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Abstract

Diabetes mellitus (DM) as a chronic condition is a growing global problem. Its 
numerous complications, including ocular diseases, affect patients’ quality and 
length of life. Metformin is an effective, safe, and inexpensive first-line pharma-
cotherapy for type 2 diabetes (T2D). The current evidence indicates metformin’s 
multiple sites of action and multiple molecular mechanisms leading to its beneficial 
impact on metabolism, inflammation, oxidative stress, aging, as well as to its cardio-
vascular, neurological, bone, and antiproliferative properties. These impacts are the 
result of its acting on adenosine monophosphate-activated protein kinase (AMPK)-
dependent and AMPK-independent pathways. Limited data suggest the protective 
role of metformin on microvascular ocular complications, including retinopathy, 
glaucoma, and age-related macular degeneration in patients with T2D. However, to 
confirm its mentioned protective and therapeutic effects, more large, randomized, 
double-blind, and placebo-controlled clinical studies are needed.
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1. Introduction

Diabetes mellitus (DM) is a chronic systemic disease accompanied by 
impaired metabolism of carbohydrates, proteins, and fats. The American Diabetes 
Association (ADA) [1] distinguishes two basic types of diabetes mellitus, type 
1 (T1D) and type 2 (T2D), while, in addition, gestational diabetes and specific 
forms of the disease are also recognized. The main pathophysiologic events in DM 
are insulin deficiency and insulin resistance. The most significant event is insulin 
resistance that develops in target tissues of action of insulin (muscle, fat tissues, 
and liver). In T1D, autoimmune destruction of β cells of the pancreatic islets 
(Langerhans islets) leads to deficient production and absolute insulin deficiency, 
while in T2D, insulin secretion is considered insufficient to overcome insulin 
resistance in peripheral tissues (relative insulin deficiency).

T1D is commonly diagnosed in childhood and early adolescence, affects men 
and women equally, and shows the highest prevalence in the white race. T2D occurs 
in older life, while an increase in incidence is associated with poorer socioeconomic 



Metformin

2

status, and an increase in risks is associated with lower economic income, education 
levels, and unemployment. Overall, DM prevalence is expected to increase to 10.1% 
in the coming decades [2]. The global trend of the increasing prevalence of both 
types of DM implies a significant influence of environmental factors on the devel-
opment of the disease.

The polygenic inheritance of DM has been suggested, with different gene 
variants that contribute to the overall risk of disease [3, 4]. The risk of develop-
ing the disease in the offspring is higher if one parent has T2D (~40%) and T1D 
(~5%). Gene variants that associate with type 1 and type 2 diseases have a different 
genetic basis. A limited number of specific gene variants characterize a small subset 
of patients with Maturity-onset diabetes of the young, a monogenic disease with 
autosomal dominant transmission [4].

A fundamental pathogenic event in the etiology of T1D is an aberrant immune 
response and production of autoantibodies to β cells. In children and adolescents 
with T1D, the polyendocrine autoimmune syndrome has also been described, 
which involves the expression of autoimmune activity against more than one 
endocrine organ. T1D is associated with the incidence of autoimmune thyroiditis, 
celiac and autoimmune gastric disease, and other rare autoimmune conditions 
[5, 6]. Molecular mimicry and viral infections have been investigated the longest, 
while recently the focus of research is covering deficiencies in immunoregulation 
that have been identified in patients with T1D [4]. The interaction of genetic and 
environmental factors may be important for triggering autoimmune events and the 
onset of T1D [3]. Association was established between the occurrence of T1D and 
the consumption of foods rich in nitrates or nitrites, low serum vitamin D levels, 
or early exposure to enteroviral and other infections. The timing of the introduc-
tion of cereals and gluten into the diet and alterations of the gut microbiome were 
suggested to affect the β-cell autoimmune response with autoantibody production 
[7]. Consistently, a pattern of assimilation of the local incidence rate of T1D has 
been observed in persons who migrated from lower geographical areas to a higher 
incidence area [3].

The increase in T2D prevalence has been particularly linked to obesity, seden-
tary lifestyles, and unhealthy diets. One of the major risk factors for T2D is obesity. 
Insulin resistance is thought to develop with increasing fat deposition in the liver 
and muscle. Visceral obesity contributes to the development of insulin resistance 
and possibly independently contributes to the development of T2D [8]. In prediabe-
tes and early-stage T2D, partial reversibility of insulin secretion disorders has been 
observed after the restriction in the high-calorie intake and weight loss [9].

