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1. Introduction 

Petri Nets (PNs) are a discrete event model firstly proposed by C. A. Petri in his Ph.D. thesis 
in the early 1960s (Petri, 1962). The main feature of a (discrete) PN is that its state is a vector 
of non-negative integers. This is a major advantage with respect to other formalisms such as 
automata, where the state space is a symbolic unstructured set, and has been exploited to 
develop many analysis techniques that do not require to enumerate the state space 
(structural analysis) (Silva et al., 1996). Another key feature of PNs is their capacity to 
graphically represent and visualize primitives such as parallelism, concurrency, 
synchronization, mutual exclusion, etc.  
In the related literature various PN extensions have been proposed. In this paper we focus 
on Continuous and Hybrid PNs. 
Continuous Petri Nets (CPNs) originate from the “fluidification” of discrete PNs (David & 
Alla, 1987). In simple words, the content of places is relaxed to be a real non-negative 
number rather than an integer non-negative number, and appropriate rules for transitions 
firings are given. This highly reduces the computational complexity of the analysis and 
optimization of realistic scale problems, and has been successfully applied to manufacturing 
systems. The main advantages of fluidification can be summarized in the following four 
items. 

• The computational complexity of the analysis and control of complex systems may be 
significantly reduced. 

• Fluid approximations provide an aggregate formulation to deal with complex systems, 
thus reducing the dimension of the state space. The resulting simple structures allow 
explicit computation and performance optimization. 

• The design parameters in fluid models are continuous; hence, it is possible to use 
gradient information to speed up optimization and to perform sensitivity analysis.  

• Finally, in many cases it has also been shown that fluid approximations do not 
introduce significant errors when carrying out performance analysis via simulation.  

In general, different fluid approximations are necessary to describe the same system, 
depending on its discrete state, e.g., in the manufacturing domain, machines working or 
down, buffers full or empty, and so on. Thus, the resulting model can be better described as 
a hybrid model, where a different continuous dynamics is associated to each discrete state. 
Hybrid Petri Nets (HPNs) keep all those good features that make discrete PNs a valuable 

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria
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discrete-event model: they do not require the exhaustive enumeration of the state space and 
can finitely describe systems with an infinite state space; they allow modular representation 
where the structure of each module is kept in the composed model; the discrete state is 
represented by a vector and not by a symbolic label, thus linear algebraic techniques may be 
used for their analysis. Different HPN models have been proposed in the literature, but 
there is so far no widely accepted classification of such models. 
In Section 2 we provide a brief survey of the most important HPN models presented in the 
related literature. The main theoretical results and the main application areas within each 
framework are also mentioned. We recently provided a more detailed survey in (Dotoli et 
al., 2007). 
In Section 3 we focus our attention on a particular model of HPNs, called First-Order Hybrid 
Petri Nets (FOHPNs) because its continuous dynamics are piece-wise constant. FOHPNs 
were originally proposed in (Balduzzi et al., 2000) and have been efficiently used in many 
application domains, such as manufacturing systems (Balduzzi et al., 2001; Giua et al., 2005) 
and inventory control (Furcas et al., 2001). Interesting optimization problems have also been 
studied considering real applications, such as a bottling plant (Giua et al., 2005) and a cheese 
factory (Furcas et al. 2001).  
Finally, in Section 4 we show how FOHPNs can be efficiently used for modelling and 
controlling large and complex systems such as Supply Chains (SCs). SCs are complex 
emerging distributed manufacturing systems whose analysis, design and management is 
currently an active area of research (Viswanadham & Gaonkar, 2003; Viswanadham & 
Raghavan, 2000; Dotoli et al., 2005; Dotoli et al., 2006). More precisely, a SC is defined as a 
collection of independent companies possessing complementary skills and integrated with 
transportation and storage systems, information and financial flows, with all entities 
collaborating to meet the market demand. Appropriate modelling and analysis of such 
highly complex systems are crucial for performance evaluation and to compare competing 
SCs. However, in the related literature few contributions deal with the problem of 
modelling and analyzing the SC operational behaviour. Viswanadham and Raghavan (2000) 
model SCs as discrete event dynamical systems, in which the evolution depends on the 
interaction of discrete events such as the arrival of the components at the facilities, the 
departure of the transport, the start of the operations at the manufacturers and the 
assemblers. In (Desrochers et al., 2005) a two-product SC is modelled by complex-valued 
token PNs and the performance measures are determined by simulation. However, the limit 
of such formalisms is the modelling of products or batches of parts by means of discrete 
quantities (i.e., tokens). This assumption is not realistic in large SCs with a huge amount of 
material flow. Hence, this paper uses FOHPNs to model and manage SCs. Using a modular 
approach based on the idea of bottom-up methodology (Zhou & Venkatesh, 1998), this work 
develops a modular FOHPN model of SCs where the input buffers are managed by the well 
known fixed order quantity policy. In particular, transporters and manufacturers are 
described by continuous transitions, buffers are continuous places, and products are 
represented by continuous flows (fluids) routing from manufacturers, buffers and 
transporters.  

2. Hybrid Petri nets  

The first fluid PN model is the so called “Continuous and Hybrid Petri Net” model 
introduced by R. David and H. Alla in their seminal paper (David & Alla, 1987). Based on 
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this first formalism, and motivated by particular applications, a family of extended hybrid 
models has then been proposed in the literature. In this section we briefly recall some of 
them, namely Fluid Stochastic Petri Nets, Batch Nets, DAE-Petri Nets, Hybrid Flow Nets, 
Differential Petri Nets and High-Level Hybrid Nets. For a more detailed survey on Hybrid 
Petri Nets (HPNs) we address the reader to (Dotoli et al., 2007)  and to (David & Alla, 2005).  

