this
result.

If we take E = E0 e
�iωt, then the ensemble average for vi

�(t) is written in the
following form:

<vi
� tð Þ> ¼ Re μ� ωð Þz�eE0 e�iωt (74)

Inserting (74) into (72) and taking ensemble average under the assumption of
<εi(t) > = 0, we have

m�
<dvi

� tð Þ> =dt ¼ �m�

ð

0

t

γ� t� t0ð Þvi
� t0ð Þdt0 þ z�e 1–δð ÞE (75)

Therefore,

μ� ωð Þ ¼ 1–δð Þ=m� �iωþ ~γ� ωð Þ
� �

(76)

where

~γ� ωð Þ ¼

ð

0

∞

γ� tð Þ eiωt dt (77)

The dc current density j� is then written as follows:

j� ¼ nz�e<vi
� tð Þ> ω¼0 ¼ nz2e2μ� 0ð ÞE0 ¼ nz2e2 1–δð ÞE0=m�

~γ� 0ð Þ (78)

On the other hand, j� is expressed as j� = σ�E0, where σ� being equal to the
partial conductivity for cation or anion. Therefore, σ� is written as follows:

σ� ¼ nz2e2 1–δð Þ=m�
~γ� 0ð Þ (79)

The Laplace transformation of the memory function in the long wavelength
limit ~γ�(0) in Eq. (79) will be obtained in later section.

In the next section, we will discuss velocity correlation functions.

12. Linear response theory for electrolytic solutions

Eq. (79) is also obtainable from the following simplified Langevin equation:

m�dvi
� tð Þ=dt ¼ �m�

~γ� 0ð Þvi
� tð Þ þ z�e Eþ Fð Þ þ z�eεi tð Þ (80)

Its derivation can be easily seen in a standard book of statistical physics.
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Starting from Eq. (80) with an infinitesimal external field E, it is also easily
obtainable the following Kubo-Green formulae for the partial conductivities σ+ and
σ� [6, 7, 28]:

σþ ¼ 1=3kBTð Þ

ð

0

∞

< jþ tð Þ � j 0ð Þ> dt (81)

and

σ� ¼ 1=3kBTð Þ

ð

0

∞

< j� tð Þ � j 0ð Þ> dt (82)

where the current densities j�(t) and j(t) are defined by the following
expressions:

j� tð Þ ¼ z�e
X

n
vi

� tð Þ and j tð Þ ¼ jþ tð Þ þ j� tð Þ (83)

In order to obtain the partial conductivities based on Eqs. (81) and (82), it is
necessary to study the velocity correlation functions, < vi

+(t) vj
+(0)>, < vk

�(t)
vl

�(0) > and < vi
+(t) vk

�(0)>.
In the next section, we will discuss velocity correlation functions described in

terms of inter-molecular (or ionic) potentials and pair distribution functions in
order to obtain the ~γ�(0).

13. Short time expansion of velocity correlation functions in electrolytic
solutions

The short time expansion of velocity correlation function, < vi
+(t) vj

+(0) > for
cation is written as

<vi
þ tð Þvj

þ 0ð Þ> ¼ <vi
þ 0ð Þvj

þ 0ð Þ> þ t2=2!<vi
þ 0ð Þv€j

þ
0ð Þ>

þ higher order over t4
� �

(84)

In the present aqueous solution of electrolyte, the total Hamiltonian of the
system is written as follows:

H ¼
X

Nþ

i¼1

pi
þ2=2mþ þ

X

N�

k¼1

pi
�2=2m� þ

X

X

q¼1

pq
w2=2mw þ V (85)

where

V ¼
X

Nþ

i6¼j

ϕþþ jri
þ � rj

þj
� �

þ
X

N�

k6¼l

ϕ�� jrk
— � rl

�jð Þ þ
X

Nþ, N�

i, k

ϕþ� jri
þ � rk

�jð Þ

þ
X

Nþ, X

i, q

ϕþw jri
þ � rq

wj
� �

þ
X

N�, X

k, q

ϕ�w jrk
� � rq

wj
� �

þ
X

X

q, s
ϕww jrq

w � rs
wj

� �

(86)

Since the water molecule is not spherical in its molecular configuration, it is
difficult to define the position of rq

w. However, we tentatively assume that its
position is located at the center of oxygen atom in the H2O molecule.
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From the Poisson’s equation of motion,

pþ
i €pþ

i ¼ �
X

Nþ

j¼1

pi
þpj

þ=mþ

 �

∂
2V=∂riþ∂rjþ �

X

N�

k¼1

pi
þpk

�=m�
� �

∂
2V=∂rk�∂riþ

�
X

X

q¼1

pi
þpq

w=mw

 �

∂
2V=∂rqw∂riþ (87)

and

pþ
i €pþ

i 6¼i’ ¼ �
X

Nþ

j

pi’
þpj

þ=mþ

 �

∂
2V=∂riþ∂rjþ �

X

N�

k¼1

pi
þpk

�=m�
� �

∂
2V=∂rk�∂riþ

�
X

X

q¼1

pi
þpq

w=mw

 �

∂
2V=∂rqw∂riþ

(88)

