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Chapter

Exact Traveling Wave Solutions
of One-Dimensional Parabolic-
Parabolic Models of Chemotaxis
Maria Vladimirovna Shubina

Abstract

In this chapter we consider several different parabolic-parabolic systems of
chemotaxis which depend on time and one space coordinate. For these systems we
obtain the exact analytical solutions in terms of traveling wave variables. Not all of
these solutions are acceptable for biological interpretation, but there are solutions
that require detailed analysis. We find this interesting, since chemotaxis is present
in the continuous mathematical models of cancer growth and invasion (Anderson,
Chaplain, Lolas, et al.) which are described by the systems of reaction–diffusion-
taxis partial differential equations, and the obtaining of exact solutions to these
systems seems to be a very interesting task, and a more detailed analysis is possible
in a future study.

Keywords: parabolic-parabolic system, exact solution, soliton solution, Patlak-
Keller-Segel model, chemotaxis

1. Introduction

This chapter uses the publications of Shubina M.V.:

1.Exact Traveling Wave Solutions of One-Dimensional Parabolic-Parabolic
Models of Chemotaxis, Russian J Math Phys., Maik Nauka/Interperiodica
Publishing (Russian Federation), 25(3), 383–395, 2018.

2.The 1D parabolic-parabolic Patlak-Keller-Segel model of chemotaxis: The
particular integrable case and soliton solution, J Math Phys., 57(9), 091501,
2016.

Chemotaxis, or the directed cell (bacteria or other organisms) movement up or
down a chemical concentration gradient, plays an important role in many biological
and medical fields such as embryogenesis, immunology, cancer growth, and inva-
sion. The macroscopic classical model of chemotaxis was proposed by Patlak in 1953
[1] and by Keller and Segel in the 1970s [2–4]. Since then, the mathematical model-
ing of chemotaxis has been widely developed. This model is described by the system
of coupled nonlinear partial differential equations. Proceeding from the study of the
properties of these equations, it is concluded that the model demonstrates a deep
mathematical structure. The survey of Horstmann [5] provides a detailed
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introduction into the mathematics of the Patlak-Keller-Segel model and summarizes
different mathematical results; the detailed reviews also can be found in the text-
books of Suzuki [6] and Perthame [7]. In the review of Hillen and Painter [8], a
number of variations of the original Patlak-Keller-Segel model are explored in
detail. The authors study their formulation from a biological perspective, summa-
rize key results on their analytical properties, and classify their solution forms [8]. It
should be noted that interest in the Patlak-Keller-Segel model does not weaken and
new works appear devoted to the study of various properties of equations and their
solutions [9–12] and the links below.

In this chapter we investigate a number of different models describing chemo-
taxis. The aim of this paper is to obtain exact analytical solutions of these models.
For one-dimensional parabolic-parabolic systems under consideration, we present
these solutions in explicit form in terms of traveling wave variables. Of course, not
all of the solutions obtained can have appropriate biological interpretation since the
biological functions must be nonnegative in all domains of definition. However
some of these solutions are positive and bounded, and their analysis requires further
investigation. Despite the large number of works devoted to the systems under
consideration and their properties, as well as the properties of their solutions, it
seems to us that the solutions obtained in this paper are new.

The Patlak-Keller-Segel model describes the space–time evolution of a cell

density uðt, r!Þ and a concentration of a chemical substance vðt, r!Þ. The general form
of this model is:

ut � ∇ δ1∇u� η1u∇ϕ vð Þð Þ ¼ 0

vt � δ2∇
2v� f u, vð Þ ¼ 0,

�

where δ1 >0 and δ2 ≥0 are cell and chemical substance diffusion coefficients,
respectively, and η1 is a chemotaxis coefficient; when η1 >0, this is an attractive
chemotaxis (“positive taxis”), and when η1 <0, this is a repulsive (“negative”) one
[13, 14]. ϕ vð Þ is the chemosensitivity function, and f u, vð Þ characterizes the chem-
ical growth and degradation. These functions are taken in different forms that
correspond to some variations of the original Patlak-Keller-Segel model. We follow
the reviews of Hillen and Painter [8] and of Wang [15] and consider the models
presented therein.