2.1 Continuous and hybrid Petri nets 

All the works collected under this heading are based on or directly inspired to the model 
presented by R. David and H. Alla in the late eighties (David & Alla, 1987). These authors 
have obtained a continuous model by fluidification, i.e., by relaxing the condition that the 
marking be an integer vector. Hybrid Petri nets are then made of a “continuous part” 
(continuous places and transitions) and a “discrete part” (discrete places and transitions). 
The continuous part can model systems with continuous flows and the discrete part models 
the logic behavior.  
Several contributions in this framework have been presented in the last decade, as well as 
some interesting extensions with respect to the original model.  
As an example, the problem of determining an optimal stationary mode of operation for a 
system described by a timed CPN has been studied in (Gaujal & Giua, 2004). Some 
characterizations of equilibrium points in steady-state are given in (Mahulea et al., 2007), 
where an optimal steady-state control is also studied. An interesting comparison on two 
different techniques to compute the steady-state of continuous nets was made in 
(Demongodin & Giua, 2002): a method based on linear programming and a method based 
on graph theory are considered. 
Other interesting papers have been devoted to the problem of production frequencies 
estimation for systems that are modeled by CPNs (Lefebvre, 2000), to the design of 
observers (Júlvez et al., 2004), to the reachability analysis (Júlvez et al., 2003), to the stability 
analysis (Amer-Yahia & Zerhouni, 2001), and to the deadlock-freeness analysis (Júlvez et al., 
2002). 
The problem of deriving an optimal control law for CPNs under the assumption of finite 
servers semantics has been studied in (Bemporad et al., 2004). In (Mahulea et al., 2006a) the 
authors considered timed CPNs under infinite servers semantics that usually provide a much 
better approximation of the discrete system than finite servers semantics (Mahulea et al., 
2006b). They deal with the problem of controlling CPNs in order to reach a final (steady 
state) configuration while minimizing a quadratic performance index.  
CPNs have been mainly applied in the manufacturing domain (for an exhaustive list of 
references see (Dotoli et al., 2007)), even if some other interesting applications have been 
presented, like (Amer-Yahia et al., 1997) dealing with biological systems, and (Júlvez & Boel, 
2005) dealing with transportation systems. 
FOHPNs follow the formalism described in (Alla & David, 1998) with the addition of 
algebraic analysis techniques, and have been firstly presented in (Balduzzi et al., 2000). 
FOHPNs consist of continuous places holding fluid, discrete places containing a non-
negative integer number of tokens, and transitions, either discrete or continuous. As in all 
hybrid models, in FOHPNs the authors distinguish two behavioral levels: time-driven and 
event-driven. The continuous time-driven evolution of the net is described by first-order 
fluid models, i.e., models in which the continuous flows have constant rates and the fluid 
content of each continuous place varies linearly with time. A discrete-event model describes 
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the behaviour of the net that, upon the occurrence of macro-events, evolves through a 
sequence of macro-states. The authors set up a linear algebraic formalism to study the first-
order continuous behavior of this model and show how its control can be framed as a 
conflict resolution policy that aims at optimizing a given objective function. The use of linear 
algebra leads to sensitivity analysis that allows one to study how changes in the structure of 
the model influence the optimal behavior. This model is extensively presented in the rest of 
this paper. 