Since the second derivative of the potential term V is independent for the
product of momenta, all other terms other than i = j in (87) must vanish on
averaging. And in a similar way, the meaningful terms of (88) for averaging must
be also equal to the case i 6¼ i’ = j. Therefore, taking the ensemble averages for
(87) and (88), we have

<pþ
i €pþ

j > ¼ <pþ
i €pþ

i > þ <pþ
i €pþ

j6¼i > ¼ �kBT n<ϕþ�
> þ x<ϕþw

>f g (89)

where

<ϕþ�
> ¼

ð

0

∞

∂
2ϕþ� rð Þ∂r2 þ 2=rð Þ∂ϕþ� rð Þ∂r

� �

ɡþ� rð Þ4πr2dr (90)

and

<ϕþw
> ¼

ð

0

∞

∂
2ϕþw rð Þ∂r2 þ 2=rð Þ∂ϕþw rð Þ∂r

� �

ɡþw rð Þ4πr2dr (91)

In this equation, ɡ+w(r) is the pair distribution function between cation and
water molecule.

It is emphasized that there is no contribution from ϕ++(r) in Eq. (89) because of
the cancelation by the terms of i = j and i 6¼ j in < pþ

i €pþ
j > [7].

Insertion of (89) into (84) gives us the following form:

Zþ tð Þ � <vi
þ tð Þvj

þ 0ð Þ>

¼ <vi
þ 0ð Þvj

þ 0ð Þ> � t2=2!
� �

kBT n<ϕþ�
> þ x<ϕþw

>ð Þ=mþmþf g

þ higher order over t4
� �

(92)

In a similar way, the term < pþ
i €p�

k > can be described as follows:

<pþ
i €p�

k > ¼ kBTn<ϕþ�
> (93)
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Using this relation, the distinct velocity correlation function is written as
follows:

<vi
þ tð Þvk

� 0ð Þ> ¼ <vi
þ 0ð Þvk

� 0ð Þ> þ t2=2!<vi
þ 0ð Þv€k

�
0ð Þ>

þ higher order over t4
� �

¼ <vi
þ 0ð Þvk

� 0ð Þ> þ t2=2!
� �

kBTn<ϕþ�
> =mþm�

þ higher order over t4
� �

(94)

Using (92) and (94), the combined velocity correlation function Zσ
+(t)(= < j+(t)

j(0)>/n2z2e2) incorporation with the partial conductivity σ+ is therefore expressed
as follows:

Zσ
þ tð Þ � <vi

þ tð Þvj
þ 0ð Þ> � <vi

þ tð Þvk
� 0ð Þ>

¼ 3kBT=mþð Þ 1– t2=2!
� �

n<ϕþ�
> =3μþ x<ϕþw

> =3mþð Þ
�

þ higher order overt4
� �

g (95)

where μ is equal to the reduced mass of m+ and m�. In deriving (95), we have
assumed the initial conditions as follows:

<vi
þ 0ð Þvj

þ 0ð Þ> ¼ <vi
þ 0ð Þvi

þ 0ð Þ> ¼ 3kBT=mþð Þ and <vi
þ 0ð Þvk

� 0ð Þ> ¼ 0 (96)

These initial conditions are confirmed by our own molecular dynamic simula-
tion, which will be shown in the later section. In a similar way, we have

Zσ
� tð Þ � <vi

� tð Þvj
� 0ð Þ> � <vi

þ 0ð Þvj
� 0ð Þ>

¼ 3kBT=m�ð Þ 1– t2=2!
� �

n<ϕþ�
> =3μþ x<ϕ�w

> =3m�ð Þ
�

þ higher order over t4
� �

g (97)

where

<ϕ�w
> ¼

ð

0

∞

∂
2ϕ�w rð Þ∂r2 þ 2=rð Þ∂ϕ�w rð Þ∂r

� �

ɡ�w rð Þ4πr2dr (98)

ɡ�w(r) of this equation means the pair distribution function between anion
and water molecule. And it is also emphasized that the contribution from ϕ��(r)
to < vi

�(t) vj
�(0) > is also vanished to be zero.