This paper is concerned with one-dimensional simplified models when the coef-
ficients δ1, δ2, and η1 are positive constants, x∈ℜ, t≥0, u ¼ u x, tð Þ, and v ¼ v x, tð Þ.

2. Signal-dependent sensitivity model

Let us start with a model that allows nonnegative bounded solutions that may be
of interest from a biological point of view. Now consider the “logistic” model, one
of versions of signal-dependent sensitivity model [8] with the chemosensitivity

functions ϕ vð Þ ¼ 1þ bð Þ ln vþ bð Þ, where b ¼ const, and f u, vð Þ ¼ ~σu� ~βv. In the

review [5] one can see a mathematical analysis of this model. When b ¼ 0 and ~β ¼ 0,
the existence of traveling waves was established in [16, 17]. The replacements of

t ! δ1t and u ! σ ~σ
δ1
u give δ1 ¼ 1, α ¼ δ2

δ1
, β ¼ ~β

δ1
, and σ ¼ �1. We also set η ¼ η1 1þbð Þ

δ1
,

1þ b>0, as well as ϕ vð Þ ¼ ln ∣vþ b∣. It should be noted that a sign of σ may effect
on the mathematical properties of the system. So, σ ¼ 1 corresponds to an increase
of a chemical substance, proportional to cell density, whereas σ ¼ �1 corresponds
to its decrease. And as we shall see later, various solutions correspond to these
two cases.
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After the above replacements, the model reads:

ut � uxx þ η u vx
vþb

� �

x
¼ 0

vt � αvxx � σuþ βv ¼ 0:

(

(1)

If we introduce the function υ ¼ vþ b, in terms of traveling wave variable
y ¼ x� ct, where c ¼ const, this system has the form:

uy þ cu� ηu ln υð Þð Þy þ λ ¼ 0

αυyy þ cυy � βυþ βbþ σu ¼ 0,

(

(2)

where u ¼ u yð Þ, υ ¼ υ yð Þ, and λ is an integration constant.
In this chapter we will consider the case of λ ¼ 0. Then Eq. (2) gives:

u ¼ Cue
�cyυη, (3)

Cu is a constant and we will examine the following equation for υ:

αυyy þ cυy � βυþ βbþ σCue
�cyυη ¼ 0: (4)

Since η is a positive constant, we consider two cases: η ¼ 1 [Eq. (4) is a linear
nonhomogeneous equation] and η 6¼ 1.

A.η ¼ 1

Let us begin with η ¼ 1. We introduce the new variable z and the new function w:

z ¼ 4σCu

αc2

� �1
2

e�
cy
2

w ¼ 4σCu

αc2

� �α�2
4α

υe
cy
2α

(5)

and Eq. (4) becomes:

z2wzz þ zwz þw z2 � ν2
� �

¼ Λz�
1
α, (6)

where ν2 ¼ 1
α2

1þ 4αβ
c2

� �

and Λ ¼ � 4βb
αc2

4σCu

αc2

� �
1
4. Eq. (6) is the Lommel differential

equation [18, 19] with μ ¼ �1� 1
α
, and we consider σCu >0. Since this is a linear

inhomogeneous second-order differential equation, one can integrate it by the
method of variation of parameters. We assume a solution in the form:

w zð Þ ¼ CJ zð ÞJν zð Þ þ CY zð ÞYν zð Þ,

where Jν zð Þ and Yν zð Þ are Bessel functions and CJ zð Þ and CY zð Þ are the functions
of z that satisfy the equations:

Jν zð Þ CJ zð Þ
� �

z
þ Yν zð Þ CY zð Þð Þz ¼ 0

Jν zð Þð Þz CJ zð Þ
� �

z
þ Yν zð Þð Þz CY zð Þð Þz ¼ Λz�

1
α:

Considering that Wronskian W Jν,Yνð Þ zð Þ ¼ 2
πz, we obtain:
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CJ zð Þ ¼ cJ �
Λπ