2.2 Other models 

The Fluid Stochastic Petri Net (FSPN) model has been firstly presented by K.S. Trivedi and 
V.G. Kulkarni in the early nineties (Trivedi & Kulkarni, 1993). Here the authors extend the 
stochastic Petri nets framework (Ajmone Marsan et al., 1995) to FSPNs by introducing places 
with continuous tokens and arcs with fluid flow so as to handle stochastic fluid flow 
systems. No continuous transitions are present in this model, and the set of transitions is 
partitioned into timed transitions and immediate transitions, where timed transitions have 
an exponentially distributed firing time. They define hybrid nets in such a way that the 
discrete and continuous portions may affect each other. 
Batch Petri Nets (BPNs) represent a formalism derived in (Demongodin et al., 1998) as a 
modeling tool for the particular class of batch processes. It intends to model variable delays 
on continuous flows by adding to a hybrid Petri net special nodes called batch nodes. Batch 
nodes combine both a discrete event and a linear continuous dynamic behaviour in a single 
structure. Evolution rules are determined in order to carry out the simulation of systems 
based on accumulation phenomena, thus the resulting formalism is well suited to model 
high throughput production lines. 
Differential Algebraic Equations-Petri Nets (DAE-PNs) are based on the model presented in 
(Andreu et al., 1996; Champagnat et al., 1998; Valentin-Roubinet, 1998). This approach does 
not try to represent in a unified way the continuous and discrete aspects, as it is the case in 
HPNs. On the contrary, the model focuses on the interaction between a discrete Petri net 
model that captures the discrete behaviour of a batch system, and a continuous model, 
which is a set of differential algebraic equations. DAE-PNs can be seen as an extension of 
hybrid automata (Alur et al., 1993; Puri & Varaiya, 1996). This approach is well suited for 
modelling batch processes where it is necessary to concurrently deal with continuous and 
discrete models. It has also been tested in the food industry for the validation of scheduling 
policies and has been developed for supervisory control and reactive scheduling. 
Hybrid Flow Nets (HFNs) have been proposed in (Flaus, 1997; Flaus & Alla, 1997). This 
approach is based on the analysis of a system as a set of continuous and discrete flows. The 
notion of HFNs can then be seen as an extension of PNs for hybrid systems. This modeling 
tool is made of a continuous flow net interacting with a PN according to a control 
interaction. The overall philosophy of PNs is preserved again. The discrete part is a PN 
while the continuous part is called continuous flow net, whose dynamic evolution has to be 
defined so as to be similar to the one of PNs, with a continuous enabling rule and a 
continuous firing rule. HFNs are well suited for the modeling and control of industrial 
transformation processes, for which the dynamics behavior has a hybrid nature. 
Differential Petri Nets (DPNs) have been firstly presented in (Demongodin & Koussoulas, 
1998). The main feature of this class of PNs is that it allows us to model continuous-time 
dynamic processes represented by a finite number of linear first-order differential state 
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equations. The DPN is defined through the introduction of a new kind of place and transition, 
namely, the differential place and the differential transition. The marking of the differential place 
represents a state variable of the continuous system that is modeled. A firing speed, 
representing either a variable proportional to a state variable or an independent variable, is 
associated to every differential transition. A differential transition is always enabled, thus to 
discretize the continuous system; a firing frequency, representing the integration step that 
would be used when carrying out an integration of the differential equation, is associated to 
any differential transition. Evolution rules have been developed to specify the simulation of 
hybrid systems composed by a continuous part cooperating with a discrete event part, i.e., the 
typical paradigm of a supervisory control system.  
Finally, under the heading High-Level Hybrid Petri Nets (HLHPNs) we collect different 
models presented by several authors (Chen & Hanisch, 1998; Genrich & Schuart, 1998; Giua 
& Usai, 1998). All these models, however, are based on high-level nets, i.e., nets 
characterized by the use of structured individual tokens. HLHPNs are a useful model that 
provides a simple graphical representation of hybrid systems and takes advantage of the 
modular structure of PNs in giving a compact description of systems composed of 
interacting subsystems, both time-continuous and discrete-event. The use of colors in the 
continuous places allows one to model continuous variables that may take negative values. 

3. First-order hybrid Petri nets  

In this section we provide a detailed presentation of the FOHPN model (Balduzzi et al., 
2000). For a more comprehensive introduction to place/transition PNs see (Murata, 1989). 

3.1 Net structure 

A FOHPN is a structure  

N = (P,T,Pre,Post, D, C). 

The set of places P = Pd ∪ Pc is partitioned into a set of discrete places Pd (represented as 
circles) and a set of continuous places Pc (represented as double circles). The cardinality of 
P, Pd and Pc  is denoted n, nd and nc, respectively. We assume that the place labeling is 
such that: Pc ={ pi | i=1, ... , nc }, Pd ={ pi | i= nc+1, ... , n}. 

The set of transitions T = Td  ∪ Tc is partitioned into a set of discrete transitions Td and a set 

of continuous transitions Tc (represented as double boxes). The set Td = TI ∪ TD ∪ TE is 
further partitioned into a set of immediate transitions TI  (represented as bars), a set of 
deterministic timed transitions TD (represented as black boxes), and a set of exponentially 
distributed timed transitions TE (represented as white boxes). The cardinality of T, Td and Tc 
is denoted q, qd and qc, respectively. We also denote with qt the cardinality of the set of 

timed transitions Tt = TD ∪ TE. We assume that the transition labeling is such that: Tc = {tj 
| j=1, ... , qc }, Tt = {tj | j= qc+1, ... , qc+qt}, TI = {tj | j= qc+qt+1, ... , q}. 

The pre- and post-incidence functions that specify the arcs are (here R0+ = R+ ∪ {0}): 

0, : c

d

P T R
Pre Post

P T N

+⎧ × →
⎨

× →⎩
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We require (well-formed nets) that for all t∈Tc and for all p∈Pd, Pre(p,t) = Post(p,t). This 
ensures that the firing of continuous transitions does not change the marking of discrete 
places. 

The function D : Tt → R+ specifies the timing associated to timed discrete transitions. We 

associate to a deterministic timed transition tj ∈TD its (constant) firing delay δj = D(tj). We 

associate to an exponentially distributed timed transition tj ∈TE its average firing rate λj = 

D(tj): the random delay is distributed according to the probability density function  fj (Ǖ) = λj 
exp(-λj Ǖ) and the average firing delay is 1/λj. 

The function C : Tc → R0+ × R∞+ specifies the firing speeds associated to continuous transitions 

(here R∞+ = R+  ∪ {+∞}). For any continuous transition tj ∈Tc we let C(tj) = (Vj’, Vj), with Vj’≤ 
Vj. Here Vj’ represents the minimum firing speed (mfs) and Vj represents the Maximum Firing 
Speed (MFS). In the following, unless explicitly specified, the mfs of a continuous transition tj 
will be Vj’=0. 
We denote the preset (postset) of transition t as �t (t�) and its restriction to continuous or 
discrete places as (d)t  = �t ∩ Pd or (c)t  = �t ∩ Pc. A similar notation may be used for presets and  
postsets of places. The incidence matrix of the net is defined as C(p,t) = Post(p,t) - Pre(p,t). The 

restriction of  C to PX and TY (X,Y∈ {c,d}) is denoted CXY. Note that by the well-formedness 
hypothesis Cdc = 0nd × qc. 

