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Chapter

A Shamanskii-Like Accelerated
Scheme for Nonlinear Systems of
Equations
Ibrahim Mohammed Sulaiman, Mustafa Mamat

and Umar Audu Omesa

Abstract

Newton-type methods with diagonal update to the Jacobian matrix are regarded
as one most efficient and low memory scheme for system of nonlinear equations.
One of the main advantages of these methods is solving nonlinear system of equa-
tions having singular Fréchet derivative at the root. In this chapter, we present a
Jacobian approximation to the Shamanskii method, to obtain a convergent and
accelerated scheme for systems of nonlinear equations. Precisely, we will focus on
the efficiency of our proposed method and compare the performance with other
existing methods. Numerical examples illustrate the efficiency and the theoretical
analysis of the proposed methods.

Keywords: Newton method, Shamanskii method, diagonal updating scheme,
nonlinear equations, Jacobian matrix

1. Introduction

A large aspect of scientific and management problems is often formulated by
obtaining the values of x of which the function evaluation of that variable is equal to
zero [1]. The above description can be represented mathematically by the following
system of nonlinear equations:

f 1 x1; x2;…; xnð Þ ¼ 0

f 2 x1; x2;…; xnð Þ ¼ 0 (1)

⋮ ⋮ ⋮ ¼ ⋮

f n x1; x2;…; xnð Þ ¼ 0

where x1, x2,…, xn ∈R
n are vectors and f i is nonlinear functions for i ¼ 1, 2,…, n.

The above system of equations (1) can be written as

F xð Þ ¼ 0 (2)

where F : Rn ! Rn is continuously differentiable in an open neighborhood of the
solution x ∗ . These systems are seen as natural description of observed phenomenon
of numerous real-life problems whose solutions are seen as an important goal in
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mathematical study. Recently, this area has been studied extensively [2, 3]. The
most powerful techniques for handling nonlinear systems of equations are to line-
arize the equations and proceed to iterate on the linearized set of equations until an
accurate solution is obtained [4]. This can be achieved by obtaining the derivative
or gradient of the equations. Various scholars stress that the derivatives should be
obtained analytically rather than using numerical approach. However, this is usually
not always convenient and, in most cases, not even possible as equations may be
generated simply by a computer algorithm [2]. For one variable problem, system
of nonlinear equation defined in (2) represents a function F : R ! R where f is
continuous in the interval f ∈ a; b½ �.

Definition 1: Consider a system of equations f 1, f 2,…, f n; the solution of
this system in one variable, two variables, and n variable is referred to as a point
a1; a2;…; anð Þ∈Rn such that f 1 a1; a2;…; anð Þ ¼ f 2 a1; a2;…; anð Þ ¼ … ¼

f n a1; a2;…; anð Þ ¼ 0.
In general, the problem to be considered is that for some function f xð Þ, one

wishes to evaluate the derivative at some points x, i.e.,

Given f xð Þ,Evaluate;deriv ¼
df

dx

This often used to represent an instantaneous change of the function at some
given points [5].

Definition 2: For a function f xð Þ that is smooth, then there exists, at any point x,
a vector of first-order partial derivative or gradient vector:

∇f xð Þ ¼

∂f

∂x1
∂f

∂x2
:

:

:
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∂xn
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¼ g xð Þ:

The Taylor’s series expansion of the function f xð Þ about point x0 is an ideal
starting point for this discussion [1].

Definition 3: Let f be a differentiable function; the Taylor’s f xð Þ around a point
a is the infinite sum:

f xð Þ ¼ f að Þ þ f 0 að Þ x� að Þ þ
f
0 0

að Þ

2
x� að Þ2 þ

f
0 0 0

að Þ

3!
x� að Þ3 þ…

However, continuous differentiable vector valued function does not satisfy the
mean value theorem (MVT), an essential tool in calculus [6]. Hence, academics
suggested the use of the following theorem to replace the mean valued theorem.