Three symptoms characterize the early onset of DM, i.e., hyperglycemia, poly-
uria, and increased thirst. The recommended diagnostic criteria and therapeutic 
monitoring of DM are based on impaired fasting glucose levels, impaired glucose 
tolerance test, and measuring glycosylated hemoglobin Type A1C (HbA1C). HbA1C 
is an indicator of long-term glycemic control (over the period of past 2–3 months), 
as it reflects the average level of glucose to which the erythrocytes were exposed 
to. In the treatment of DM, special attention is given to a balanced diet and physi-
cal activity. Administrations of exogenous insulin and insulin analogs are the 
first-line treatments for T1D. Insulin therapy requires an individualized approach 
and involves maintaining blood glucose levels as close as possible to reference 
levels while avoiding hypoglycemia, which is the most significant side effect of 
this treatment. Glycemia regulation in T2D is being attempted by oral antidiabetic 
agents, and if adequate control of the disease cannot be established, insulin therapy 
is initiated. Antidiabetics usually work by increasing the secretion of insulin from 
the pancreatic β cells or by reducing the insulin resistance. Also, drugs have been 
developed both to reduce the postprandial glycemia by slowing and reducing the 
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absorption of food from the gut and to reduce the production and release of glucose 
from the liver.

Complications of the disease significantly influence the quality of life of patients 
with DM. Acute complications of diabetes are metabolic and, in their extreme form, 
include diabetic ketoacidosis and nonketotic hyperosmolar coma. While those acute 
complications can directly endanger the patient’s life, late chronic complications 
are significant due to the impact on the quality of life and morbidity and mortal-
ity associated with the disease itself. Both, acute and chronic complications are in 
inverse onset with the degree of metabolic control of the disease [4]. HbA1C level 
showed association with risks of cardiovascular disease [10] and is considered to be 
associated with microvascular disease [11].

2. Chronic complications of the disease

Chronic DM complications can be a cause of cardiovascular events, renal failure, 
blindness, or lower limb amputation. They are classified as macrovascular and 
microvascular. Coronary disease and myocardial infarction arise as macrovascular 
complications of DM. It is estimated that 80% of patients with T2D develop cardio-
vascular complications [12]. Microvascular complications of DM include diabetic 
retinopathy (DR), nephropathy, and neuropathy. Retinal capillary endothelial 
cells, mesangial cells of the renal glomeruli, glial cells, and Schwann cells of the 
peripheral nerves are particularly exposed as they lack the ability to inhibit glucose 
transport to the cell under hyperglycemia conditions [13].

The impact of glycemic control on the development of microvascular complica-
tions of T2D has been documented in large prospective studies [12, 14–16]. The 
DISCOVER study was conducted in 38 countries and included 16,000 patients with 
T2D, with an average disease duration of 4.1 years [12]. The results of this study 
indicated that the prevalences of microvascular and macrovascular complications 
were 18.8 and 12.7%, respectively. The most common microvascular complica-
tions included peripheral neuropathy (7.7%), chronic kidney disease (5.0%), and 
albuminuria (4.3%). Coronary artery disease (8.2%), heart failure (3.3%), and 
stroke (2.2%) were the most commonly reported macrovascular complications. An 
association was observed for the following factors of risk: age, male gender, diabetes 
duration, and history of hypoglycemia.

In the development of diabetic neuropathy, the changes in cellular metabolism 
that result from hyperglycemia and dyslipidemia are leading to oxidative stress as 
a leading causative factor [17]. Hyperglycemia also exerts a negative effect on the β 
cells themselves, due to the increased formation of reactive oxygen species (ROS). 
β cells have reduced amounts of catalase enzyme and superoxide dismutase that 
metabolize ROS under normal conditions, and an increased amount of ROS acti-
vates proapoptotic nuclear factor kappa B (NF-κB).