3.2 Marking and enabling 

A marking  

⎪⎩

⎪
⎨
⎧

→
→ +

NP

RP
:m

d

0c  

is a function that assigns to each discrete place a non-negative integer number of tokens, 
represented by black dots, and assigns to each continuous place a fluid volume; mi denotes 
the marking of place pi. The value of the marking at time Ǖ is denoted m(Ǖ). The restrictions 
of m to Pd and Pc are denoted with md and mc,  respectively.  

An FOHPN system 〈N, m(Ǖ0)〉 is an FOHPN N with an initial marking m(Ǖ0). 
The enabling of a discrete transition depends on the marking of all its input places, both 
discrete and continuous. 

Definition 3.1 Let 〈N, m〉 be an FOHPN system. A discrete transition t is enabled at m if for all 

pi ∈�t, mi ≥ Pre(pi ,t). 
A continuous transition is enabled only by the marking of its input discrete places. The 
marking of its input continuous places, however, is used to distinguish between strongly 
and  weakly enabling. 

Definition 3.2 Let 〈N, m〉 be an FOHPN system. A continuous transition t is enabled at m if 

for all pi ∈ (d)t, mi ≥ Pre(pi ,t). 

We say that an enabled transition t ∈ Tc is: 

• strongly enabled at m if for all places pi ∈ (c)t, mi > 0; 

• weakly enabled at m if for some pi ∈ (c)t, mi = 0. 

3.3 Net dynamics 

We now describe the dynamics of an FOHPN. First, we consider the behaviour associated to 
discrete transitions that combines a continuous dynamics associated to the timers, and a 
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discrete-event dynamics associated to the transition firing. Then we consider the time-
driven behaviour associated to the firing of continuous transitions. 
Note that the evolution of an FOHPN is characterized by the occurrence of some events that 
we call macro-events, while the time interval between two consecutive macro-events is called 
a macro-period. As discussed in detail in the following two paragraphs, macro-events may be 
either related to the firing and/or the enabling condition of discrete transitions, or to the 
enabling condition and/or the enabling state of a continuous transition. 
In the following we use ei,r to denote the ith canonical basis vector of dimension r. We also 
define, to simplify the notation, the index ρ(j)=j-qc that is used to define the firing vector 
associated to a discrete transition. 

3.3.1 Discrete transitions dynamics 

We associate to each timed transition tj∈Tt a timer ǖj. 

Definition 3.3 [Timers evolution] Let  〈N, m〉  be an FOHPN system and [Ǖk,Ǖ) be an interval 

of time in which the enabling state of a transition tj∈Tt does not change. If tj is enabled in 
this interval then 

ǖj (Ǖ)= ǖj (Ǖk)+ (Ǖ- Ǖk ) 

while if tj is not enabled in this interval then 

ǖj (Ǖ)= ǖj (Ǖk)=0. 

Whenever tj is disabled or it fires, its timer is reset to 0.  
With the notation of (Ajmone Marsan et al., 1995), we are using a single-server semantics, i.e. 
only one timer is associated to each timed transition, and an enabling-memory policy, i.e. each 
timer is reset to 0 whenever its transition is disabled. The approach we present, however, 
can also be easily extended to take into account infinite server semantics.  
The vector of timers associated to timed transitions is denoted 

ǖ=[ ǖqc+1, ǖqc+2, ..., ǖqc+qt ]T∈ (R0+)qt. 

Note that the timer evolution is continuous and linear during a macro—period and may 
change at the occurrence of the following macro-events: 
1. a discrete transition fires, thus changing the discrete marking and enabling (or 

disabling) a timed transition; 
2.  a continuous place reaches a fluid level that enables (or disables) a discrete transition. 

An enabled timed transition tj∈Tt fires when the value of its timer reaches a given value      ǖj 

(Ǖ)= ǖj*: we call ǖj*'s the timer set points. In the case of a deterministic transition, ǖj* =δj is the 
associated delay. In the case of a stochastic transition, ǖj* is the current sample of the 
associated random variable: it is drawn each time the transition is newly enabled. An 
immediate transition fires as soon as it is enabled, i.e. it can be considered as a deterministic 
transition with ǖj* =0. 
Definition 3.4 [Discrete transition firing] The firing of a discrete transition tj at m(Ǖ -) yields 
the marking m(Ǖ) and for each place p it holds mp(Ǖ) = mp(Ǖ -) + Post (p, tj) - Pre(p, tj) = mp(Ǖ -)+ 
C (p, tj). Thus we can write 

⎪⎩

⎪
⎨
⎧

+=
+=

−

−

)(C)(m)(m

)(C)(m)(m

dd
dd

cd
cc

τσττ
τσττ
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where ǔ(Ǖ) = eρ(j),qd is the firing count vector associated to the firing of transition tj.   

In the above definition we note that a transition tj is the ρ(j)th discrete transition, hence, 

say, Ccd eρ(j),qd represents the column of matrix Ccd corresponding to transition tj. 