It is impossible to obtain the partial conductivities by the insertion of (95) and
(97) into (81) and (82), because we knew only the terms up to t2 in their explicit
forms. However, these equations can be utilized for the derivation of ~γ�(0) as
shown in the next section.

14. Derivation of ~γ�(0) in electrolytic solutions

According to the fluctuation dissipation theorem applied for the present system
with the condition of no external field or of infinitesimal external field, the Laplace
transformation of the memory function γ�(t) and that of the ensemble average of
time correlation function for the fluctuating random force <εi(t)εi(0) > have the
following relation [25, 28]:
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m�2
<vi

� 0ð Þ � vj
� 0ð Þ>~γ� ωð Þ ¼ m�2

<vi
� 0ð Þ � vi

� 0ð Þ> ~γ� ωð Þ

¼ z2e2
ð

0

∞

< εi tð Þεi 0ð Þ> eiωt dt (99)

The fluctuation dissipation theorem tells us the following relation:

~γ� ωð Þ ¼ 1=3m�kBT
� �

z2e2
� �

ð

0

∞

< εi tð Þεi 0ð Þ> eiωt dt (100)

In the long wavelength limit, this relation is expressed by

~γ� 0ð Þ ¼ 1=3m�kBT
� �

z2e2
� �

ð

0

∞

< εi tð Þεi 0ð Þ>dt (101)

Let us go back to the memory function γ�(t) and assume a combined exponen-
tial decay functions for it as follows, although this assumption is not exactly consis-
tent with Eq. (84), but technically acceptable one as discussed in the case of molten
salt [29],

γ� tð Þ ¼ γ0
� tð Þ ¼ γ00

� exp �β0
�t

� �� �

þ γ1
� tð Þ ¼ γ01

� exp �β1
�t

� �� ��

(102)

In this equation, the pre-exponential factor γ00
� is subject to the interactions

between the central ion and surrounding water molecules. The decaying constants
are related to the time dependence of its configuration change. The pre-exponential
factor, γ01

�, is equal to the magnitude of memory function at t = 0 in respect to the
friction force acting on the central cation or anion caused by interactions between
its central ion and neighboring ions. In other words, the first term on the right hand
side of this equation means the case of dilute limit of electrolytic solution and the
second one is equal to the effective friction caused by the addition of a moderate
amount of electrolyte. Therefore, the first term is related to either <ϕ+w

> or < ϕ�w
>,

while the second one is related to the term <ϕ+�
> .

Using (94) and (96), γ00
� and γ01

� are expressed as follows:

γ00
� þ γ01

� ¼ �€Z�
σ 0ð Þ=Z�

σ 0ð Þ ¼ x<ϕ�w
> =3m� þ n<ϕþ�

> =3μ (103)

In the dilute limit of n ≪ x, we have

γ00
�

� �

¼ x<ϕ�w
> =3m� (104)

And then we have

γ01
�

� �

¼ n<ϕþ�
> =3μ (105)

At the dilution limit of electrolyte where the contribution of γ1
�(t) can be

neglected, the Laplace transformation of γ0
�(t) in the long wavelength limit is then

described as follows:

~γ�0 0ð Þ ¼ γ00
�=β0

� ¼ x<ϕ�w
> =3m�β0

�

¼ 1=3m�kBT
� �

z2e2
� �

ð

0

∞

< εi0 tð Þεi0 0ð Þ>dt (106)

where the auto-correlation function of random fluctuating force
<εi0(t)εi0(0) > is only related to either <ϕ+w

> or < ϕ�w
>.
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As seen in Eq. (79), the Laplace transformation of memory function in the long
wavelength limit, ~γ�0 (0), corresponds to effective friction constants for cation and
anion, which means that the auto-correlation function of random fluctuating force.

<εi0(t) εi0(0) >may be represented by an exponential decaying function with
the time constant of ~γ�0 (0) as follows:

< εi0 tð Þεi0 0ð Þ> ¼ < εi0 0ð Þεi0 0ð Þ> exp �~γ�0 0ð Þt
� �

(107)

Insertion of (107) into (106) gives us

< εi0 0ð Þεi0 0ð Þ> ¼ 3m�kBT ~γ�0 0ð Þ
� �2

(108)

Therefore, we obtain

γ�0 tð Þ ¼ ~γ�0 0ð Þ
� �2

exp �~γ�0 0ð Þt
� �

(109)

Compare (106) and (109) we have

β0
� ¼ ~γ�0 0ð Þ ¼ γ00

�
� �1=2

¼ x<ϕ�w
> =3m�

� �1=2
(110)

By the analogy with this relation, we can infer the following relation:

β1
� ¼ ~γ�1 0ð Þ ¼ γ01

�
� �1=2

¼ n<ϕ�w
> =3μ

� �1=2
(111)