Several mechanisms underlie the onset of microvascular complications, and 
their common feature is the formation of excess oxygen radicals that cause DNA 
damage. In hyperglycemia, an accumulation of advanced glycation end (AGE) 
product and increases in the activity of the hexosamine biosynthesis pathway, 
polyol pathway, and protein kinase C (PKC) are described [13, 17, 18]. High 
plasma glucose concentrations cause glycation of amine groups in proteins, and 
consequently, AGE is formed. AGE causes changes in the signaling pathway of 
macrophages or vascular endothelial cells with the release of various cytokines 
and increases the expression of vascular endothelial growth factor (VEGF), which 
causes increased vascular permeability and retinal angiogenesis [19]. Also, AGE-
mediated ROS generation is considered as a pathogenesis factor [17].
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In addition, hyperglycemia increases the activity of the hexosamine pathway, the  
synthesis of diacylglycerol (DAG), and the activity of aldose reductase within the 
polyol pathway. Fructose-6-phosphate synthesis of glucosamine-6-phosphate is  
the first step in the hexosamine biosynthesis pathway. Activation of the hexosamine 
pathway increases the formation of uridine diphosphate N-acetylglucosamine, which 
is a substrate donor and catalyzes the binding of monosaccharide GlcNAc to serine 
and threonine residues of cytosolic and nuclear proteins, including the transcrip-
tion factor NF-κB. DAG activates PKC isoforms, while basal membrane thickening, 
increased permeability, coagulation and contractility abnormalities, increased 
angiogenesis, and cardiomyopathy are all considered to be related to PKC activation. 
Increased activity of the polyol pathway leads to increased sorbitol formation. When 
converting glucose to sorbitol, nicotinamide adenine dinucleotide phosphate is 
consumed, and the production of reduced glutathione as a key antioxidant in the cell 
is reduced. All these cause the cell to be more susceptible to oxidative stress. Finally, 
the interaction of metabolic and vascular disorders leads to impaired cellular func-
tion and, over the long term, can mediate cell damage and apoptosis.

2.1 Ocular complications of DM

Ocular complications of DM include DR, glaucoma, and cataracts.
The most common ocular complication is DR. Its occurrence is associated 

with patient age, duration of DM, and hyperglycemia [20]. The contribution of 
inflammation-mediated pathways and angiogenesis to the progression of DR has 
been documented [21, 22]. One of the first clinical features of DR is proliferation 
of endothelial cells and forming of the microaneurysms in retinal capillaries [23]. 
Capillary damage of ischemia gradually leads to neovascularization. Newly formed 
capillaries are prone to microhemorrhages. The VEGF signaling is considered to 
have a significant role in the regulation of neovascularization in retina and patho-
genesis of DR [23–25]. Recent advances in treatment of DR include developments in 
anti-VEGF therapy, which is associated with significant reductions in vision loss due 
to DR [23].

VEGF levels could be influenced by oxidative stress and formation of ROS, and it 
has been suggested that exposition of retinal cells to H2O2 might be important in stimu-
lation of VEGF-dependent angiogenesis. Imbalance of VEGF isoforms in retinal cells 
has been observed in vivo [24]. Nevertheless, altered expression of VEGF in retinal 
pigment epithelial (RPE) cells of normoglycemic and diabetic mice was not observed, 
whereas expression of antiangiogenic VEGF165b isoform was significantly reduced 
in diabetic retina. Authors suggested that both hyperglycemia and oxidative stress 
contribute to the changes in balance of pro- and antiangiogenic factors in the retina.

Along with DR, ocular complications of DM include glaucoma and cataracts. 
Although age is the most significant risk factor in glaucoma development, DM has 
been confirmed as an etiological factor for neovascular glaucoma, while there are 
controversial opinions regarding open-angle glaucoma (OAG) and angle-closure 
glaucoma (ACG) [26]. The association of T2D and cataract has been demonstrated 
[26, 27], and assumed underlying mechanisms are compiled of increased oxidative 
stress, activation of the polyol pathway leading to an increase in the osmotic stress, 
and glycation of lens proteins [26, 28].

3. Method

We performed a short review to assess and discuss potential protective effects of 
metformin on ocular complications in patients with T2D.
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4. Metformin: protective effects on ocular complications

Apart from glycemic control, metformin has shown to have antiinflammatory, 
antiangiogenic, and calorie restriction-related antiaging activity. Limited data 
suggest the protective role of metformin on microvascular ocular complications in 
patients with T2D. The list of studies regarding the link between metformin and 
ocular involvements in diabetes is presented in Table 1.