2

ð

z�1�1
αYν zð Þdz

CY zð Þ ¼ cY þ Λπ

2

ð

z�1�1
α Jν zð Þdz,

where cJ and cY are constants. If both of the numbers � 1
α
� ν are positive, the

lower limits in the integrals may be taken to be zero. Then a particular integral of
Lommel equation “proceeding in ascending powers of z” is sμ,ν zð Þ [19]; if one
considers a solution of Lommel equation “in the form of descending series,” one
obtains the function Sμ,ν zð Þ [19] [see Eq. (8)]. Thus, quoting Watson [19] “...and so,
of Lommel’s two functions sμ,ν zð Þ and Sμ,ν zð Þ, it is frequently more convenient to use
the latter.” Then the general solution of Eq. (6) has the form:

w zð Þ ¼ CJJν zð Þ þ CYYν zð Þ þ ΛSμ,ν zð Þ, (7)

where CJ and CY are constants,

Sμ,ν zð Þ ¼ sμ,ν zð Þ þ 2μ�1
Γ

μ� νþ 1

2

� �

Γ
μþ νþ 1

2

� �

sin
π

2
μ� νð Þ

� �

Jν zð Þ � cos
π

2
μ� νð Þ

� �

Yν zð Þ
h i

,

sμ,ν zð Þ ¼ 
zμþ1

μþ 1ð Þ2 � ν2
h i 1F2 1;

μ� νþ 3

2
,
μþ νþ 3

2
;� z2

4

� �

(8)

are Lommel functions, and 1F2 is the generalized hypergeometric function
[18, 19]. Further, substituting the initial variable y and the function v [see Eq. (5)]
into Eq. (7), we obtain a formal solution.

1.b ¼ 0

We first consider the case b ¼ 0. Then υ ¼ v≥0 and Cu >0. Eq. (6) becomes
homogeneous, and for σ ¼ 1, its general solution is:

w zð Þ ¼ CJJν zð Þ þ CYYν zð Þ: (9)

However one can check that the function u ¼ u yð Þ diverges as cy ! �∞ for all ν.
Consider now σ ¼ �1. For v yð Þ to be real, let α ¼ 2. Then Eq. (6) becomes the

modified Bessel equation; the analysis of solution behavior at �∞ leads to suitable
solutions for v yð Þ and u yð Þ:

v yð Þ ¼ e�
cy
4 Kν

ffiffiffiffiffiffiffiffi

2Cu

c2

r

e�
cy
2

 !

u yð Þ ¼ Cue
�5cy

4 Kν

ffiffiffiffiffiffiffiffi

2Cu

c2

r

e�
cy
2

 ! (10)

with restrictions ν≤ 1
2 and β≤0. So one can see that v yð Þ ! 0 as cy ! �∞ for all

ν≤ 1
2; v yð Þ ! 0 for ν< 1

2 and v yð Þ !
ffiffiffiffiffiffi

π2c2

8Cu

4

q

for ν ¼ 1
2 as cy ! ∞ and u yð Þ ! 0 as y !

�∞ for all ν≤ 1
2. The curves of these functions are presented in Figures 1 and 2, and
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the plots for c ¼ 5 are thicker than for c ¼ 1. Thus, the solution obtained may be
considered as a biologically appropriated one, and this requires further investigation.

2.b>0

Let us return to Eq. (6) with Λ 6¼ 0. The analysis of solution asymptotic forms
at �∞ [18, 19] gives the following expressions for v yð Þ and u yð Þ:

v yð Þ þ b ¼ � 4βb

αc2
4σCu

αc2

� � 1
2α

e�
cy
2α Sμ,ν

ffiffiffiffiffiffiffiffiffiffiffi

4σCu

αc2

r

e�
cy
2

 !

u yð Þ ¼ �Cu
4βb

αc2
4σCu

αc2

� � 1
2α

e�cy 1þ 1
2αð Þ Sμ,ν

ffiffiffiffiffiffiffiffiffiffiffi

4σCu

αc2

r

e�
cy
2

 !

(11)

with σCu >0 and ν< 1
α
. The latter condition leads to the requirement� c2

4α ≤ β<0.