Therefore, Eq. (102) is explicitly written as follows:

γ� tð Þ ¼ γ0
� tð Þ þ γ1

� tð Þ

¼ x<ϕ�w
> =3m�

� �

exp � x<ϕ�w
> =3m�

� �1=2
t

h i

þ n<ϕþ�
> =3μð Þ exp � n<ϕþ�

> =3μð Þ
1=2

t
h i

(112)

And the Laplace transformation of this equation in the long wavelength limit is
equal to

~γ� 0ð Þ ¼ x<ϕ�w
> =3m�

� �1=2
h i

þ n<ϕþ�
> =3μð Þ

1=2
h i

(113)

15. Partial conductivities σ+ and σ
�

Putting Eq. (113) into (79), we obtain the formulae of the partial conductivities,
σ+ and σ�, which are expressed in terms of the pair distribution functions and pair
potentials as follows [28],

σþ ¼ nz2e2 1–δð Þ=mþ
~γþ 0ð Þ

¼ nz2e2 1–δð Þ=mþ x<ϕþw
> =3mþð Þ

1=2
þ n<ϕþ�

> =3μð Þ
1=2

h i

(114)

and

σ� ¼ nz2e2 1–δð Þ=m�
~γ� 0ð Þ

¼ nz2e2 1–δð Þ=m� x<ϕ�w
> =3m�ð Þ1=2 þ n<ϕþ�

> =3μð Þ
1=2

h i

(115)
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If the concentration c is defined as the number of moles of electrolyte in the unit
volume (actually taken as 1 cc), then the number density n is equal to cNA, where
NA being the Avogadro’s number. Then, the partial conductivities, σ+ and σ�, are
written as follows:

σþ ¼ neμþ ¼ cNA z2e2 1–δð Þ=mþ x<ϕþw
> =3mþð Þ

1=2
þ cNA <ϕþ�

> =3μð Þ
1=2

h i

(116)

and

σ� ¼ neμ� ¼ cNA z2e2 1–δð Þ=m� x<ϕ�w
> =3m�ð Þ1=2 þ cNA <ϕþ�

> =3μð Þ
1=2

h i

(117)

In these equations, μ+ and μ� are called as the mobility of cation and anion.
The partial molar conductance Λ+ and Λ� are defined as Λ� = σ�/c. Then the

total conductance Λc is written as follows:

Λc ¼ Λþ þ Λ� ¼ NA z2e2 1–δð Þ � 1=mþ x<ϕþw
> =3mþð Þ

1=2
þ cNA <ϕþ�

> =3μð Þ
1=2

n oh

þ1=m� x<ϕ�w
> =3m�ð Þ1=2 þ cNA <ϕþ�

> =3μð Þ
1=2

n oi

(118)

Under the condition of n(=cNA) ≪ x, they are approximated to as follows:

Λþ ¼ NA z2e2 1–δð Þ 3=xmþ
<ϕþw

>ð Þ
1=2 1– cNAmþ

<ϕþ�
> =μx<ϕþw

>ð Þ
1=2

h i

(119)

and

Λ� ¼ NAz2e2 1–δð Þ 3=xm�
<ϕ�w

>ð Þ1=2 1– cNAm�
<ϕþ�

> =μx<ϕ�w
>ð Þ

1=2
h i

(120)

From Eqs. (119) and (120), we have a form of Λc = (Λ+ + Λ�) ≃ Λ0 + Λ1– kc1/2.
Λ0 and k are written as follows:

Λ0 ¼ NAz2e2 3=xmþ
<ϕþw

>ð Þ
1=2

þ 3=xm�
<ϕ�w

>ð Þ1=2
n o

(121)

Λ1 ¼ NAδz2e2 3=xmþ
<ϕþw

>ð Þ
1=2

þ 3=xm�
<ϕ�w

>ð Þ1=2
n o

(122)

and

k ¼ NA z2e2 1–δð Þ 3NA <ϕþ�
> =μð Þ

1=2
f 1=x<ϕþw

> þ 1=x<ϕ�w
>ð Þgð (123)

As seen in these expressions, Λ0 means the conductance in the dilution limit of
electrolyte and Λ1 is the correction term appeared by the so-called relaxation effect.
The last term kc1/2 is composed of the so-called electrophoretic effect and the
combined term of both effects.