4.1 Link between metformin and VEGF-A

Changed levels of not only VEGF-A, one of the most potent members of 
angiogenic factor family, but also of its isoforms such as VEGF120, VEGF164, 
and VEGF188 are results of hyperglycemia and oxidative stress in mice [24, 25]. 
Previous studies have shown that angiogenesis and neovascularization in the eyes 
of diabetic patients, including DR, are result of increased level of VEGFs [29, 30]. 
Metformin was shown to mediate the reduction of the VEGF-A expression and 
angiogenic inhibitors in CD34+ cells under the state of hyperglycemia-hypoxia [31]. 
Other preliminary study reports that compared to significantly increased plasma 
VEGF levels in patients treated with pioglitazone, no change in VEGF levels was 
detected in patients treated with metformin [32]. It is interesting that change of 
VEGF-A during metformin therapy is independent of metformin-associated effects 
regarding BMI, HbA1C levels, and waist circumference of fat percentage. Even 
when the blood glucose and HbA1C levels were not in the recommended range, 
patients treated with metformin had a lower incidence of ocular complications than 
patients in the nonmetformin group [33].

4.2 Protective effect on diabetic retinopathy

The beneficial effects of metformin were detected in patients with DR [25, 33]. 
It was documented that 45.5% of patients from the nonmetformin group developed 
DR compared to 27.3% of patients from the group treated with metformin [34]. 
However, metformin protective effects on DR are not purely clear. Several stud-
ies investigated its effects on vascular endothelium of retina, mainly focusing on 
pathological background and features of angiogenesis and inflammation. There is 
evidence that metformin could potently protect endothelial cells via antiangiogenic, 
antiinflammatory, and antioxidant mechanisms [35, 36].

Han et al. [37] in their in vitro study found that metformin directly inhibits 
angiogenesis of human retinal vascular endothelial cells (hRVECs) and has 
prevented tumor necrosis factor alpha (TNFα)-induced upregulation of multiple 
inflammatory cytokines in hRVECs.

Retinal degenerations are characterized by a progressive loss of photoreceptors 
or their support cells, the retinal pigmented epithelium (RPE). Xu et al. [38] used 
metformin to determine whether stimulation of the adenosine monophosphate-
activated protein kinase (AMPK) pathway protects the photoreceptors and the RPE 
from retinal degeneration (Table 1). Metformin was able to protect the photorecep-
tors from light damage, delay rod, and cone degeneration in the Rd10 model and 
to increase the resistance of the RPE to the injury. Also, authors concluded that 
metformin’s mechanism of protection was associated with increased mitochondrial 
biogenesis and reduced oxidative stress.

The long-term oral metformin was associated with significantly reduced sever-
ity of DR in patients with T2D [39]. It could be explained by metformin-induced 
restoration of energy balance in the retina through activation of AMPK [25]. AMPK 
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Authors, 

Year

Study title Study design Study outcome Ref.

Brown EE 
et al., 2019

The Common 
Antidiabetic Drug 
Metformin Reduces 
Odds of Developing 
Age-Related Macular 
Degeneration

Retrospective case-control 
study with medical records 
from patients ˃55 years. 
Three controls were 
matched for every AMD 
case, defined by Int. Class. 
of Diseases, 9th Revision 
code, based on Charlson 
Comorbidity Index.

Patients treated with 
metformin had decreased 
odds of developing AMD 
suggesting its therapeutic 
role in development or 
progression of AMD in 
patients at risk.

[47]

Chen YY 
et al., 2019

Association Between 
Metformin and 
a Lower Risk of 
Age-Related Macular 
Degeneration in 
Patients with Type 2 
Diabetes

Population-based 
retrospective cohort study 
with 68,205 patients with 
T2D.

Metformin use, especially 
in higher doses, 
was associated with 
significantly lower risk of 
development of AMD.

[48]

Li Y et al., 
2018

Association 
of Metformin 
Treatment with 
Reduced Severity 
of Diabetic 
Retinopathy in Type 
2 Diabetic Patients

Retrospective chart review 
study with 335 patients 
with DR and with T2D 
≥15 years. The severity 
of DR was determined by 
Early Treatment Diabetic 
Retinopathy Study scale.

Long-term use of 
metformin was 
independently associated 
with significant lower rate 
of severe nonproliferative 
DR or proliferative DR 
in patients with T2D 
≥15 years.