The v yð Þ ! �b, u yð Þ ! � βb
σ
as cy ! �∞ and v yð Þ ! 0 and u yð Þ ! 0 as cy ! ∞.

Thus, one can see that for b>0, σ ¼ 1, and Cu >0, u yð Þ≥0 is satisfied but v yð Þ<0.
These functions are presented in Figures 3 and 4. It should be noted that
ν 6¼ 1

α
or β 6¼ 0 because of the pole in Γ function.

3.b<0

Using the analysis of Eq. (11), one can see that the condition b<0 along with
σ ¼ �1 and Cu <0 (σCu >0) leads to the fact that the function u yð Þ has not
changed, but v yð Þ becomes positive on all domains of definition. This function is
presented in Figure 5.
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Figure 1.
(a) v yð Þ; c ¼ 1; c ¼ 5; Cu ¼ 18. (b) v yð Þ; c ¼ 1; c ¼ 5; Cu ¼ 2.
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Figure 2.
(a) u yð Þ; c ¼ 1; Cu ¼ 18. (b) u yð Þ; c ¼ 5; Cu ¼ 18.
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B. η 6¼ 1

Let us return to Eq. (4) and rewrite it in terms of the variable ξ ¼ e�
cy
α :

ξ2υξξ �
αβ

c2
υþ σαCu

c2
ξα υη ¼ � αβb

c2
: (12)

To integrate this equation, we use the Lie group method of infinitesimal
transformations [20]. We find a group invariant of a second prolongation of one-
parameter symmetry group vector of (12), and with its help, we transform Eq. (12)
into an equation of the first order. It turns out that nontrivial symmetry group
requires some conditions:

αβb

c2
¼ 0,

β ¼ α� 2ð Þ αþ ηþ 1ð Þc2

α ηþ 3ð Þ2
(13)

–20 20 40 60 80 100

–0.10

–0.08

–0.06

–0.04

–0.02

v y

1; 1/4; 0;

1; 1/13;
3

13

;

2; 1/8; 0;

2; 1/13;
5

52
;

3; 1/12; 0;

3; 1/13;
1

3 13

;

Figure 3.
v yð Þ; c ¼ 1; Cu ¼ 9; σ ¼ 1; b ¼ 0:1.
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(a) u yð Þ; c ¼ 1; Cu ¼ 9; σ ¼ 1; b ¼ 0:1. (b) u yð Þ; c ¼ 1; σ ¼ 1; b ¼ 0:1; α ¼ 1; β ¼ �1=4; ν ¼ 0.
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Figure 5.
v yð Þ; c ¼ 1; Cu ¼ �9; σ ¼ �1; b ¼ �0:1.
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and we consider the case b ¼ 0. Thus, υ ¼ v, and for:

z ¼ v
1�η

α

y

w ¼ vy v
�αþη�1

α

(14)

we obtain the Abel equation of the second kind:

wz 1� ηð Þw� αz½ � þ αþ η� 1ð Þz�1w2 þ αz � αβ

c2
þ σαCu

c2
z�α

� �

¼ 0: (15)

Then we find the solutions of Eq. (15) in parametric form [21] with the
parameter t. Now we consider the case 2αþ η 6¼ 1. A combination of substitutions
leads to:

z ¼ � ηþ 3ð Þ ηþ 1ð Þ t2 þ 2σαCu

c2


 �

2 2αþ η� 1ð Þ
ϑt tð Þ
ϑ tð Þ

 !2
α

w ¼ z
2�α
2 tþ 2 2αþ ηþ 1ð Þ

η� 1ð Þ ηþ 3ð Þ z
α
2

� �

þ α

1� η
z,

(16)

where we take

ϑ tð Þ>0 and 2αþ η� 1ð Þϑt tð Þ<0, (17)

and Eq. (15) becomes an equation for the function ϑ tð Þ. Solving it, for σCu >0,
we obtain:

