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Chapter

Forecasting of Photovoltaic Solar
Power Production Using LSTM
Approach
Fouzi Harrou, Farid Kadri and Ying Sun

Abstract

Solar-based energy is becoming one of the most promising sources for producing
power for residential, commercial, and industrial applications. Energy production
based on solar photovoltaic (PV) systems has gained much attention from
researchers and practitioners recently due to its desirable characteristics. However,
the main difficulty in solar energy production is the volatility intermittent of pho-
tovoltaic system power generation, which is mainly due to weather conditions. For
the large-scale solar farms, the power imbalance of the photovoltaic system may
cause a significant loss in their economical profit. Accurate forecasting of the power
output of PV systems in a short term is of great importance for daily/hourly effi-
cient management of power grid production, delivery, and storage, as well as for
decision-making on the energy market. The aim of this chapter is to provide reliable
short-term forecasting of power generation of PV solar systems. Specifically, this
chapter presents a long short-term memory (LSTM)-based deep learning approach
for forecasting power generation of a PV system. This is motivated by the desirable
features of LSTM to describe dependencies in time series data. The performance of
the algorithm is evaluated using data from a 9 MWp grid-connected plant. Results
show promising power forecasting results of LSTM.

Keywords: forecasting, deep learning, LSTM, solar power production

1. Introduction

Solar energy becomes one of the most promising sources for generating power
for residential, commercial, and industrial applications [1, 2]. Solar photovoltaic
(PV) systems use PV cells that convert solar irradiation into electric power.
Renewable energy sources, in particular photovoltaic (PV) energy, has been pro-
gressively increased in recent years because of its advantages of being plentiful,
inexhaustible, clean energy and environmentally friendly [3–5]. As one of the most
popular renewable energy sources, solar energy has the advantages of abundant
resources, no pollution, free use, and no transportation [6–8]. This greatly acceler-
ated the installation of solar photovoltaic (PV) systems around the world.

Reliable and precise forecasting plays an important role in enhancing power
plant generation based on renewable energy sources such as water, wind, and
sun [9]. One of the most sustainable and competitive renewable energy sources is
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solar photovoltaic (PV) energy which is becoming nowadays more attracting
than ever before [3]. The main crucial and challenging issue in solar energy
production is the volatility intermittent of PV system power generation due to
mainly to weather conditions. In particular, a variation of the temperature and
irradiance can have a profound impact on the quality of electric power production.
A drop of more than 20% of power PV production can be observed in real PV
energy plants. This fact usually limits the integration of PV systems into the
power grid. Hence, accurately forecasting the power output of PV modules in
a short-term is of great importance for daily/hourly efficient management of
power grid production, delivery, and storage, as well as for decision-making on
the energy market [10].

Precise forecasting of solar energy is important for photovoltaic (PV) based
energy plants to facilitate early participation in energy auction markets and efficient
resource planning [11]. Numerous methods have been reported in the literature
for PV solar power forecasting. These methods can be classified into four classes:
(i) statistical approaches based on data-driven formulation to forecast solar time
series by using historical measured data, (ii) machine learning techniques, in par-
ticular, deep learning approaches based artificial neural network, (iii) physical
models based on numerical weather prediction and satellite images, and (iv) hybrid
approaches which are the combination of the above methods. In [12], a combined
approach merging seasonal autoregressive integrated moving average (SARIMA),
random vector functional link neural network hybrid model and discrete wavelet
transform has been introduced for forecasting short-term solar PV power produc-
tion. It has been shown that the combined models provide improved forecasting
results compared to individuals ones. In [13], Gradient boosted regression trees
approach has been used to predict solar power generation for 1–6 h ahead. It has
been that this approach outperforms the simpler autoregressive models. In [14], a
model combining seasonal decomposition and least-square support vector regres-
sion has been designed to forecast power output. This approach demonstrated good
forecasting capacity compared to the autoregressive integrated moving average
(ARIMA), SARIMA, and generalized regression neural network. In [15], a multi-
variate ensemble forecast framework integrating ensemble framework with neural
predictors and Bayesian adaptive combination is proposed for forecasting PV
output power.