Theorem 1: Let F : R
n ! R

m be continuously differentiable in an open convex
set D⊂Rn. For any x, xþ s∈D

F xþ sð Þ � F xð Þ ¼

ð1

0
J xþ tsð Þsdt �

ðxþs

x
F0 zð Þdz
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Definition 4: Suppose F : Rn ! Rn is continuously differentiable at the point
x∈Rn and each component function f 1, f 2,…, fm is also continuously differentiable
at x; then the derivative of F x is defined as

Jx Fð Þ ¼

∂f 1
∂x1

∂f 2
∂x1

⋮

∂f n
∂x1

∂f 1
∂x2

∂f 2
∂x2

⋮

∂f n
∂x2

…
∂f 1
∂xm

⋯
∂f 2
∂xm

⋱ ⋮

⋯
∂f n
∂xm

0

B

B

B

B

B

B

B

B

B

B

B

@

1
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C

C

C

C

C

C

C

C

C

C

A

Most of the algorithms employ for obtaining the solution of Eq. (1) centered on
approximating the Jacobian matrix which often provides a linear map T xð Þ : Rn ! Rn

defined by Eq. (3)

T xð Þ ¼ JxF xð Þ ∀ x∈Rn (3)

Also, if F is differentiable at point x ∗ , then the affine function A xð Þ ¼ f x ∗ð Þþ
J ∗ x� x ∗ð Þ is a good approximation to F xð Þ near x ¼ x ∗ in such a way that

lim
x!x ∗

F xð Þ � F x ∗ð Þ � J ∗ x� x ∗ð Þk k

x� x ∗k k
(4)

where x� x ∗k k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � x ∗ð Þ2 þ x2 � x ∗ð Þ2 þ…þ xn � x ∗ð Þ2
q

.

If all the given component functions f 1, f 2,…, fm of Jx Fð Þ are continuous, then we
say the function F is differentiable.

The most famous method for solving nonlinear systems of equations F xð Þ ¼ 0 is
the Newton method which generates a sequence xkf g from any given initial point x0
via the following:

xkþ1 ¼ xk � F0 xkð Þ�1F xkð Þ (5)

where F0 xkð Þ is the Jacobian for F xkð Þ. The above sequence Eq. (5) is said to
converge quadratically to the solution x ∗ if x0 is sufficiently near the solution point
and the Jacobian F0 xkð Þ is nonsingular [7, 8]. This convergent rate makes the method
outstanding among other numerical methods. However, Jacobian evaluation and

solving the linear system for the step s xnð Þ ¼ �F0 xnð Þ�1F xnð Þ are expensive and
time-consuming [9]. This led to the study of different variants of Newton methods
for systems of nonlinear equations. One of the simplest and low-cost variants of the
Newton method that almost entirely evades derivate evaluation at every iteration is
the chord method. This scheme computes the Jacobian matrix F0 x0ð Þ once through-
out the iteration process for finite dimensional problem as presented in Eq. (6),

xkþ1 ¼ xk � F0 x0ð Þ�1F xkð Þ (6)

The rate of convergence is linear and improves as the initial point gets better.
Suppose x0 is sufficiently chosen near solution point x ∗ and F x ∗ð Þ is nonsingular;
then, for some Kc >0, we have

xnþ1 � x ∗k k≤Kc x0 � x ∗k k xn � x ∗k k (7)
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The convergence theorems and proof of Eq. (7) can be referred to [9, 10].
Motivated by the excellent convergence of Newton method and low cost of Jacobian
evaluation of chord method, a method due originally to Shamanskii [11, 12] that lies
between Newton method and chord method was proposed and has been analyzed in
Kelly [9, 13–15]. Other variants of Newton methods with different Jacobian approx-
imation schemes include [9, 14, 16–18]. However, most of these methods require the
computation and storage of the full or approximate Jacobian, which become very
difficult and time-consuming as the dimension of systems increases [10, 19].

It would be worthwhile to construct a derivative-free approach and analyze with
existing techniques [20–22]. The aim of this work is to derive a diagonal matrix for
the approximate Jacobian of Shamanskii method by means of variational tech-
niques. The expectation would be to reduce computational cost, storage, and CPU
time of evaluating any problem. The proposed method works efficiently by
combining the good convergence rate of Shamanskii method and the derivate free
approach employed, and the results are very encouraging. The next section presents
the Shamanskii method for nonlinear systems of equations.

2. Shamanskii method

It is known that the Newton method defined in Eq. (2) converges quadratically
to x ∗ when the initial guess is sufficiently close to the root [7, 10, 19]. The major
concern about this method is the evaluation and storage of the Jacobian matrix at
every iteration [23]. A scheme that almost completely overcomes this is the chord
method. This method factored the Jacobian matrix only once in the case of a finite
dimensional problem, thereby reducing the evaluation cost of each iteration as in
Eq. (3) and thereby degrading the convergence rate to linear [10].