In the case of a moderate concentration of electrolyte, in particular, of relatively
weak electrolyte, we have to take account of the degree of association between the
opposite ions into the expression for the partial conductivities.
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16. Pair potentials in electrolytic solution

A number of research works to obtain the model potentials in electrolytic
solutions have been presented since the Debye-Hückel theory [18]. In particular,
various qualified model potentials, which satisfy the experimental data such as
the hydration free energy and the enthalpies in condensed and gas phases,
have recently been proposed in order to carry out the molecular dynamic
simulation. It is not our intension to compare or evaluate these potentials and
therefore we like to refer only some of these for our interests [24–27, 45]. It may
be possible to estimate these potentials by using wave mechanical approach. In
fact the ion-water molecule interactions were obtained by such an elaborating
method [46–48].

The essential point for these model potentials in electrolytic solutions is that
the dielectric character should be concerned. According to Sack [49], the water-
molecules around the constituent ion are strongly oriented and the ion’s orientating
ability to neighboring water-molecules decreases with increasing of the distance
between the ion and those water-molecules. Oka [50] also estimated the change
of effective dielectric constant as a function of distance between the ion and
water-molecule.

We propose the following model function to satisfy these results as follows:

ε rð Þ ¼ 1þ ε0 � 1ð Þ 1� exp � r� r0ð Þ=κf g½ � (124)

where ε0 (=78.35) is the dielectric constant of water. Other parameters are
numerically equal to r0 = 5 A and κ = 3.44 A�1, respectively.

The insertion of this dielectric function ε(r) for the long range part of inter-
particle potential is not necessary in molecular dynamic simulations. The dynamics
produces automatically the configuration of constituents to satisfy the dielectric
behavior.

On the analogy of the inter-ionic potentials in molten salts, ϕ+�(r) in aqueous
solution, where the dipole-dipole and dipole-quadrupole dispersion forces are
neglected, may be given as follows:

ϕþ� rð Þ ¼ zþz�e2
� �

= r ε rð Þf g þ Aþ� exp Bþ� di
þ þ dj

� � r
� �� �

(125)

where A+� is a constant in relation to the magnitude of repulsive force between
cation i and anion j. B+� the softness parameter and (di

+ + dj
�) is the hard core

contact between cation i and anion j. A+� and B+� are also given in the literature
[27]. The difference between this expression and that of ionic crystal or of molten
salt is only ascribed to whether the introduction of the dielectric function ε(r) is
necessary or not.

For simplicity, the pair potentials ϕ+ w(r) and ϕ� w(r) are assumed to be a
combined form of the repulsive potential and the charge-dipole potential. Then the
pair potential between cation and water molecule centered at the oxygen atom, ϕ+ w(r),
is written as follows:

ϕþw rð Þ ¼ ϕrep
þw rð Þ � zþeμ cos θ 1–3l2=8r2

� �

= r2ε rð Þ
� �

(126)

where ϕrep
+w(r) is repulsive potential and its explicit form will be given be later.

μ is the dipole of water molecule and l its length. θ is the dipole’s angle in the
direction of cation.

It is well-known that the above expression is converted to the following form
according to Boltzmann law,
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ϕþw rð Þ ¼ ϕrep
þw rð Þ � zþ2e2μ2 1–3l2=8r2

� �

= 3kBT r2ε rð Þ
� �

(127)

On the other hand, a modified Lennard-Jones potential for water molecule,
ϕww(r), is useful and is written as follows [45]:

ϕww rð Þ ¼ 4C dw=rð Þ
12
� dw=rð Þ

6
h i

� 2μ2=r3 (128)

In this equation, the term 4C(dw/r)12 is equal to the repulsive part and the
parameters C and dw for water molecule in the gaseous state are equal to 230.9 kB
and 2.824 Å, respectively.

The repulsive part of inter-ionic potential for ϕ++(r) may be approximately
described as the form of A++exp[B++(d+ + d+ � r)] similar to the repulsive one in
Eq. (125), since its interaction occurs around the distance of close contact where the
dielectric behavior of neighboring water molecules must be neglected.

Now let us assume that the repulsive potential ϕrep
+w(r) is represented by the

root mean square of 4C(dw/r)12 and A++exp[B++ (d+ + d+- r)] as follows:

ϕrep
þw rð Þ ¼ 4C dw=rð Þ

12Aþþ exp Bþþ dþ þ dþ � r
� �� �

n o1=2
(129)

Insertion of (129) into Eq. (127) gives us the following expression,

ϕþw rð Þ ¼ 4C dw=rð Þ
12Aþþ exp Bþþ dþ þ dþ � r

� �� �

n o1=2

� z2e2μ2 1–3l2=8r2
� �

= 3kBTε rð Þr2
� �

(130)

In a similar way, the inter-particle potential between anion and water molecule
is expressed as follows:

ϕ�w rð Þ ¼ 4C dw=rð Þ
12A�� exp B�� d� þ d� � rð Þ½ �

n o1=2

� z2e2μ2 1–3l2=8r2
� �

= 3kBTε r2
� �� �

(131)

The dipole moment of water molecule is known to be μ = 0.38 (in the unit of e
times 1 Å = 1.6 � 10�29 C�m) and l ≒0.5 Å. Therefore, all parameters in (130) and
(131) are known. According to Bopp et al. [51], the repulsive parts in (130) and
(131) are converted to the exponential decaying functions similar to the repulsive
part in (125) [46, 47].