Most conventional solar power forecasting approaches are limited in uncovering
the correlation of the limited data but are not able to deep correlation and uncover
implicit and relevant information. With the huge data from the modern power
system, the use of conventional approaches is not suited for guaranteeing precise
forecasting. Recently, deep learning (DL) approaches have emerged as powerful
machine learning tools that enable complicated pattern recognition and regression
analysis and prediction applications [16–18]. DL approaches are becoming increas-
ingly popular due to their good capacity in describing dependencies in time series
data. Deep Learning is the result of the concatenation of more layers into the neural
network framework. Over the past few decades, many deep learning models have
been proposed including Boltzmann machines, Deep Belief Networks (DBN) and
Recurrent Neural Networks (RNNs) [19]. RNN is a type of neural networks that
exploits the sequential nature of input data. RNNs are used to model time-
dependent data, and they give good results in the time series data, which have
proven successful in several applications domains [3, 20, 21]. Long Short-Term
Memory Networks (LSTM) is a type of RNNs that is able to deal with remembering
information for much longer periods of time [22]. It is also considered as one of the
most used RNN models for time series data predictions, which is perfectly suited
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to PV solar power production forecasting problems. In this chapter, we applied the
LSTM model to accurately forecast short-term photovoltaic solar power. The
effectiveness of this approach is tested based on power output data collected from
a 9 MWp grid-connected plant.

The next section introduces the core idea behind the LSTM model and how it
can be designed and implemented. Then, Section 3 presents the results of solar
photovoltaic power forecasting using the LSTM model. Lastly, conclusions are
offered in Section 4.

2. Deep learning and forecasting of PV power production

Over the last decades, many studies have been dedicated to forecasting problems
in several application domains. Recurrent Neural Networks (RNNs) have been
successfully used in machine learning problems [23]. These models have been
proposed to address time-dependent learning problems [22]. Figure 1 shows the
basic concept of RNNs; a chunk of a neural network, A, looks at some input xt and
outputs a value ht. It should be noted that RNNs are suited to learn and extract
temporal information [24]. A general formula for RNN hidden state h t given an
input sequence x ¼ x1,x2, … ,xtð Þ:

ht ¼
0, t ¼ 0

φ Wxt , xtð Þ, otherwise

(

(1)

where φ is a non-linear function. The update of recurrent hidden state is
realized as:

ht ¼ g Wxt þ uht�1ð Þ (2)

where g is a hyperbolic tangent function (tanh).
Generally, it is not easy to capture long term time dependencies in time series

when using recurrent neural networks. To bypass this limitation, Long Short-Term
Memory Networks (LSTM) models were designed. LSTM is an extended version
of RNN that are effectively capable to handle time dependency in data [22]. These
models are flexible and efficient to describe time-dependent data, and they dem-
onstrated success in several applications. LSTM is one of the most used RNNmodels
for time series data predictions, which is perfectly suited to the PV forecasting
problems [22]. Next, we present a basic overview of LSTM and how it can be
designed and implemented.

Figure 1.
Basic illustration of RNN.
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2.1 Long short-term memory (LSTM) models

The Long Short-Term Memory (LSTM) is a variant of the Recurrent Neural
Networks (RNN) that is capable of learning long term dependencies. LSTM models
were initially proposed by Hochreiter and Schmidhuber [4] and were improved and
popularized by many other researchers [4–6, 9]. LSTM models have an excellent
ability to memorize long-term dependencies, are developed to deal with the
exploding and vanishing gradient problems that can be encountered when training
traditional RNNs. Relative insensitivity to gap length is an advantage of LSTM
models over ANNs models, hidden Markov models and other sequence learning
methods in several application domains.

A common LSTM model is composed of cell blocks in place of standard neural
network layers. These cells have various components called the input gate, the
forget gate and the output gate. The cell remembers values over arbitrary time
intervals and the three gates regulate the flow of information into and out of the cell
[5]. Figure 1 shows the basic structure of RNN-LSTM.