Motivated by this, a method due originally to Shamanskii [11] was developed
and analyzed by [7, 13, 14, 16, 24]. Starting with an initial approximation x0, this
method uses the multiple pseudo-Newton approach as described below:

xkþ1
2
¼ xk � F0 xkð Þ�1F xkð Þ (8)

xkþ1 ¼ xkþ1
2
� F0 xkð Þ�1F xkþ1

2

� �

(9)

after little simplification, we have

xkþ1 ¼ xk � F0 xkð Þ�1 F xkð Þ þ F xk � F0 xkð Þ�1F xkð Þ
� �h i

(10)

This method converges superlinearly with q-order of at least tþ 1 when the
initial approximation x0 is sufficiently chosen near the solution point x ∗ and F0 x ∗ð Þ
is nonsingular. This implies that there exists Ks >0, such that

xnþ1 � x ∗k k≤Ks xn � x ∗k ktþ1 (11)

Combining Eq. (7) and the quadratic convergence of Newton method produces
the convergence rate of the Shamanskii method as in Eq. (8). Thus, the balance is
between the reduced evaluation cost of Fréchet derivative and Jacobian computa-
tion for Shamanskii method and Newton method rapid convergence. This low-cost
derivative evaluation as well as the rapid convergence rate of several methods
including the Shamanskii method has been studied and analyzed in [13, 15]. From
the analysis, the researchers conclude that that Shamanskii method has shown
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superior performance compared to Newton method in terms of efficiency whenever
work is measured in terms of function evaluations [9]. Also, if the value of t is
sufficiently chosen, then, as the dimension increases, the performance of the
Shamanskii method improves and thus reduces the limit of complexity of factoring
the approximate Jacobian for two pseudo-Newton iterations [14]. Please refer to
[15] for the proof of the convergence theorem described below.

Theorem 2 [15]: Let F : D⊂Rn ! Rn conform hypotheses H1 2ð Þ, H2, and H3.
Then the solution point x ∗ is a point of attraction of the Shamanskii iteration, i.e.,
Eq. (10), and this method possesses at least cubic order of convergence.

3. Diagonal updating scheme for solving nonlinear systems

Evaluation or inversion of the Jacobian matrix at every iteration or after few
iterations does not seem relevant even though the computational cost has generally
been reduced as in Shamanskii method [14, 25–28]. As a matter of fact, it can be
easily shown that by adding a diagonal updating scheme to a method, we would
have a new low memory iterative approach which would approximate the Jacobian
F0 xkð Þ into nonsingular diagonal matrix that can be updated in every iteration
[29–31]. Indeed, using the Shamanskii procedure, the proposed method avoids the
main complexity of the Newton-type methods by reusing the evaluated Jacobian
during the iteration process. This is the basic idea of the Shamanskii-like method
which is described as follows.

Given an initial approximation x0, we compute Eq. (2) to obtain the Jacobian
F0 xkð Þ and present a diagonal approximation to the Jacobian say Dk as follows:

F0 xkþ1ð Þ≈Dkþ1 (12)

Suppose sk ¼ xkþ1 � xk and yk ¼ F xkþ1ð Þ � F xkð Þ; by mean value theorem
(MVT), we have

Dkþ1sk ≈ yk (13)

Substituting Eq. (12) in Eq. (13), we have

F0 xkð Þsk ≈ yk (14)

Since Dkþ1 is the update of diagonal matrix Dk, let us assume Dkþ1 satisfy the
weak secant equation:

sTkDkþ1sk ¼ sTk yk (15)

which would be used to minimize the deviation between Dkþ1 and Dk under
some norms. The updated formula for Dk follows after the theorem below:

Theorem 3: Suppose Dkþ1 is the update of the diagonal matrix Dk and
∆k ¼ Dkþ1 �Dk, sk 6¼ 0. Consider the problem

min
1

2
∆kk k2F (16)

such that Eq. (15) holds and :k kF denotes the Frobenius norm. From Eq. (16), we
have the following solution also regarded as the optimal solution:

∆k ¼
sTk yk � sTkDkþ1sk

tr Ω
2
k

� � Ωk (17)
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where Ωk ¼ diag s
1ð Þ
k

� �2
; ; s

2ð Þ
k

� �2
;…; ; s

nð Þ
k

� �2
� �

, ∑n
i¼1 s

ið Þ
k

� �4
¼ tr Ω

2
k

� �

, and Tr is

the trace operation.
Proof: It is known that the objective function and the constraint of Eq. (16) are

convex; thus, we intend to use its Lagrangian function to obtain the unique solution
as follows:

L ∆k; μð Þ ¼
1

2
∆kk k2F þ μ sTk∆ksk � sTk yk � sTkDkþ1sk

� �

(18)

where μ is the corresponding Lagrangian multiplier. Simplifying Eq. (18), we have

μ ¼
sTk yk � sTkDkþ1sk

∑n
i¼1 s

ið Þ
k

� �4 (19)

and

∆
ið Þ
k ¼

sTk yk � sTkDkþ1sk

∑n
i¼1 s

ið Þ
k

� �4 s
ið Þ
k

� �2
∀ i ¼ 1, 2, ::, n (20)

Also, for diagonal matrix Dk, the element of the diagonal component is

given as D ið Þ
k , and the ith component of the vector sk is s

ið Þ
k . Then Ωk ¼

diag s
1ð Þ
k

� �2
; ; s

2ð Þ
k

� �2
;…; ; s

nð Þ
k

� �2
� �

, and∑n
i¼1 s

ið Þ
k

� �4
¼ tr Ω

2
k

� �

. To complete the

proof, we rewrite Eq. (20) as follows:

∆k ¼
sTk yk � sTkDkþ1sk
� �

tr Ω
2
k

� � Ωk: (21)

This completes the proof. ∎
Now, from the above description of the theorem, we deduce that the best

possible diagonal update Dkþ1 is as follows:

Dkþ1 ¼ Dk þ
sTk yk � sTkDkþ1sk
� �

tr Ω
2
k

� � Ωk (22)

However, for possibly small skk k and trΩk, we need to define a condition thatwould
be applied for such cases. To this end, we require that skk k≥ s1 for some chosen small
s1 >0. Otherwise, we set the updated diagonal Dkþ1 ¼ Dk where Dkþ1 is defined as

Dkþ1 ¼
Dk þ

sTk yk � sTkDkþ1sk
� �

tr Ω
2
k

� � Ωk; skk k≥ ϵ1

Dk; Otherwise

8

>

<

>

:

(23)

Thus, the proposed accelerated method is described as follows:

xkþ1 ¼ xk �D�1
k F xkð Þ þ F xk �D�1

k F xkð Þ
� �	 


(24)

The performance of this proposed method would be tested on well-known
benchmark problems employed by researchers on existing methods. This would be
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carried out using a designed computer code for its algorithm. The problems could be
artificial or real-life problems. The artificial problems check the performance of any
algorithm in situation such as point of singularity, function with many solutions,
and null space effect as presented in Figures 1–3 [7, 32].

While the real-life problems emerge from fields such as chemistry, engineering,
management, etc., the real-life problems often contain large data or complex
algebraic expression which makes it difficult to solve.

4. Numerical results

This section demonstrates the proposed method and illustrates its advantages on
some benchmark problems with dimensions ranging from 25 to 1,000 variables.

Figure 1.
Functions with a huge number of significant local optima.

Figure 3.
Essentially unimodal function.

Figure 2.
Functions with significant null space.
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These include problems with restrictions such as singular Jacobian or problems with
only one point of singularity. To evaluate the performance of the proposed diagonal
updating Shamanskii method (DUSM), we employ some tools by Dolan and Moré
[33] and compare the performance with two classical Newton-type methods based
on the number of iterations and CPU time in seconds. The methods include:

1. The Newton method (NM)

2. The Shamanskii method (SM)

These tools are used to represent the efficiency, robustness, and numerical
comparisons of different algorithms. Suppose there exist ns solvers and np problems;
for each problem p and solver s, they define:

tp, s ¼ computing time needed to solve a problem by solver the number of iteration or CPU timeð Þ

Requiring a baseline for comparisons, they compared the performance on prob-
lem p by solver s with the best performance by any solver for this problem using the
performance ratio:

rp, s ¼
tp, s

min tp, s : s∈ S
� �

We suppose that parameter rm ≥ rp, s for all p, s is chosen and rp, s ¼ rM if and only
if solver s does not solve problem p. The performance of solvers s on any given
problem might be of interest, but because we would prefer obtaining the overall
assessment of the performance of the solver, then it was defined as

ps tð Þ ¼
1

np
size p∈P : rp, s ≤ t

� �

:

Thus, ps tð Þ was the probability for solver s∈ S that a performance ratio rp, s was
within a factor t∈R of the best possible ratio. Then, function ps was the cumulative
distribution function for the performance ratio. The performance profile
ps : R ! 0; 1½ � for a solver was nondecreasing, piecewise, and continuous from right.
The value of ps 1ð Þ is the probability that the solver will win over the rest of the
solvers. In general, a solver with high value of p τð Þ or at the top right of the figure is
preferable or represents the best solver.