Under these circumstances, it is possible to use either our empirical expressions
(130) and (131), or to apply the inter-particle potentials derived by Bopp et al. [51].
It is also possible to estimate the repulsion terms in (130) and (131) by using wave
mechanical approach. In fact, the ion-water molecule interactions were obtained by
such an elaborating method [33, 52]. However, we will use the above empirical
potentials for numerical application, for simplicity.

17. Momentum conservation and the tag of water molecules by ion’s
movement

We will investigate the tag of water molecules by ion’s moving in the electrolytic
solutions from the view point of equation of motion under an applied field E [28].

Under this situation, the second law of motion for the cation i can be written
as follows:
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mþdvi
þ tð Þ=dt ¼

X

Nþand N�

j 6¼i

f ij þ
X

X

q 6¼i

Fiq þ zþeE (132)

fij is the force acting on the ion i from the ion j and Fiq is that from the water
molecule q.

At the time of steady state, τ, after applying the external field E, we have

mþvi
þ τð Þ ¼

ð

0

τ
X

Nþand N�

j6¼i

f ij dtþ
ð

0

τ
X

X

q 6¼i

Fiq dtþ
ð

0

τ

zþeEdtþmþvi
þ 0ð Þ (133)

In a similar way, we have

m�v�
k τð Þ ¼

ð

0

τ
X

N�and Nþ

l6¼k

fkl dtþ
ð

0

τ
X

X

q 6¼k

Fkq dtþ
ð

0

τ

z�eEdtþm�vk
� 0ð Þ (134)

and

mwvq
w τð Þ ¼

ð

0

τ
X

X

q 6¼ k and ið Þ

Fiq þ Fkq
� �

dtþmwvq
w 0ð Þ (135)

In a unit volume, the total summation of the ensemble averages of these
momenta is written as follows:

n<mþvi
þ τð Þ> þ n<m�vk

� τð Þ> þ nw <mwvq
w τð Þ>

¼ 1=VM

ð

0

τ
X

f ij þ f ji
� �

dtþ 1=VM

ð

0

τ
X

Fiq þ Fkq þ Fqi þ Fqk
� �

dt

þ 1=VM

ð

0

τ

zþ þ z�ð ÞeEdtþ n<mþvi
þ 0ð Þ> þ n<m�vk

� 0ð Þ>

þ nw <mwvq
w 0ð Þ> (136)

where nw is the number density of water molecules.
The summation of last three terms on the right hand side of this equation is equal

to zero, because there is no external force at t = 0. All other terms on the right hand
side of this equation are equal to zero by considering the law of action and reaction
and charge neutrality condition.

Therefore, we have

n<mþvi
þ τð Þ> þ n<m�vk

� τð Þ> þ nw <mwvq
w τð Þ> ¼ 0 (137)

This equation indicates that the partial conductivity ratio < vi
+(τ)>/

< vk
�(τ) > is not equal to the inverse mass ratio m�/m+, which is essentially

different from the case of molten salts.
Some of water molecules may be simultaneously pulled by the dissolved ions

under an external field E. Here, we neglect the relative time-relaxation for velocities
of particles undergoing the co-operative motion. Taking the numbers of pulled
water-molecules by each cation and anion, as x+ and x�, we have

nxþ þ nx� þ xr ¼ nw (138)

Here, xr is equal to the number density of un-pulled water molecules.
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Since, themovements of remainderwatermolecules under the external fieldmust be
isotropic, we have xr < mwvw(τ)> = 0. Then nw < mwvq

w(τ)> is expressed as follows:

nw <mwvq
w τð Þ> ¼ xþ <mwvi

þ τð Þ> þ x� <mwvk
� τð Þ> (139)

Insertion of this equation into (66) gives us the following relation:

< mþ þ xþmwð Þvþ τð Þ> þ < m� þ x�mwð Þv� τð Þ> ¼ 0 (140)

Hereafter, we omit the suffix of ion i or k.
Therefore, we have

∣<vþ τð Þ> ∣=∣<v� τð Þ> ∣ ¼ m� þ x�mwð Þ= mþ þ xþmwð Þ (141)

We cannot apply the above treatment for H+ and OH� ions, because their
conduction mechanisms differ from that of all other dissolved ions. Their mecha-
nisms are known as the Grotthus-type conduction which is a kind of hopping
conduction of electrons or holes [3].