3.3.2 Continuous transitions dynamics 

The Instantaneous Firing Speed (IFS) at time Ǖ of a transition tj∈Tc is denoted vj (Ǖ). We can 

write the equation which governs the evolution in time of the marking of a place pi∈Pc as 

 ∑
∈

==

cj

c

Tt

cc
T

n,ijjii )(vCe)(v)t,p(C)(m τττ&   (1) 

where v(Ǖ) = [v1(Ǖ), ... , vnc(Ǖ)]T is the IFS vector at time Ǖ. Indeed, equation (1) holds 
assuming that at time Ǖ no discrete transition is fired and that all speeds vj(Ǖ) are 
continuous in Ǖ. 
The enabling state of a continuous transition tj defines its admissible IFS vj. In particular, 
three cases are alternatively possible. 

• If tj is not enabled then vj =0. 

• If tj is strongly enabled, then it may fire with any firing speed vj ∈ [V'j,V j]. 

• If tj is weakly enabled, then it may fire with any firing speed vj ∈ [V'j,V''j], where the 
upper bound V''j  on the firing speed is such that V''j ≤ Vj and depends on the flow 
entering the set of input continuous places (c) tj that are empty. In fact, tj cannot 
remove more fluid from any empty input continuous place p than the quantity 
entered in p by other transitions. 

The computation of the IFS of enabled transitions is not a trivial task. We set up in the 
following Subsection 3.4 a linear—algebraic formalism to do this. Here we simply discuss 
the net evolution, assuming that the IFS are given. 
We say that a macro-event occurs when either cases hold: 
1. a discrete transition fires, thus changing the discrete marking and enabling (or 

disabling) a continuous transition; 
2. a continuous place becomes empty, thus changing the enabling state of a continuous 

transition from strong to weak. 
Definition 3.5 [Continuous transition firing] Let Ǖk and Ǖk+1 be the occurrence times of 
two consecutive macro-events as defined above; we assume that within the interval of 
time [Ǖk,Ǖk+1) the IFS vector is constant and denoted v(Ǖk). The continuous behaviour of an 

FOHPN for Ǖ∈ [Ǖk,Ǖk+1) is described by 

⎪⎩

⎪
⎨
⎧

=
−+=

)(m)(m

))((vC)(m)(m

k
dd

kkcck
cc

ττ
τττττ

 

3.4 Admissible IFS vectors 

We use linear inequalities to characterize the set of all admissible firing speed vectors S. 

Each IFS vector v∈ S represents a particular mode of operation of the system described by 
the net. As discussed in detail in the subsequent Subsection 3.5, the system operator may 
choose, among all possible modes of operation, the best one according to a given 
objective. 
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The set of admissible IFS vectors form a convex set described by linear equations. 

Definition 3.6 [Admissible IFS vector] Let 〈N, m〉 be an FOHPN system with nc  

continuous transitions and incidence matrix C. Let  

• TE(m)⊂Tc  (TN(m) ⊂Tc) be the subset of continuous transitions enabled (not enabled) at 
m, 

• PE(m) = { p ∈ Pc | mp =0 } be the subset of empty continuous places. 
Any admissible IFS vector v = [v1 , ..., vnc]T  at m is a feasible solution of the following linear 
set: 

 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∈∀≥

∈∀≥⋅

∈∀=
∈∀≥−
∈∀≥−

∑
∈

cjj

T

jj

jj

jjj

jjj

Tt0v)e(

)m(Pp0v)t,p(C)d(

)m(Tt0v)c(

)m(Tt0'Vv)b(

)m(Tt0vV)a(

E
t

N

E

E

Ej

  (2) 

Apart from the non-negativity constraint (e), the total number of constraints that define this 

set is: 2 card{TE(m)} + card{TN(m)} + card{PE(m)}. The set of all feasible solutions is denoted 

S(N,m).  

Note that constraints of the form (2.a), (2.b) and (2.c) follow from the firing rules of 

continuous transitions. Constraints of the form (2.d) follow from (1), because if a continuous 

place is empty then its fluid content cannot decrease. Note that if V'i=0, then the constraint 

of the form (2.b) associated to ti reduces to a non-negativity constraint on vi. 

3.5 Control 

In the previous section we have shown how appropriate linear inequalities can be used to 

define the set of all admissible firing speed vectors S. Each vector v∈S represents a 

particular mode of operation of the system described by the net, and among all possible 

modes of operation, the system operator may choose the best one according to a given 

objective. Some examples are given in the following. 

• Maximize flows. In an FOHPN we may consider as optimal the solution v* of (2) that 
maximizes the performance index J= 1T· v, which is of course intended to maximize 
the sum of all flow rates. In the manufacturing domain this may correspond to 
maximizing machines utilization. 

• Maximize outflows. In an FOHPN we may want to maximize the performance index 
J=cT· v, where 

cj=
⎪⎩

⎪
⎨
⎧

transitionsendogeneouanisif

transitionexogenousanisif

j

j

t0

t1
 

In the manufacturing domain this may correspond to maximizing throughput. 

• Minimize stored fluid. In an FOHPN we may want to minimize the derivative of the 

marking of a place p∈Pc. This can be done by minimizing the performance index J=cT· 
v, where 
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In the manufacturing domain this may correspond to minimizing the work-in-process. 
Note that this approach has several advantages with respect to other approaches proposed 
in the literature, e.g., (Dubois et al., 1994), where an iterative algorithm is given to determine 
one admissible vector. In fact, we can explicitly define the set of all admissible IFS vectors in 
a given macro-state and not just compute a particular vector. Then, we compute a particular 
(optimal) IFS vector solving a Linear Programming Problem (LPP), rather than by means of 
an iterative algorithm, whose convergence properties may not be good.  
However, the above control procedure still suffers from a serious drawback. In fact, the set 

S corresponds to a particular system macro-state. Thus, our optimization scheme can only 
be myopic, in the sense that it generates a piece-wise optimal solution, i.e. a solution that is 
optimal only in a macro-period. 
At present, we are looking for alternative solutions that are not myopic, but this is still an 
open issue. We believe that the approach used in (Bemporad et al., 2004) to optimally 
control CPNs could be be successfully applied also in the case of FOHPNs, but we still have 
to verify this conjecture. 