ϑ tð Þ ¼ ~Cϑ

2σαCu

c2

� �� ηþ3
2 ηþ1ð Þ

t2F1
1

2
,

ηþ 3

2 ηþ 1ð Þ ;
3

2
;� ηþ 1ð Þc2

2σαCu
t2

� �

þ Cϑ, (18)

where ~Cϑ and Cϑ are constants and 2F1 is the hypergeometric Gauss function.
Further we obtain the solutions of initial Eqs. (3)–(4) in parametric form:

y tð Þ ¼ � α ηþ 3ð Þ
c 2αþ η� 1ð Þ ln ϑ tð Þð Þ

v tð Þ ¼ �
~Cϑ ηþ 3ð Þ

2 2αþ η� 1ð Þ

 ! 2
1�η

ηþ 1ð Þt2 þ 2σαCu

c2

� �� 1
ηþ1

ϑ tð Þð Þ 2�α
2αþη�1

u tð Þ ¼ Cu �
~Cϑ ηþ 3ð Þ

2 2αþ η� 1ð Þ

 ! 2
1�η

ηþ 1ð Þt2 þ 2σαCu

c2

� �� 1
ηþ1

ϑ tð Þð Þ
αηþ2αþ2
2αþη�1

(19)

where the constant ~Cϑ is chosen so that 2αþ η� 1ð Þ~Cϑ <0, which is consistent
with Eq. (17). Using the asymptotic representation of hypergeometric Gauss
function as t ! �∞ [18], we can take:

Cϑ > ∣~Cϑ∣
π

2
ffiffiffiffiffiffiffiffiffiffiffi

ηþ 1
p 2σαCu

c2

� �� 1
ηþ1 Γ

1
ηþ1

� �

Γ
ηþ3

2 ηþ1ð Þ

� � (20)
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v yð Þ; η ¼ 0:1; σαCu
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in order for y, v, and u to be real. Then one can see that all functions in Eq. (19) are
continuous bounded ones for t∈ℜ and v, u are positive. Hence, onemay try to
biologically interpret the functions v yð Þ and u yð Þ, and this requires further investiga-
tion. In Figure 6 onemay see the different curves v yð Þ for η ¼ 0:1 and different α.
Figure 7 demonstrates v yð Þ and u yð Þ for two values η : η ¼ 0:1 and η ¼ 0:01, see
Figure 7. Further, for larger values of α and η, it seemsmore convenient to present the
curves y tð Þ, v tð Þ, andu tð Þ to analyze them(seeFigures 8–10). One can see fromEq. (13)
that β≷0when α≷ 2, and the case of β ¼ 0 and α ¼ 2 is presented in Figure 11.
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v tð Þ; σαCu

c2 ¼ 2; c ¼ 1; Cϑ ¼ 1:4; ∣~Cϑ∣ ¼ 1.
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u tð Þ; σαCu

c2 ¼ 2; c ¼ 1; Cϑ ¼ 1:4; ∣~Cϑ∣ ¼ 1.
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v tð Þ; u tð Þ; α ¼ 2; σαCu

c2 ¼ 2; c ¼ 1; Cϑ ¼ 1:4; ∣~Cϑ∣ ¼ 1.
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3. Logarithmic sensitivity

The model with logarithmic chemosensitivity function ϕ vð Þ � ln v is also stud-

ied. For the case of f u, vð Þ ¼ �vmuþ ~βv, where ~β ¼ const, an extensive analysis is
performed in [15]. This survey is focused on different aspects of traveling wave

solutions. When m ¼ 0, this model coincides with Eq. (1) for b ¼ 0. When ~β ¼ 0

and m ¼ 1, the system was studied in [22, 23]. The complete analysis for ~β ¼ 0 is
performed in [15]. An existence of global solution is established in [24].

Now we consider the system with ϕ vð Þ ¼ ln v and f u, vð Þ ¼ ~σvu� ~βv. Similarly,

a replacement of t ! δ1t and u ! σ ~σ
δ1
u gives δ1 ¼ 1, η ¼ η1

δ1
, α ¼ δ2

δ1
, β ¼ ~β

δ1
, and

σ ¼ �1. Then the model has the form:

ut � uxx þ η u vx
v

� �

x
¼ 0

vt � αvxx � σvuþ βv ¼ 0:

(

(21)