From Figure 2, the RNN-LSTM has two input features at each time, which
include the current time step input Xt (input vector) and the hidden state of the
previous time step Ht�1 (previous input vector). The output is computed by the
fully connected layer with its activation function (e.g., tanh, sigmoid, Softmax, and
Adam). Therefore, the output of each gate can be obtained through logical opera-
tion and nonlinear transformation of input.

Let us denote the input time series as Xt, the number of hidden units as h, the
hidden state of the last time step as Ht�1, and the output time series as Ht.
The mathematical relationship between inputs and outputs of the RNN-LSTM can
be described as follows.

It ¼ σ XtWxi þHt�1Whi þ bið Þ (3)

Ft ¼ σ XtWxf þHt�1Whf þ bf
� �

(4)

Ot ¼ σ XtWxo þHt�1Who þ boð Þ (5)

~Ct ¼ tanh XtWxc þHt�1Whc þ bcð Þ (6)

Ct ¼ Ft ο Ct�1 ο
~Ct (7)

Ht ¼ Ot ο tanh Ctð Þ (8)

where

• It, Ft, Ot are input gate, forget gate, and output gate respectively, Wxi, Wxf ,

Wxo and Whi, Whf , Who are weight parameters and bi, bf , bo are bias

Figure 2.
Illustration of LSTM unit.
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parameters. All these gates have the same dimensions and the same equations
just with different parameters. They are called gates because the activation
function transforms the element values between ranges ([0, 1], [�1, 1]). The
input gate defines how much of the newly computed state for the current input
you want to let through. The forget gate defines how much of the previous
state you want to let through. The output gate defines how much of the
internal state you want to expose to the external network (higher layers and
the next time step).

•
~Ct is the candidate memory cells, Wxc, Whc are weight parameters and b c is a

bias parameter. LSTM model needs to compute the candidate memory cell ~Ct,
its computation is similar to the three gates (input, forget and output gates),
but using a tanh function as an activation function with a value range between
[�1, 1].

• Ct is the memory cells, o is an operator that expresses element-wise
multiplication. The computation of the current time steps memory cell Ct

combines the information of the previous time step memory cells (Ct�1) and

the current time step candidate memory cells (~Ct), and controls the flow of
information through forgetting gate and input.

• Ht is the hidden states, we can control the flow of information from memory
cells to the hidden state Ht through the output gate. The tanh function ensures
that the hidden state element value is between [�1, 1]. It should be noted
that when the output gate is approximately 1, the memory cell information
will be passed to the hidden state for use by the output layer; and when the
output gate is approximately 0, the memory cell information is only retained
by itself.

2.2 Proposed approach

The proposed approach in this chapter aims to forecast solar power production.
This methodology is based on the LSTM deep-learning model. Figure 3 summarizes
the main steps of the proposed methodology. The proposed approach includes four
key steps (Figure 3):

i. Collect the SCADA data from the PV system.

ii. Pre-process and clean data by removing outliers and imputing missing
values.

iii. Normalize the original data.

iv. Train, validate and test the LSTM model. Various statistical indicators are
used to quantify the accuracy of the developed model. Lastly, the designed
LSTM model can be used for power production forecasting.

2.3 Metrics for evaluating the forecasting models

To assess the forecasting performance, numerous statistical indicators have been
proposed in the literature including root mean square error (RMSE), mean absolute
error (MAE), coefficient of determination (R2), and mean absolute percentage
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error (MAPE). In this study, we used R2 and MAPE, which are frequently to
evaluate the forecasting accuracy:

MAE ¼
1

n

X

x̂� xj j (9)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

x̂� xð Þ2

n

s

(10)

R2 ¼ 1�

PN
i¼1 xi � x̂ið Þ2

PN
i¼1 xi � xð Þ2

(11)

where x are the measured values, x̂ are the corresponding forecasted values by
the LSTM model and n is the number of measurements.