4. Modelling and simulation of supply chains 

This section shows the efficiency of FOHPNs in modelling and controlling at the operational 
level large and complex systems such as SCs. 

4.1 The SC system description 

The SC structure is typically described by a set of facilities with materials that flow from the 
sources of raw materials to manufacturers and onwards to assemblers and consumers of 
finished products. SC facilities are connected by transporters of materials, semi-finished 
goods and finished products. More precisely, the SC entities can be summarized as follows. 
1. Suppliers: a supplier is a facility that provides raw materials, components and semi-

finished products to manufacturers that make use of them. 
2. Manufacturers and assemblers: manufacturers and assemblers are facilities that transform 

input raw materials/components into desired output products. 
3. Logistics and transporters: storage systems and transporters play a critical role in 

distributed manufacturing. The attributes of logistics facilities are storage and handling 
capacities, transportation times, operation and inventory costs. 

4. Distributors: distributors are intermediate nodes of material flows representing agents 
with exclusive or shared rights for the marketing of an item. 

5. Retailers or customers: retailers or customers are sink nodes of material flows. 
Here, part of the logistics, such as storage buffers, is considered pertaining to 
manufacturers, suppliers and customers. Moreover, transporters connect the different stages 
of the production process. 
The dynamics of the distributed production system is traced by the flow of products 
between facilities and transporters. Because of the large amount of material flowing in the 
system, we model a SC as a hybrid system: the continuous dynamics models the flow of 
products in the SC, the manufacturing and the assembling of different products and its 
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storage in appropriate buffers. Hence, the levels of buffers accommodating products are 
represented by continuous states describing the amount of fluid material that the resources 
store. Moreover, we consider also discrete events occurring stochastically in the system, 
such as: 
1. the blocking of the raw material supply, e.g. modeling the occurrence of labor strikes, 

accidents or stops due to the shifts; 
2. the blocking of transport operations due to the shifts or to unpredictable events such as 

jamming of transportation routes, accidents, strikes of transporters, etc.; 
3. the beginning and the end of a request from a SC facility. 

4.2 A modular SC model based on FOHPNs 

This section recalls a modular approach using FOHPNs to model SCs based on the idea of 
the bottom-up approach (Zhou & Venkatesh, 1998). Such a method can be summarized in 
two main steps: decomposition and composition. Decomposition involves dividing a system 
into several subsystems. As shown in (Dotoli et al., 2007), in SCs this division can be 
performed based on the determination of distributed system facilities (i.e., suppliers, 
manufacturers, assemblers, transporters, distributors, buffers and customers). All these 
subsystems are modelled by FOHPNs. Finally, composition involves the interacting of these 
sub-models into a complete model, representing the whole SC.  
In the following we present the FOHPN models of the elementary subsystems composing a 
generic SC. 

4.2.1 The inventory management model 

Inventory management addresses two fundamental issues: when a stock should replenish 
its inventory and how much it should order from suppliers for each replenishment (Chen et 
al., 2005). Inventory systems with independent demand can use Fixed Order Quantity 
(FOQ) policies that manage inventory by placing an order of fixed size whenever the 
inventory position of a stock falls to a pre-specified level (Vollmann et al., 2004). In this 
paper we manage input buffers of manufacturers and distributors by a FOQ policy with 
finite lead time and fixed reorder level. The basic quantities of such an inventory 
management strategy are: the fixed order quantity Q, the lead time, i.e., the delay between 
placing an order and receiving the goods in stock; the demand D, i.e., the number of units to 
be supplied from stock in a given time period and the reorder level R, i.e., the new orders take 
place whenever the stock level falls to R. 
Figure 1(a) shows the FOHPN model for the input buffers (Furcas et al., 2001) managed by 
the FOQ policy. The continuous place pB denotes the input buffer of finite capacity CB and 
p’B represents the corresponding available capacity. Thus, at each time instant, with no 
ambiguity in the notation, we can write mB+m’B=CB. We assume that the buffer can receive 
demands from different facilities and can require the goods from different transporters. 
Each demand is modelled by a continuous transition tDi with i=1,…,m so that the demand to 

be fulfilled is Di=C(tDi)Q’i. When mB>0 a transition tDi with i∈{1,…,m} may fire at the firing 

speed C(tDi)=vi, reducing the marking of the place pB with a constant slope viQ’i. As soon as 
mB falls below the level RB (or, equivalently, the marking m’B goes over CB–RB) the 

immediate transition t1 is enabled. When t1 fires, place pC∈Pd becomes marked and performs 
the choice of the input facility to which new materials/products are requested by enabling 

one of the transitions tTi with i=1,…,n. If a particular transition tTi with i∈{1,…,n} is selected 
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and fires after the firing delay D(tTi)= δi, Qi products are received in the buffer and CB–RB–Qi 
units are restored in the buffer capacity. Typically, transitions tTi can represent a transport 
operation and place pC selects the transport with minimum transport time among the 
available ones. 
In the following we apply the FOQ policy to different facilities composing the SC and 
corresponding to input buffers. Note that output buffers are not managed by the FOQ policy 
since they are devoted just to providing the requested material. 
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Fig. 1.  The FOHPN models of an input buffer managed by FOQ policy (a) and a supplier 

(b). 