Let us rewrite the system (21) in terms of the function υ x, tð Þ ¼ ln v x, tð Þ:

ut � uxx þ η uυxð Þx ¼ 0

υt � αυxx � α υxð Þ2 þ β � σu ¼ 0,

(

(22)

Then in terms of the traveling wave variable y ¼ x� ct, where c ¼ const, Eq. (22)
has the form:

uy þ cu� ηuυy þ λ ¼ 0

αυyy þ α υy
� �2 þ cυy � β þ σu ¼ 0,

8

<

:

(23)

where u ¼ u yð Þ, υ ¼ υ yð Þ, and λ is an integration constant. To integrate Eq. (23),
we tested this system on the Painlevé ODE test. One can show that for η>0, it
passes this test only if α ¼ 2 with the additional condition λ ¼ �σcβ 1þ η

2

� �

[25]. If

we express u yð Þ as υ yð Þ from Eq. (23), we obtain an equation only for υ yð Þ; for
α ¼ 2, it has the form:

2υyyy þ 3cυyy þ c2 þ ηβ
� �

υy þ 2 2� ηð Þυyυyy þ 2 2� ηð Þ υy
� �2 � 2η υy

� �3 � cβ � σλ ¼ 0:

(24)

For λ ¼ �σcβ 1þ η

2

� �

, this equation can be linearized. It becomes equivalent to
the following linear equation for F:

Fy þ cF ¼ 0, where F yð Þ ¼ e2υ 2υyy þ cυy � η υy
� �2 þ ηβ

2

� �

(25)

that gives the equation for υ yð Þ:

2υyy þ cυy � η υy
� �2 þ ηβ

2
¼ CFe

�2υ�cy, (26)

where CF ¼ const. If we rewrite Eq. (26) in terms of the variable ξ ¼ e�
cy
2 for

the function Ψ ξð Þ ¼ e�
η

2υ, we obtain an equation similar to Eq. (12) with zero
right-hand side:
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ξ2Ψξξ �
η2β

2c2
Ψþ ηCF

c2
ξ2Ψ

4
η
þ1 ¼ 0: (27)

Using the result of the symmetry group analysis of Eq. (12), we can write the
solution for β ¼ 0 [see Eq. (19)]:

y tð Þ ¼ � 2

c
ln ϑ tð Þð Þ

v tð Þ ¼ ∣~Cϑ∣

2

2 ηþ 2ð Þ
η

t2 þ 2ηCF

c2

� � 1
ηþ2

(28)

where ϑ tð Þ is given in Eq. (18) and u yð Þ may be expressed from Eq. (23).
However one may see that v ! ∞ as t ! �∞, and this solution is unacceptable as a
biological function.

Another possibility to solve this equation exactly is to put CF equal to zero.
When CF ¼ 0, that means F yð Þ ¼ 0, for β 6¼ 0; Eq. (27) can be linearized by ξ ¼ eτ

[21]. Its solution has three forms according to a sign of the expression D ¼ 2η2β
c2 þ 1.

Since v should be a nonnegative and bounded function as cy ! �∞, the only
suitable solution is:

v yð Þ ¼ e
c
2η y C� e

�c
ffiffi

D
p

4 y þ Cþ e
c
ffiffi

D
p

4 y
� ��2

η

(29)
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10

v y
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1; 2;

2; 2;

Figure 12.
v yð Þ; c ¼ 1.
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s u y
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Figure 13.
σu yð Þ; c ¼ 1.
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where C� are positive constants and β>0. Unfortunately, the corresponding
solution for u yð Þ is alternating and has the form:

u yð Þ ¼ � σc2 ηþ 2ð Þ
2η2

C2
� 1þ

ffiffiffiffi

D
p� �

e�
c
ffiffi

D
p

4 y þ C2
þ 1�

ffiffiffiffi

D
p� �

e
c
ffiffi

D
p

4 y
�

� 4η2β

c2
C�CþÞ C� e

�c
ffiffi

D
p

4 y þ Cþ e
c
ffiffi

D
p

4 y
� ��2

η

:

(30)

It is easy to see that σu yð Þ ! c2 ηþ2ð Þ
2η2 �1�

ffiffiffiffi

D
p� �

as cy ! �∞. These functions are

presented in Figures 12 and 13.

