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Introductory Chapter: 
Development of Neutrophils 
and Their Role in Hematopoietic 
Microenvironment Regulation
Ota Fuchs

1. Development of neutrophils

Neutrophils are the most abundant white blood cells and play a key role in the 
elimination of pathogens (invading microorganisms). These specialized innate 
immune cells are a type of polymorphonuclear leukocyte. Humans produce 
about 1010 to 1011 neutrophils daily in the bone marrow from myeloid precursors 
in a process known as granulopoiesis. The initial precursors of neutrophils are 
hematopoietic stem cells (HSCs) [1]. The majority of adult blood and immune cells 
are derived from HSCs, which are also capable of generating new HSCs in a process 
called self-renewal. The interaction of HSCs with their particular microenviron-
ments, known as niches, is important for maintaining the stem cell properties of 
HSCs, including cell adhesion, survival, and cell division [2].

1.1 The generation of committed proliferative neutrophil precursors

During the development, HSCs lose their self-renewal potential and produce 
multipotent precursors (MMPs). All blood cell lineages can be developed from 
MMPs (Figure 1). The differentiation of MMPs into erythro-myeloid or lympho-
myeloid progenitors is directed by the antagonistic transcription factors GATA-1 
and PU.1. High levels of PU.1 are important for the differentiation of MMPs into 
lympho-myeloid precursors (LMPs), progenitors for granulocyte-monocyte 
precursors (GMPs). The most important regulator of physiological granulopoiesis 
are granulocyte colony-stimulating factor (G-CSF) and its receptor whose effects 
include commitment of progenitor cells to the myeloid lineage, proliferation and 
differentiation of granulocytic precursors, release of mature neutrophils from the 
bone marrow, and modulation of their phagocyte function [3]. Neutrophils carry 
high levels of G-CSF receptor on their surface through their development and also 
in mature neutrophils. Humans deficient in G-CSF or its receptor have neutropenia. 
Interleukin (IL)-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), 
and IL-3 also stimulate granulopoiesis but are not essential [3]. The transcription 
factor family of CCAAT enhancer-binding proteins (C/EBPs) is involved in neutro-
phil development. Granulocytes and macrophages differentiate from the common 
GMPs [4–6]. Three neutrophil subgroups were identified within the bone marrow 
by mass cytometry and cell cycle-based analysis [4]. Committed proliferative 
neutrophil precursors differentiate into nonproliferating immature neutrophils and 
mature neutrophils.
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Transcription factor C/EBPε is necessary for the generation of committed 
proliferative neutrophil precursors from the GMPs [7]. The deficiency of C/EBPε 
caused phenotypic and functional abnormalities of neutrophils and impaired 
their chemotaxis and bactericidal action [8–10]. The gene for C/EBPε knockout 
mice (CEBPE) displays a block in terminal granulocytic differentiation and fails to 
produce functional neutrophils and eosinophils. CEBPE-nul mice are susceptible 
to gram-negative bacterial sepsis and die from systemic infection. Loss-of-function 
CEBPE mutations have been found in patients with defects in neutrophil function 
and with neutrophil-specific granule deficiency [11–13].

Granulocyte development requires also SMARCD2 (SWI/SNF-related, matrix-
associated, actin-dependent regulator of chromatin, subfamily D, member 2), also 
known as BAF60b (BRG1/Brahma-associated factor 60b) [13, 14]. SMARCD2-
deficient mice were not able to generate mature and functional neutrophils and 
eosinophils. SMARCD2 interacts with the transcription factor C/EBPε and controls 
the expression of neutrophil proteins.

1.2  Neutrophil terminal differentiation, granules and secretory vesicles,  
and release of neutrophils from the bone marrow

Neutrophil precursors differentiate into myeloblasts, promyelocytes, myelo-
cytes, metamyelocytes, band cells, and finally segmented neutrophils (Figure 1) 
[15, 16]. Three types of neutrophil granules are formed continuously starting at the 
promyelocyte stage during the differentiation process [16, 17]. Primary granules, 
also known as azurophilic granules, are generated in promyelocytes and contain 
myeloperoxidase (MPO). Secondary granules, also named specific granules, contain 

Figure 1. 
The maturation process of neutrophils from hematopoietic stem cells. Transcription factors involved at different 
stages of myeloid cell development are shown. HSC, hematopoietic stem cell; MPP, multipotent precursor; 
EMP, common erythroid and myeloid precusor; LMP, common lymphoid and myeloid precursor; GMP, 
common granulocyte and macrophage precursor. Adapted from Refs. [15, 16].
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lactoferrin and are MPO-negative. Tertiary (gelatinase) granules contain matrix 
metalloproteinase 9, also known as gelatinase B.