4.2.2 The supplier module 

The supplier is modelled as a continuous transition and two continuous places (see places 
pB, p’B and transition tj in Fig.1(b)). The continuous transition tj models the arrival of raw 

material in the system at a bounded rate vj that belongs to the interval vj∈[Vj,min,Vj,max]. We 

consider the possibility that the providing of raw material is blocked for a certain period. 

www.intechopen.com



Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains 

 

103 

This situation is represented by a discrete event modelled by two exponentially distributed 
transitions and two discrete places (pk and p’k). In particular, place pk represents the operative 

state of the supplier, and p’k∈Pd is the non-operative state (see Fig.1(b)). The blocking and 
the restoration of the raw material supply correspond to the firing of transitions tk and t’k, 
respectively. The continuous place pB models the raw material buffer of finite capacity CB, 
and p’B represents the corresponding available capacity. For the sake of clarity, in Fig. 1(b) 
we also report transition tT that, as discussed later (see Section 4.2.4), models the transport 
operation that corresponds to the withdrawal of material from the buffer. 
 

 

Fig. 2.  The FOHPN models of a manufacturer or assembler. 

4.2.3 The manufacturer and assembler module 

Manufacturers and assemblers are modelled by the FOHPN shown in Fig. 2. More precisely, 
the continuous places pBi and p’Bi with i=2,…n describe the input buffers and the 
corresponding available capacity, respectively. Each buffer stores the input goods of a 
particular type. Analogously, the continuous places pB1 and p’B1 model the output buffer. 
The production rate of the facility is modelled by the continuous transition tj with the 

assigned firing speed vj∈[Vj,min,Vj,max]. Moreover, the firing speed can be optimized 
according to a given objective function. 

4.2.4 The logistic modules 

The logistics of SCs are composed by buffers, transporters and distributors.  
The buffer modules are described in the inventory management model and in the supplier, 
manufacturer and assembler modules.  
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The FOHPN model of transporters is reported in Fig. 3(a). The transporters connecting the 
different facilities are modelled by a set of discrete deterministic timed transitions tTi with 
i=1,…,n. Each transition describes the transport of items of a particular type from a facility 

to a subsequent one in a constant time interval δi=D(tTi). The control places pC1,…,pCn∈Pd 
determine the choice of only one type of material to transport among the available set. In 
addition, place p1∈Pd disables the remaining transitions. Moreover, the random stop of the 
material transport is represented by two places pk,p’k∈Pd and two exponentially distributed 
transitions tk,t’k∈TE. 
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Fig. 3.  The FOHPN models of transporters (a) and a retailer (b). 

 
The model of the distributors is represented by an input buffer managed by the FOQ 
system. Hence, the model is similar to the FOHPN represented in Fig. 1(a) where each 
continuous transition tDi , with i=1, …, m, is substituted by a deterministic timed transition 
representing a transport operation. 

4.2.5 The retailer module 
The FOHPN model of a retailer is reported in Fig. 3(b). It is a constituted by an input buffer 
pB managed by the FOQ policy with a finite lead time and stochastic demand. Hence, the 
model is similar to the FOHPN represented in Fig. 1(a) where all the continuous transitions 
tDi with i=1,…,m are substituted by one or more exponential transitions modelling the 
stochastic demand of the consumers. Moreover, the continuous place pF denotes the system 
output and collects all the products obtained by the retailer. 
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4.3 An application example of SCs 
To illustrate the modelling technique, we consider the SC depicted in Fig. 4 composed by 
three suppliers S1, S2 and S3, two manufacturers M1 and M2, one distributor D1, two 
retailers R1 and R2 and eight logistics service providers T1 to T8 that suitably connect the SC 
facilities. We assume that the system produces a product brand C, ordered by both retailers. 
Such product is obtained by two manufacturers that receive the input components of type A 
and B by the suppliers. Moreover, we assume that the SC is managed by the well-known 
Make To Stock (MTS) policy (Viswanadham & Raghavan, 2000). This means that the system 
is managed by a push strategy, so that end customers are satisfied from a stock of inventory 
of finished goods. 
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Fig. 4. The SC considered in Section 4.3.  
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Fig. 5. The FOHPN model of the SC in Fig. 4. 
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The whole system is modelled by merging all the elementary modules described in the 
previous section. The resulting FOHPN is reported in Fig. 5, where each facility module is 
depicted within dashed boxes. The production is determined by the firing of the continuous 
transitions t1,t2,t3 that describe the input of the raw materials that can be interrupted just by 
stochastic events. Consequently, under this control technique, each input buffer is managed 
by the FOQ strategy. Moreover, if the input buffer of manufacturer M1 (M2) requires a 
particular product, a request is sent to the transporter. 

4.3.1 Simulation and optimization 

The SC dynamics is analyzed via numerical simulation using the data reported in Table 1, 

where we can read the manufacturer production rates range, the range of transportation 

speeds and the average firing delays of discrete stochastic transitions. Table 2 shows further 

data necessary to completely describe the system, namely the initial markings of continuous 

places, the buffer capacities for the inventories of each stage and the values of the reorder 

levels and fixed order quantities. 