4. Linear sensitivity

Let us consider the system with linear function ϕ vð Þ � v. When f u, vð Þ ¼ u� v,
the system is called the minimal chemotaxis model following the nomenclature of

[26]. This model is often considered with f u, vð Þ ¼ ~σu� ~βv (~σ and ~β are constants),
and it is studied in many papers. As was proved in [27, 28], the solutions of this
system are global and bounded in time for one space dimension. The case of positive

~σ and nonnegative ~β is studied in [29–33]. As we noted earlier, a sign of ~σ may
effect on the mathematical properties of the system, which changes its solvability
conditions [34].

Now we consider the linear chemosensitivity function ϕ vð Þ ¼ v and f u, vð Þ ¼
~σu� ~βv. The replacement of t ! δ1t, v ! η1

δ1
v, and u ! σ

~ση1
δ21
u leads to δ1 ¼ η1 ¼ 1,

α ¼ δ2
δ1
, β ¼ ~β

δ1
, and σ ¼ �1. Then the system has the form:

ut � uxx þ uvxð Þx ¼ 0

vt � αvxx þ βv� σu ¼ 0:

�

(31)

This system reduces to the system of ODEs in terms of traveling wave variable
y ¼ x� ct, where c ¼ const:

uy þ cu� uvy þ λ ¼ 0

αvyy þ cvy � βvþ σu ¼ 0,

�

(32)

where u ¼ u yð Þ, v ¼ v yð Þ, and λ is an integration constant. As shown in [35], this
system passes the Painlevé ODE test only if α ¼ 2 and β ¼ 0. Let us focus on this
case.

It is convenient to solve Eq. (32) in terms of variable:

z ¼ κ

∣c∣
e�

cy
2 , (33)

where κ>0 is an arbitrary constant. Then for v and u, we obtain the solutions in
the form:

v ¼ � ln
∣c∣

κ
zZ2

ν zð Þ
� 


u ¼ c2z2 1� 1

4
vzð Þ2

� �

� λ

c
, where ν2 ¼ 1

4
� λ

c3
:

(34)
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The function Zν zð Þ satisfies the modified Bessel’s equation and can be present as
a linear combination of Infeld’s and Macdonald’s functions.

Using the series expansion of the Infeld’s function, as well as theirs

asymptotic behavior [36], one may obtain the following asymptotic forms for evν zð Þ

and uν zð Þ:

z ! ∞ : evν zð Þ ! 0; uν zð Þ ! 0: (35)

z ! 0 : evν zð Þ !

∞, 0≤ ν<
1

2
;

κ

∣c∣C2

8π

π þ 2ð Þ2
, ν ¼ 1

2
;

0, ν>
1

2
;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(36)

uν zð Þ ! c2 ν� 1

2

� �

, (37)

where the expression for ν ¼ 1
2 agrees with Eq. (39).

So, the exact solution obtained has the form:

v ¼ � ln e�
cy
2 A2 Iν

κ

∣c∣
e�

cy
2

� �

þ BKν

κ

∣c∣
e�

cy
2

� �� �2
" #

u ¼ �σ vy
� �2 � κ2 e�cy þ λ

c

� �

, where ν2 ¼ 1

4
� λ

c3
,

(38)

where κ>0, A, and B are arbitrary constants and the functions Iν and Kν are
Infeld’s and Macdonald’s functions, respectively. This solution is not satisfactory
from the biological point of view, since v yð Þ is an alternating function for any ν.

However it seems interesting because of the following: in the case of ν ¼ 1
2 and

B ¼ 2þπ
2π in terms of e�

cy
2 , its form coincides with the well-known Korteweg-de Vries

soliton.
Consider now the class of solutions with half-integer index ν ¼ nþ 1

2, when Zν zð Þ
can be expressed in hyperbolic functions. The requirement of absence of divergence
u ! �∞ for finite z leads to the following form for Znþ1

2
zð Þ:

Znþ1
2
zð Þ ¼

Cznþ
1
2 d

zdz

� �n cosh zþ ζð Þ
z

, n ¼ 2k,

Cznþ
1
2 d

zdz

� �n sinh zþ ζð Þ
z

, n ¼ 2kþ 1; k ¼ 0, 1… ;

ζ ¼ 1

2
ln

2

π
, C ¼ const:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(39)

At first let us consider the solutions obtained for e
v
nþ1

2 and unþ1
2
as functions of z.