2.4 Implementation steps

Essentially, the LSTM model can be designed and implemented in four main
steps. At first, define the LSTM model and train it, then fit the LSTM model, and

Figure 3.
Schematic block of the proposed forecasting method.
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lastly, the trained LSTM model is used for forecasting. Table 1 summarizes the
main steps (partial codes) performed in designing the LSTM model.

2.5 Enhance LSTM models performance

The key factors impacting the accuracy of the LSTM model are not only the
amount of training data but also the architecture of the network, hyper-parameters
and the utilized optimizers. Accordingly, the performance of LSTMs can be
enhanced by acting on the following elements.

• Activation functions: activation functions an important role in determining the
final response of the neural network. Two families of functions are
distinguished: linear and nonlinear functions. The output of the linear
activation functions is linearly proportional to the inputs and is not limited
between any ranges. They are more suited than a step function because they
permit obtaining multiple outputs, not just binary output (i.e., yes and no). On
the other hand, nonlinear activation functions are the most frequently utilized
because they are flexible and permit obtaining nonlinear output and they are
confined within a range. For instance, Sigmoid, Softmax, and Rectified Linear
Unit (ReLU) activation functions permit rescaling the data to values in the
interval [0, 1], while Hyperbolic Tangent (tanh) activation functions rescale
the data within [�1, 1].

• Optimizer: in the training phase of the LSTM model, optimization algorithms
are used for minimizing its error rate. The performance of an optimizer is
generally characterized by convergence speed and generalization (the
efficiency of the model on new datasets). The commonly used optimizers
include Adaptive Moment Estimation (Adam) or Stochastic Gradient Descent
(SGD) [25, 26].

• Dropout: it is a well-known stochastic regularization procedure applied to avoid
overfitting and further enhance the prediction capacity of RNN models [27].
More details about dropout techniques can be found in [26–28].

• Epochs and batches: the number of epochs and batch are two important
parameters when constructing deep learning models. It has been shown in the

Steps Action

Step 1: Define LSTM

network

from keras.layers.recurrent import LSTM

from keras.models import Sequential

from keras.layers.core import Activation, Dense, Dropout

model = Sequential()

model.add(LSTM(units=nb_neural, return_sequences=True, input_shape=

(Xtrain.shape[1], 1)))

Step 2: Compile the LSTM

network

model.compile(loss="mse", optimizer="adam", metrics=[rmse, 'mae',

Rsquare])

Step 3: Fit the LSTM

network

history = model.fit(Xtrain, ytrain, batch_size=batch_size,

epochs=num_epochs,

validation_data=(Xval, yval), verbose=2)

Step 4: Forecasting ypred = model.predict(Xtest)

Table 1.
Partial codes used for building the LSTM network.
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literature that good results can be achieved when using large epochs and small
batch sizes.

• Weight regularization: another way to avoid overfitting and improves model
performance is called weight regularization. This approach imposes constraints
on the RNN weights within nodes to allow the network to maintain the weights
small. Several penalizing or regularization approaches are commonly used in
the literature based on L1 or L2 vector norm penalty.

3. Results and discussion

This study is based on real data collected from January 2018 to December 2018
every 15 min from a 9 MWp grid-connected plant. Figure 4 shows the hourly
distribution of PV power production day from January 2018 to December 2018.

Figure 4.
PV power production per hour for each day from January 2018 to December 2018.

Figure 5.
Distribution of DC power output in the daytime.
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From Figure 4, the solar PV power production reaches, every day, its maximum at
the mid-day and falls to zero over the night.

For the data in Figure 4, the box plots showing the distribution of DC power
generation in the daytime are displayed in Figure 5. One can see that the maximum
power production is achieved around mid-day.

The monthly cumulative DC power generated by the inspected PV system from
January 2018 to December 2018 is displayed in Figure 6. The highest and lowest
monthly cumulative power are respectively achieved in March (6450.056 MW) and
in October (4655.524 MW).

Figure 7 shows the monthly distribution of DC power production during the
monitored period. Figure 7 shows that the produced DC power is relatively high in
January, February, and March. Also, it can be noticed that the production was
relatively low from June to September (Figure 7).