It is, however, straightforward to obtain the following relation for all dissolved
ions in their dilute limits except for H+ and OH� ones,

∣<vþ τð Þ> ∣ mþ þ xþmwð Þ ¼ ∣<v� τð Þ> ∣ m� þ x�mwð Þ (142)

This relation seems to be valid for all aqueous solutions of equivalent electrolytes
in the dilution limit.

Using Eqs. (114) and (115), Eq. (142) for the dilution limit of electrolytic solu-
tion is expressed as follows:

σþ=σ� ¼ mass of an anion plus masses of water molecules pulled by its anion
� �

=

mass ofa cation plus masses of water molecules pulled by its cation
� �

¼ m� þ x�mwð Þ= mþ þ xþmwð Þ ¼ m�
<ϕ�w

>ð Þ1=2= mþ
<ϕþw

>ð Þ
1=2 (143)

This equation may correspond to the inverse mass ratio for the partial conduc-
tivities of molten salt [6].

18. Numerical results in electrolytic solutions

According to the theoretical results we have discussed so far, the pair distribu-
tion functions appear in the essential equations [28]. Therefore, how to obtain the
pair distribution functions is one of the matters of vital importance.

There are several standard theoretical methods to obtain the pair distribution
functions in molecular liquids from the knowledge of inter-particle potentials [33].
In the calculation of site-site distribution function for such a molecular liquid, the
reference interaction-site model (RISM) approximation proposed by Chandler and
Anderson [52] seems to be useful. Until the present time, the extension of RISM
approximation, in order to obtain the potentials of mean force and also the site-site
pair distribution functions ɡμν(r)‘s in electrolytic solutions, has been carried out by
several authors [53–55]. These attempts cover the insufficient experimental knowl-
edge for pair distribution functions ɡ+�(r), ɡ+ w(r) and ɡ� w (r).

However, we will use the ɡμν(r)‘s in aqueous solution of sodium chloride
obtained by our own MD simulation. The essential numerical procedure of MD
simulation in this study is same as our previous works of molten salts [56]. The
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procedure ofMD simulation of electrolyte aqueous solutionwill be briefly described as
follows for reader’s benefit. In MD for the electrolyte aqueous solution, the rigid body
models (TIP4P) [57] are used for water molecules. The interactions between constit-
uent TIP4P water molecules are expressed as the charged L-J type potentials, as,

ij rð Þ ¼
zizje2

r
þ

A

r12
�

B

r6
(144)

The interactions between alkali metal cation and halide anion, TIP4P- alkali
metal anion, and TIP4P – halide anion are expressed as [58]:

ij rð Þ ¼
zizje2

r
þ

C

r9
�

D

r6
(145)

In (144) and (145), i and j stand for the constituent atoms; e is the elementary
charge. The used charges for the constituent species zi and the interaction parameters
are taken from the literature; TIP4P – TIP4P [57]; TIP4P – alkali metal cation, TIP4P –

halide anon, between alkali metal cation, between halide anion, and between alkali
metal cation and halide anion [58]. The Ewald method is used for the calculation of
the Coulomb interaction. For the structure calculation, MD is performed in NTP
constant condition [59–61] under the pressure of 1 atm at 283 K. MD is performed for
50,000 steps with 0.1 fs one time step in 1.1% NaCl aqueous solution. MD cell
contains about 10,000 molecules (i.e. 30,000 atoms) for the calculation of the

Solute Water (TIP4P) Cation Anion

Li+ Cl� 10,000 112 112

Na+ Cl� 10,000 112 112

K+ Cl� 10,000 112 112

Table 2.
The numbers of ions in MD cell.

Figure 5.
Pair distribution function of water molecules around a Li + ion, gLi-w(r) in the electrolyte solution of LiCl.
And numbers of locating water molecules around a Li + ion within the sphere of the length r centered at its
Li + ion, nLi-w(r), in its solution obtained by MD simulation.
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structure and the velocity autocorrelation function for alkali halide aqueous solution.
The numbers of the constituent ions in the MD cell are listed in Table 2.

The main part of MD is performed using SIGRESS ME package (Fujitsu) at the
supercomputing facilities in Kyushu University.

The obtained figures of ɡij(r) are shown in Figures 5–8. And using these data, we
have estimated the numbers of water molecules involved within a sphere of radius
r from the centered ion, nij(r) (i = Li+, Na+, K+ and Cl�; j = oxygen of water
molecule) = 4πʃ0

r ɡij(r)r
2 dr, which are also figured in them.