Terminal differentiation of neutrophils is regulated by a balance between tran-
scription factors. Runx 1 and c-myb were heavily expressed at the early stages of 
neutrophil differentiation and are required for the expression of azurophilic granule 
proteins such as MPO and elastase [18]. Runx1 and c-myb stimulate proliferation, 
and their downregulation after the myelocyte stage is connected with terminal 
neutrophil differentiation. C/EBPα is required for granulopoiesis and is found all 
over the neutrophil differentiation. The selective block in neutrophil differentiation 
was found in mice with a targeted disruption of the CEBPA [19]. On the other hand, 
an induced expression of the CEBPA is necessary for the induction of terminal 
granulocytic differentiation in 32Dcl3 myeloblasts [20]. The levels of C/EBPβ,  
C/EBPδ, and C/EBPζ increased substantially at the stage of metamyelocytes where 
proliferation terminates. However, a high expression of C/EBPγ is connected with 
proliferation. C/EBPγ is devoid of a transactivating domain and can inhibit other  
C/EBPs in their transactivating function. Cell cycle arrest and initiation of terminal 
neutrophil differentiation in metamyelocytes are associated with downregulation of 
the proliferation-stimulating factors (Runx1, c-myb, C/EBPγ) as it has been men-
tioned above. PU.1 transcript was found at all stages of neutrophil differentiation 
[18, 21]. This transcription factor is important for optimal gene expression of both 
early (MPO, proteinase-3, and elastase) and late (Toll-like receptors 2 and 4 (TLR2, 
TLR4), CD35, complement receptor 1 (CR1)) neutrophil markers [18, 21].

Neutrophils contain easily mobilized secretory vesicles (intracellular storage 
granules formed by endocytosis) that can transport their content to plasma mem-
branes of human neutrophils [22–25]. Polymorphonuclear neutrophils contain 
multiple distinct secretory compartments that are sequentially mobilized during 
cell activation. Complement receptor type 1 is a marker for a readily mobilizable 
secretory vesicle compartment, which can undergo exocytic fusion with the plasma 
membrane independently of the secretion of traditional granule contents.

Release of neutrophils from the bone marrow requires the coordinate action 
of G-CSF and ELR-type CXC (two N-terminal cysteines separated by one amino 
acid) chemokines with a specific amino acid sequence (or motif) of glutamic acid-
leucine-arginine (or ELR for short) such as CXCL1 and CXCL2 [26]. The interaction 
between CXC chemokine receptor 4 (CXCR4), a G protein-coupled receptor, and 
its main ligand stromal-derived factor 1 (SDF-1, also known as CXCL12) retains 
neutrophils within the microenvironment of the bone marrow. Efficient mobiliza-
tion of neutrophils requires G-CSF-mediated disruption of the neutrophil retention 
mechanism and activation of neutrophil migration [26]. Deletion of CXCR4 or 
CXCR2 has a similar negative effect on neutrophil migration from the bone marrow 
to circulation. The development from a neutrophil myeloblast to a mature polymor-
phonuclear neutrophil lasts approximately 14 days [21]. The postmitotic phase lasts 
6–7 days [21].

2.  Regulation of hematopoietic stem cells in the bone marrow 
microenvironment by neutrophils

2.1 Various cells influence the bone marrow microenvironment

Stem cell niches are local tissue microenvironments that promote the main-
tenance of stem cells and regulate their function by producing factors that act 
directly on stem cells [27]. The determination of niche cells can be based on the 
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identification of cells which synthesize HSC regulators (CXCL12, CXCL4, stem 
cell factor (SCF), thrombopoietin, osteopontin, transforming growth factor-β, 
vascular cell adhesion molecule 1 (VCAM1), glycoprotein 130, Notch ligands such 
as Jagged-1, fibroblast growth factor 1, angiopoietin-1, and pleiotrophin). Many 
further factors produced by other tissues can also affect stem cells and their micro-
environment. The main site of hematopoiesis in adults is bone marrow. However, in 
response to severe hematopoietic stresses, extramedullary hematopoiesis was found 
in other niches of the liver and the spleen HSCs.