In order to analyze the SC behavior, some basic performance indices are assumed 
(Gershwin, 2002, Viswanadham, 2000): 
1. the system throughput T, i.e., the average number of products obtained by the retailers 

in a time unit; 
2. the average system inventory SI, i.e., the average amount of products stored in all the 

system input buffers during the run time TP; 
3. the lead time LT=SI/T that is a measure of the time spent by the SC in converting the 

raw material into final products. 
 

Continuous transitions Discrete transitions 

 [Vmin, Vmax] Exponential 
Average 

firing delay 
(hours) 

Timed 
Firing 
delay 

(hours) 

t1 t5 t7 [2, 4] t22 t40 2 t53 1 

t2 t3 t4 [3, 5] t16 t26 t34 3 t42 t43 2 

t6 [4, 6] t10 t14 t18 4 t47 t48 2 
t8 [0,7] t24 t28 t32 4 t52 t54 2 
t9 [0,6] t36 t38 4 t44 t45 3 

  t20 t30 t41 5 t46 t49 3 

  t12 6 t50 t51 3 

  t13 18   

  t21 t31 19   

  t11 t15 t19 20   

  t25 t29 t33 20   

  t37 t39 20   

  t17 t27 t35 21   

  t23 22   

Table 1. Firing speeds and average firing delay of continuous and discrete transitions 
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Initial markings 
Product 

units 
Capacities Reorder levels 

Fixed Order 
quantities 

m1 m5 m11 m15 20 C1,C5,C11,C15=100 R1=18 Q1,Q6=50 

m23 m25 20 C23,C25=100 R2,R3,R4=25 Q2=45 

m31 m37 m39 20 C31 =150  C37,C39=70 R5,R6=15 Q3=55 

m3 m9 m13 15 C3,C9,C13=100 R7,R8=20 Q4=40 

m7 m27 25 C7,C27=100 R9=30 Q5=60 

m17 m19 m29 30 C17,C19,C29=100 R10,R11=10 Q7=30 

m33 30 C33=150  Q8=25 

m21 35 C21=100  Q9=2 

m35 m41 0 C35=120  Q10=5 

Table 2. Initial marking of odd continuous places, capacities and edge weights. 

The FOHPN model has been implemented and simulated in the well-known Matlab 
environment (The Mathworks, 2006). Indeed, such a matrix-based software appears 
particularly appropriate for simulating the FOHPN dynamics based on the matrix 
formulation of the marking update described in Section 3. In particular, the chosen software 
program is able to integrate modelling and simulation of hybrid systems with the solution 
of constrained optimization problems, i.e., the IFS vector choice within the set of admissible 
values by optimizing a particular objective function. 
In more detail, after defining the system parameters and the initial marking, the main 
simulation program first selects the value of each transition timer set point, then determines 
the set of IFS admissible vectors and solves the optimization program by a suitable Matlab 
routine; it subsequently determines the next macro-event to occur using an appropriate 
routine that singles out the enabled transitions. Hence, the simulation determines the next 
marking with the matrix formulation of the marking update described in Section 3, and 
finally updates the set point of all transitions so that the next macro-period may be 
simulated. 
All the indices assessing the performance of the SC dynamics are estimated by simulation 
runs of a time period TP=480 hours and 1000 independent replications. Moreover, the 
simulations are performed in two operative conditions, denoted OCi with i=1,2 and each 
operative condition OCi corresponds to a different choice of the IFS vectors within the set of 
admissible values. 

• First Operative Condition (OC1). At each macro-period the IFS vector v is selected so as to 
maximize the sum of all flow rates (see first item in Section 3.5) 

• Second Operative Condition (OC2). At each macro-period the IFS vector v is selected so as 
to minimize the stored volume (see third item in Section 3.5) 

The main results of the numerical simulations we carried out are summarized in Table 3. In 
particular, OC1 provides the best performances in terms of system throughput. This result is 
not surprising because in such operational condition the goal was exactly that of 
maximizing the sum of all flow rates. Moreover, Table 3 shows the average inventories in 
the two operative conditions. The values show that the SC is able to keep stocks at a 
satisfactorily high level, so that the demand is satisfied and inventory is not excessive. In 
particular, as expected, OC1 corresponds to the highest inventories and OC2 to the lowest 
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stocks. Finally, Table 3 reports the obtained lead times in the two conditions, showing that 
the obtained LT values in OC1 are greater than those obtained in OC2, since the former case 
corresponds to a higher productivity. 
 

OC1 OC2 

T 
units/h 

SI 
units 

LT 
hours 

T 
units/h

SI 
units 

LT 
hours 

2.04 1203 589 1.92 817 425 

Table 3. The performance indices. 

Summing up, a different choice of the production and work rates (as in the two cases OC1 
and OC2) let us manage the different performance indices of the SC, i.e. the system may be 
forced to evolve in an optimal way, e.g. while maximizing the flow rates or minimizing the 
inventory. 

5. Conclusions  

In this paper we focused our attention on a particular hybrid PN model called FOHPN, that 
is based on the fluidification of discrete PNs, and whose main feature is that the 
instantaneous firing speed of continuous transitions keeps constant during each macro-
period. In the first part of the paper we discuss in detail the advantages of fluidification, and 
provide a brief survey of the most important formalisms within the hybrid PN framework. 
Finally, we showed how FOHPNs can be efficiently used to model SC, and how interesting 
optimization problems can be solved via numerical simulation, by simply solving on-line a 
certain number of LPPs. 
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