[41]

Han J et al., 
2018

Metformin 
Suppresses Retinal 
Angiogenesis and 
Inflammation In 
Vitro and In Vivo

Metformin effects and 
mechanism were tested 
in vitro in hRVEC 
culture and in vivo in 
vldlr−/− mice.

Metformin showed 
potent antiangiogenic and 
antiinflammatory effects 
on hRVECs, reduced 
retinal neovascularization 
in vldlr−/− mice, and 
suppressed leukostasis 
in STZ-induced diabetic 
mice, suggesting its 
potential to target key 
pathogenic components 
in DR.

[37]

Xu L et al., 
2018

Stimulation of 
AMPK Prevents 
Degeneration of 
Photoreceptors and 
the Retinal Pigment 
Epithelium

In vivo study with 
metformin tested in three 
different mouse models 
of retinal degeneration: a 
light-induced degenerative 
model, the Pde6brd10 
inherited retinal 
degeneration model, and a 
model of sodium iodate-
induced RPE and retinal 
injury, as well as in AMPK 
retinal knockout mice.

By stimulation of AMPK 
metformin protected 
photoreceptors and the 
RPE in three different 
mouse models of retinal 
degeneration, including 
acute bright light damage, 
Pde6brd10 inherited 
retinitis pigmentosa, and 
sodium iodate-induced 
RPE injury. Local 
expression of AMPK 
catalytic subunit α2 was 
required for those effects.

[38]

Maleskic S 
et al., 2017

Metformin 
Use Associated 
with Protective 
Effects for Ocular 
Complications 
in Patients with 
Type 2 Diabetes – 
Observational Study

Observational study with 
medical records from 234 
patients with T2D (190 
patients using metformin 
and 44 using other oral 
antihyperglycemic agents).

Metformin use was 
associated with fewer 
ocular complications 
with decreased odds of 
both glaucoma and DR 
compared to other oral 
antihyperglycemic agents.

[33]
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activation was suggested to be protective for the tissues that are undergoing meta-
bolic stress. However, the regulation on endothelial inflammatory and angiogenic 
responses by metformin also has been shown through both AMPK-dependent and 
AMPK-independent mechanisms [37, 40].

According to a retrospective study [41], there is a correlation between the long-
term metformin treatment and reduced severity of DR in patients with T2D regard-
less of their HbA1c level, gender, race or treatment with sulfonylurea or insulin.

In summary, metformin might be used for the purpose of reducing DR progres-
sion in patients with long history of T2D.

Authors, 

Year

Study title Study design Study outcome Ref.

Yi QY 
et al., 
2016

Metformin Inhibits 
the Development 
of Diabetic 
Retinopathy 
through Inducing 
Alternative Splicing 
of VEGF-A

Metformin effects on the 
development of DR were 
tested in STZ-induced 
diabetic model in mice.

Metformin inhibited VEGF 
signaling by inducing 
VEGF-A mRNA splicing 
to VEGF120 isoform, 
creating a potential for new 
treatment option for DR.

[25]

Simão 
S et al., 
2016

Oxidative Stress 
Modulates the 
Expression of VEGF 
Isoforms in the 
Diabetic Retina

Retinal tissue and D407 
RPE cells from wild-type 
and Ins2Akita mouse model 
of diabetes were used as 
experimental models.

Both hyperglycemia 
and oxidative stress 
disrupted the equilibrium 
between pro- and 
antiangiogenic factors in 
the retina. Hyperglycemia 
contributed to  
deregulation of the 
expression of VEGF 
proteins and the 
production of ROS in RPE 
cells. Pathological H2O2 
levels downregulated the 
VEGF165b.

[24]

Lin H-C 
et al., 
2015

Association of 
Geroprotective 
Effects of Metformin 
and Risk of Open-
Angle Glaucoma 
in Persons with 
Diabetes Mellitus

Retrospective cohort study 
with patients with T2D 
aged ≥40 years and with no 
preexisting record of OAG.

Metformin use was 
associated with reduction 
in risk of developing 
OAG. Proposed 
mechanisms involved 
improved glycemic 
control or effects 
involving neurogenesis, 
inflammatory systems, or 
longevity pathways.