Using Eq. (143), that is, σ+/σ� = (m� + x�mw)/(m+ + x+mw), and taking an
assumption that the pulling water molecules for Na+ ion is equal to 6.0 although its

Figure 6.
Pair distribution function of water molecules around a Na + ion, gNa-w(r) in the electrolyte solution of NaCl.
And numbers of locating water molecules around a Na + ion within the sphere of the length r centered at its
Na + ion, nNa-w(r), in its solution obtained by MD simulation.

Figure 7.
Pair distribution function of water molecules around a K+ ion, gK-w(r) in the electrolyte solution of KCl. And
numbers of locating water molecules around a K+ ion within the sphere of the length r centered at its K+ ion,
nK-w(r), in its solution obtained by MD simulation.

28

Electromagnetic Field Radiation in Matter



plausible justification seems to be difficult, then we obtain the pulling water mole-
cules for other ions as shown in Table 3, in which the hydration numbers seen in a
text book [62] and our results obtained by MD simulation, for reference.

Using these pulling numbers for the constituent ions, we can estimate the term,
(m� + x�mw)/(m+ + x+mw) as shown inTable 4. As seen in this table, agreements for
both terms are satisfactory,which is a kindof proof for the assumption x+ is equal to 6.0.

It is emphasized that the pulling number of water molecules by moving ion has
no relation to the hydration number of water molecules as seen in Table 3. The
hydration of water molecules around electrolytic ions is originated essentially by the
thermodynamic stability which is related not only to the interaction energies among
ions and water molecules but also to the configuration entropy terms. This is
because that the pulling number is not always related to the hydration one.

19. Discussion on the electrical conductivities in electrolytic solutions

The present theory seems essentially comparable to the treatments developed by
Onsager [19], Fuoss et al. [21], Prigogine [20], Friedman [23], Chandra and Bagchi
[27], and Matsunaga and Tamaki [28].

Figure 8.
Pair distribution function of water molecules around a Cl� ion, gCl-w(r) in the electrolyte solution of MCl
(M = Li, Na and K). And numbers of locating water molecules around a Cl� ion within the sphere of the length
r centered at its Cl� ion, nCl-w(r), in its solution obtained by MD simulation.

Ions Pulling water molecules,

x+ or x�
Hydration numbers in the

text book [36]

Hydration numbers obtained

from MD simulations

Li+ 7.6 4.3 � 0.6 4.1

Na+ 6.0* 5.6 � 1.7 5.7

K+ 2.8 5.5 � 1.3 6.4

Cl� 2.8 6.0 � 0.7 6.5
*Assumption that the pulling number x+ of Na+ ion is equal to be 6.0 and also that the pulling numbers of water
molecules for Cl� are not changed even for that the pairing positive ions are different.

Table 3.
Numbers of pulling water molecules, x+ or x� and hydration numbers.

29

Electrical Conductivity of Molten Salts and Ionic Conduction in Electrolyte Solutions
DOI: http://dx.doi.org/10.5772/intechopen.91369



Friedman [23] used a technique of diagram expansion starting from Kubo-Green
formula for the conductivity of electrolytic solution and the obtained expression
was also written in the form of Λc = (Λ+ + Λ�) = Λ0 + Λ1 – kc

1/2. However, his theory
is very much sophisticated and too mathematical to understand with a physical
insight.

Recent theoretical work carried out by Chandra and Bagchi [27] is basically
started from a Kubo-Green type theory, that is, the partial conductivities are
derived from velocity correlation functions. Their treatment seems to be a modern-
ized and beautiful and therefore it is very much appreciable. However, the friction
force of their theory involves various terms which make it difficult to calculate
practically the partial conductivities. In fact, there still remains the task to represent
a microscopic formula for Λ0.

The present treatment is easily to understand in view of physical insight and is
successful for deriving the formula of Λ0.

The short-time expansion forms for < vi
+(t) vi

+(0)>, < vk
�(t) vk

�(0) > and
< vi

+(t) vk
�(0) > are expressed in terms inter-particle potentials and corresponding

pair distribution functions as seen in (95) and (97). In the case of molten salts, all
these velocity correlation functions yield some physical quantities in relation to a
part of partial conductivities [6]. In the present case, however, Zσ

+(t) and Zσ
�(t)

play its role. Such an essential difference between the case of molten salt and the
electrolytic solution may be ascribed to the difference in the momentum conserva-
tion of the system.
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Electrolyte σ
+/σ� (m� + x�mw)/(m++ x+mw)

Li+ Cl� 0.595 0.598

Na+ Cl� 0.659 0.655

K+ Cl� 0.963 0.960

Table 4.
The ratio of ionic conductivity and the calculation results by using Table 3.
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