In the steady state, 90% of neutrophils reside in the bone marrow, and only 
1–2% of neutrophils are present in the circulation [28]. Two neutrophil-derived 
proteases, cathepsin G and elastase, cleave receptors and cytokines essential for 
HSC retention in the bone marrow (CXCR4, CXCL1, and VCAM1) and change 
the HSC-supportive properties of the bone marrow [28]. Further experiments 
showed that neutrophil-derived proteases are not necessary for HSC mobilization. 
Macrophages, megakaryocytes, regulatory T cells (Tregs), and neutrophils influ-
ence HSC homeostasis and fate.

A majority of HSCs in the bone marrow localize near the sinusoidal blood 
vessels. Endothelial cells supply HSCs by CXCL12 and SCF. Both these factors are 
important for HSCs maintaining within the microenvironment of the bone mar-
row [29, 30]. Nestin-positive (Nes+) cells are important hematopoiesis-supporting 
constituents in an adult bone marrow. Studies using green fluorescent protein 
under the direction of nestin promoter/enhancer (Nes-GFP) revealed two groups of 
mesenchymal progenitor cells, one associated with arterioles (bright cells) and one 
associated with sinusoids (dim cells). The sympathetic nervous system also regu-
lates hematopoietic stem cells in the bone marrow microenvironment [31].

2.2  Tumor necrosis factor α (TNF α) synthesized by activated bone marrow 
neutrophils and its role in the regeneration of the damaged hematopoietic 
stem cell microenvironment

Gr1/Ly6G (lymphocyte antigen 6 complex locus G6D) is a 21–25 kD glyco-
sylphosphatidylinositol (GPI)-linked differentiation antigen that is expressed by 
myeloid-derived cells in a tightly developmentally regulated manner in the bone 
marrow. CD115 (M-CSF receptor) has been used to define monocytes. Bowers et al. 
showed that bone marrow Gr1+CD115− neutrophils support the regeneration of the 
damaged vascular hematopoietic microenvironment in mice after transplantation [32].  
Bone marrow Gr1+CD115− neutrophils are a heterogenous population which contains 
proliferating neutrophil progenitors and immature and mature neutrophils with 
different transcriptional signatures in comparison with circulating neutrophils  [4]. 
Bone marrow neutrophils are selectively recruited to the damaged sinusoidal vas-
culature, where they secrete TNFα. This cytokine is a potent inducer of new blood 
vessel growth (angiogenesis) [32]. The treatments used before transplantation for 
abolishment of the host hematopoietic cells destroy the bone marrow vascular micro-
environment. Donor HSCs increase their proliferation and neutrophils together with 
other myeloid cell production. Therefore, the hematopoietic progenitor engraftment 
is facilitated by neutrophils [33, 34].

3. Various phenotypes and functions displayed by neutrophils

Neutrophils are innate immune cells engaged in protection against bacterial, 
viral, parasitic, and fungal pathogens and in tissue repair [35]. Infected tissues and 
tissues with sterile stress can be also damaged by the toxic activity of neutrophils [35]. 
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Neutrophils have very efficient migratory capabilities. Neutrophils are released 
from the bone marrow and circulate in the blood for about 12 h and disappear with 
circadian frequency [35]. As neutrophils disappear from circulation, they infiltrate 
the vast majority of naive tissues, mainly the spleen, lungs, and liver, and have 
nonimmune regulatory functions together with supporting B-cell maturation and 
immunoglobulin production. These infiltrated neutrophils affected cell survival, 
migration, and susceptibility to cancer.

In addition to direct effects during injury and infections, neutrophils are also able 
to regulate immunity through modulation of antigen-presenting dendritic cells [36]. 
The cross talk between neutrophils and lymphocytes takes place at the interface 
between innate and adaptive immunity. Neutrophils can become involved in positive 
or negative regulation of interactions with various T cells such as T helper type 1 
(Th1), Th2, Th17, Treg, CD8, and γδ T cells [37, 38].
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