To investigate the interactions between the DC power and meteorological fac-
tors (i.e., inclined irradiance 27, ambient temperature, and wind velocity) a Pearson
correlation heatmap is displayed in Figure 8. From Figure 8, one can see that there

Figure 6.
Monthly total DC power produced from January 2018 to December 2018.

Figure 7.
Monthly distribution of DC power output.
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Figure 9.
ACF DC power measurements.

Table 2.
Parameters in LSTM model.

Figure 8.
Heatmap of the correlation matrix of data: inclined irradiance 27, ambient temperature, wind velocity, and
power.
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is a high correlation between solar irradiance and power production. It should be
noted that DC Power has a low correlation with wind velocity.

Figure 9 shows the autocorrelation function (ACF) plot of the data shown in
power generation data. A seasonality of 24 h can be seen from the ACF plot of PV
power data, the time difference between two maximum in the ACF (Figure 9). In
particular, this seasonality is mainly due to the variation of solar irradiance.

The LSTM model has been constructed and then used for forecasting. Data were
split into training and testing datasets (90% and 10% respectively). Parameters of
the constructed LSTM are presented in Table 2.

The evolution of the loss function and RMSE in the function of the number of
iterations is displayed respectively in Figures 10 and 11. Figures 10 and 11 indicate
the convergence of the loss function and RMSE when the number of epochs is
around 60.

Once the LSTM model has been constructed based on training data, it will be
employed to forecast future values of power production. We attempt now to test

Figure 11.
Evolution RMSE of LSTM model during training stage.

Figure 10.
Evolution of LSTM loss function during training stage.
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the capability of the above LSTM model to forecast future values of the PV power
generation. Figure 12 shows the forecasting results of the PV power generation
compared with the real data over a time horizon. Figure 13 shows the scatter plot of
the measured and forecasted power production via the LSTM model. It can be seen
from Figures 12 and 13 that the computed LSTMmodel has the ability of short-term
forecasting of PV power generation. In addition, the forecasting result in Figure 12
illustrates the efficiency of the LSTM model to forecast PV power production even
under a cloudy day (i.e., the second day in Figure 12) where the power data is very
dynamic.

In summary, the LSTM model showed good forecasting capacity with the coef-
ficient of determination R2 = 0.98 close to 1 and relatively small mean absolute

Figure 13.
Scatter graph of measured and LSTM forecast solar power output.

Figure 12.
Plot of collected solar power and forecasted one using LSTM model.
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percentage error (MAPE), MAPE = 8.93. It should be pointed out that the
forecasting accuracy in cloudy days could be improved by including meteorological
variables, such as solar irradiance, ambient temperature, and wind velocity, as
input variables.

4. Conclusion

The major challenge in solar energy generation is the volatility intermittent of
photovoltaic system power generation due mainly to weather conditions. Thus,
accurate forecasting of photovoltaic power generation is becoming indispensable
for reducing the effect of uncertainty and energy costs and enable suitable integra-
tion of photovoltaic systems in a smart grid. This chapter employed a Long Short-
Term Memory (LSTM) model to accurately forecast short-term photovoltaic solar
power. This approach exploits the desirable properties of LSTM, which is a power-
ful tool for modeling dependency in data. The forecasting quality of this approach
has been verified using data from January 2018 to December 2018 collected from a 9
MWp grid-connected plant. Promising results have been achieved by the proposed
LSTM-based approach to short-term forecasting of photovoltaic solar power pro-
duction. As future work, to further enhance the forecasting quality we plan to
implement and test the performance of other RNN models like Gated recurrent unit
(GRU) model and to incorporate other information such as meteorological data.
Also, as most data from real plants are multiscale in nature and noisy, we plan in
future work to merge the desirable LSTM model with the wavelet-based multiscale
presentation [29]. This permits to get a multiscale LSTM model able to capture
feature in both time and frequency and possess good ability to handle noisy data.
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