[43]

Richards 
JE et al., 
2014

Targeting aging: 
Geroprotective 
Medication 
Metformin Reduces 
Risk of Adult-
onset Open-angle 
Glaucoma

Longitudinal data from 
a large database were 
used, and patients with 
diabetes, aged ≥40 with 
no preexisting OAG, were 
monitored for incident 
OAG.

Metformin use was 
associated with reduced 
risk of OAG, on a 
dose-dependent manner. 
Proposed mechanisms 
involved neurogenesis, 
longevity pathways, and/or 
reduced inflammation.

[46]

AMD: Age-Related Macular Degeneration; DR: Diabetic Retinopathy; hRVEC: human retinal vascular endothelial 
cell; vldlr-/-mice: very-low-density lipoprotein receptor knockout mutant mouse; STZ: streptozotocin; AMPK: 
adenosine monophosphate-activated protein kinase; RPE: retinal pigmented epithelium; VEGF-A: vascular 
endothelial cell growth factor A; OAG: Open-Angle Glaucoma; POAG: primary open-angle glaucoma.

Table 1. 
List of studies regarding the link between metformin and ocular involvements in diabetes.



Metformin

8

4.3 Protective effect on glaucoma

Glaucoma is a type of neuropathy, and association with DM was identified – it 
could cause optic neuropathy [42]. The thicker central cornea in patients with DM 
than in healthy subjects could be a cause of higher intraocular pressure in those 
patients [26]. A retrospective cohort study showed that metformin use is associated 
with reduced risk of developing open-angle glaucoma and suggested that metfor-
min could have an impact on glaucoma risk on multiple levels including glycemic 
control and calorie restriction (CR) [43]. As previous studies suggested that age-
related tissue changes significantly contribute to glaucoma development [44], the 
antiaging effect of metformin as a CR mimetic drug could delay the progression of 
tissue damage [45].

Risk reduction of glaucoma was shown to be dose-dependent for metformin and 
independent of glycemic control in the population with DM [46]. In the observa-
tional study, patients treated with metformin had a lower prevalence of glaucoma 
than patients treated with other oral antidiabetic medications, 3.2 vs. 11.4%, 
respectively [33].

4.4 Protective effect on age-related macular degeneration

Recently, the first studies on this topic indicated an association between metfor-
min use and the reduction of age-related macular degeneration (AMD) develop-
ment [47, 48]. Those authors assumed metformin’s protective role in development 
or progression of AMD based on both its antiinflammatory and antioxidative 
properties and on AMD pathogenesis. Namely, besides environmental and genetic 
factors, AMD pathogenesis involves inflammation and oxidative stress, which can 
lead to choroidal neovascularization and geographic atrophy with potential loss of 
vision [47–50].

In study Chen et al., both the incidence of AMD (3.4 vs. 6.6%) and cumulative 
hazard for AMD were significantly lower among metformin users than nonusers. 
Lower hazard ratios for AMD were shown to be associated with higher dose of met-
formin and longer duration of therapy, and they remained even after adjustment for 
the patients’ age, gender, and comorbidities [48].

Similar results were found in the study by Brown et al., where decreased odds 
of developing AMD, except for metformin, were not associated with dipeptidyl 
peptidase 4 inhibitors, selective serotonin reuptake inhibitors, tetracyclic antide-
pressants, and statins [47].

Almost 8.4 million people worldwide are affected by AMD [51]. It is the most 
common cause of vision impairment in the developed countries, and the third one, 
after uncorrected refractive errors and cataract, globally [52–54]. Estimated blind-
ness prevalence related to AMD is 8.7% [55]. However, it is projected that due to the 
extended life expectancy, the number of people with AMD will increase [52–54]. 
Current AMD therapy with anti-VEGF drugs is costly, i.e., the cost of an injection 
of anti-VEGF is up to £800, and usually eight injections per year are recommended 
[51]. Therefore, as metformin is well-known cheap drug, its potentially protec-
tive effect on AMD is promising, especially for countries with limited health care 
resources.

5. Conclusion

Metformin is effective, well-tolerated, and inexpensive first-line pharmaco-
therapy for T2D. Its additional potential protective effects on ocular complications 
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in patients with T2D may have a major beneficial impact on the disease course and 
quality and length of their life. Well-designed randomized controlled clinical trials 
should be conducted to evaluate the effects of metformin either on the prevention 
of ocular complication or on the therapy of already developed ocular complications 
in patients with T2D.
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