We begin with n ¼ 0 or ν ¼ 1
2. It is interesting to present the expressions for e

u1
2
zð Þ

and u1
2
zð Þ:

e
v1
2
zð Þ ¼ κ

C2∣c∣
sech2 zþ ζð Þ (40)

u1
2
zð Þ ¼ z2c2 sech2 zþ ζð Þ, (41)
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where Eq. (40) appears the one-soliton solution exactly the same as the well-
known one of the Korteweg-de Vries equation. Returning to the variable y:

ev e�
cy
2

� �

¼ κ

C2∣c∣
sech2

κ

∣c∣
e�

cy
2 þ 1

2
ln

2

π

� �

u yð Þ ¼ σ πB� 1ð Þκ2 e�cy

sinh κ
∣c∣ e

�cy
2

� �

þ π
2 Be

� κ
∣c∣ e

�cy
2

� �2 :
(42)

One can see that for σ ¼ 1 (an increase of a chemical substance), the cell density
u yð Þ≥0 for B≥ 1

π
and that for B>0 u yð Þ is the solitary continuous solution

vanishing as y ! �∞, whereas for B<0 u yð Þ has a point of discontinuity. One can
say that when B<0, we obtain “blow-up” solution in the sense that it goes to
infinity for finite y, and this is true for different ν.

The expressions for n≥ 1 become more complicated, and one can see the

solitonic behavior of e
v
nþ1

2
zð Þ
and the curves for unþ1

2
zð Þ in Figures 14 and 15.

n=1             n=3               n=5 k/C^2 =10

 n=0                 n=2               n=4             n=6

0 2 4 6 8

10

20

30

40

50

60

Figure 14.

evnþ1
2
zð Þ; n ¼ 0, :::6; c ¼ 1.
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n=3

n=2

n=1

n=0
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u z

Figure 15.
unþ1

2
zð Þ; n ¼ 0, :::5; c ¼ 1.
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The explicit form of our solution in terms of the variable y can be obtained by

direct substitution of Eq. (33) into Eq. (39), where λ
c ¼ �c2n nþ 1ð Þ. The resulting

formulae are complicated and slightly difficult for analytic analysis; it seems to be
more convenient to present the plots.

For n ¼ 0 in the function e
v1
2

yð Þ
, we have the “step” whose altitude depends on

the values of velocity c and arbitrary constant κ. One may see that these curves
become higher and shift to the right with different rates for the rising κ. The u1

2
yð Þ

is the positive function whose altitude and sharpness of peak depend on c
(see Figures 16 and 17).

For n≥ 1 we can see that the solitonic behavior of e
v
nþ1

2
yð Þ
is retained for different

values of c and κ; the curves become higher and more tight, and they shift to the
right also with an increase of c and κ. For the cell density unþ1

2
yð Þ, the obtained

solution has the negative section converging to zero for cy ! �∞ (Figures 18–21).
The curves for the concentration of the chemical substance vnþ1

2
yð Þ are presented

in Figure 22. Since vnþ1
2
yð Þ has to be positive (nonnegative), we see that these

functions do not satisfy this requirement in all domains of definition.
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In conclusion it seems interesting to present the plots for evν yð Þ and uν yð Þ for
different values of ν (Figures 23–25). It is interesting to see that there are irregular

solutions for evν yð Þ; however, the corresponding solutions for uν yð Þ are regular [see
Eqs. (35)–(37)].

5. Conclusion

We investigate three different one-dimensional parabolic-parabolic Patlak-
Keller-Segel models. For each of them, we obtain the exact solutions in terms of
traveling wave variables. Not all of these solutions are acceptable for biological
interpretation, but there are solutions that require detailed analysis. It seems inter-
esting to consider the latter for the experimental values of the parameters and see
their correspondence with experiment. This question requires further
investigations.
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