All problems considered in this research are solved using MATLAB (R 2015a)
subroutine programming [37]. This was run on an Intel® Core™ i5-2410M CPU @
2.30 GHz processor, 4GB for RAM memory and Windows 7 Professional operating
system. The termination condition is set as

skk k þ F xkð Þk k≤ 10�6

and the program has been designed to terminate whenever:

• The number of iterations exceeds 500, and no point of xk satisfies the
termination condition.

• The CPU time in seconds reaches 500.

• Insufficient memory to initiate the run.

8
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At the point of failure due to any of the above conditions as in the tabulated
results, it is assumed the number of iteration and CPU time is zero and thus that point
has been denoted by “ ∗ .” The following are the details of the standard test problems,
the initial points used, and the exact solutions for systems of nonlinear equations.

Problem 1 [31]: System of n nonlinear equations

Fi xð Þ ¼ 1� x2i
� �

þ xi 1þ xixn�2xn�1xnð Þ � 2

i ¼ 1, 2, 3,…, n, x0 ¼ 0:3;0; 3;…;0:3ð Þ

Problem 2 [34]: Systems of n nonlinear equations

Fi xð Þ ¼ x2i � cos xi � 1ð Þ

i ¼ 1, 2, 3,…, n, x0 ¼ 0:2;0:2;…;0:2ð Þ

Problem 3 [31]: Structured exponential function

Fi xð Þ ¼ exi � 1

Fn xð Þ ¼ xn � 0:1x2n

i ¼ 1, 2, 3,…, n, x0 ¼ 0:05;0:05;…;0:05ð Þ

Problem Dim NM DUSM SM

NI CPU NI CPU NI CPU

1 25 13 0.016102 8 0.034777 13 0.015999

2 25 6 0.009522 7 0.028231 7 0.010412

3 25 * * 4 0.023766 * *

4 25 16 0.019679 17 0.077072 22 0.022889

5 25 4 0.006605 16 0.061750 4 0.005761

1 50 13 0.032998 8 0.090310 13 0.032271

2 50 10 0.022134 7 0.089785 7 0.017036

3 50 4 0.010350 4 0.052899 4 0.010238

4 50 30 0.054640 17 0.228077 23 0.041569

5 50 4 0.012361 16 0.201262 4 0.010735

1 100 13 0.073565 8 0.339333 13 0.066363

2 100 10 0.054075 7 0.292001 7 0.044512

3 100 * * 4 0.175300 * *

4 100 15 0.075073 18 0.770165 25 0.118170

5 100 4 0.029221 17 0.755556 4 0.023154

1 1000 13 1.868606 8 27.171776 13 2.042222

2 1000 10 1.444533 7 24.295632 7 1.045329

3 1000 * * 4 27.1250 * *

4 1000 52 6.757533 19 63.981376 39 5.138997

5 1000 4 0.610145 18 62.364143 4 0.612590

Table 1.
Numerical comparison of NM, DUSM, and SM.
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Problem 4 [35]: Extended trigonometric of Byeong-Chun

Fi xð Þ ¼ cos x2i � 1
� �

� 1

i ¼ 1, 2, 3,…, n, x0 ¼ 0:06;0:06;…;0:06ð Þ

Problem 5 [36]: Extended spare system of Byeong

Fi xð Þ ¼ x2i � xi � 2

i ¼ 1, 2, 3,…, n, x0 ¼ 1:1; 11:1;…; 1:1ð Þ

Table 1 shows the number of iterations (NI) and CPU time for Newton method
(NM), Shamanskii method (SM), and the proposed diagonal updating method
(DUSM), respectively. The performance of these methods was analyzed via storage
locations and execution time. It can be observed that the proposed DUSM was able
to solve the test problems perfectly, while NM and SM fail at some points due to the
matrix being singular to working precision. This shows that the diagonal scheme
employed has provided an option in the case of singularity, thereby reducing the
computational cost of the classical Newton-type methods.

5. Conclusion

This chapter proposes a diagonal updating formula for systems of nonlinear
equations which attributes to reduction in Jacobian evaluation cost. By computa-
tional experiments, we reach the conclusion that the proposed scheme is reliable
and efficient and reduces Jacobian computational cost during the iteration process.
Meanwhile, the proposed scheme is superior compared to the result of the classical
and existing numerical methods for solving systems of equations.
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