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Chapter

Electrostatic Friction Displays to 
Enhance Touchscreen Experience
Reza Haghighi Osgouei

Abstract

Touchscreens are versatile devices that can display visual content and receive 
touch input, but they lack the ability to provide programmable tactile feedback. 
This limitation has been addressed by a few approaches generally called surface 
haptics technology. This technology modulates the friction between a user’s finger-
tip and a touchscreen surface to create different tactile sensations when the finger 
explores the touchscreen. This functionality enables the user to see and feel digital 
content simultaneously, leading to improved usability and user experiences. One 
major approach in surface haptics relies on the electrostatic force induced between 
the finger and an insulating surface on the touchscreen by supplying high AC 
voltage. The use of AC also induces a vibrational sensation called electrovibration 
to the user. Electrostatic friction displays require only electrical components and 
provide uniform friction over the screen. This tactile feedback technology not only 
allows easy and lightweight integration into touchscreen devices but also provides 
dynamic, rich, and satisfactory user interfaces. In this chapter, we review the 
fundamental operation of the electrovibration technology as well as applications 
have been built upon.

Keywords: electrostatic display, variable friction display, electrovibration technology, 
surface haptics, tactile rendering, texture rendering

1. Introduction

Among the five senses, touch is the most fundamental one we are equipped from 
the moment we enter this world. Even newborn babies know how to utilize their 
sense of touch to interact with their surrounding environment. Many of the typical 
tasks around us require touch which without it even a very basic task would be chal-
lenging to accomplish. Just imagine how difficult it can be to grab any object if you 
cannot feel its shape and weight or determine the amount of force you need to apply 
to hold it. Touch is very important to human being, and we rely on our touch sense 
more than we think we do [1].

Modern technologies in this digital era added new interactive agents around 
us which require our touch input. Touchscreen consumer electronics such as 
smartphones and tablet devices are among them. They are a versatile device that 
displays visual content and takes touch input simultaneously. More specifically, 
smartphones are an inevitable part of our daily life. Users spend a significant 
amount of time interacting with the digital contents on their mobile phones. So, 
equipping such devices with functionality to provide some sort of touch feedback 
was inevitable and seemed to be a natural course of technological development. 
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However, despite technological advances, these devices lack the ability to provide 
programmed tactile feedback, which can be essential for more natural and intuitive 
interaction. At best, they provide some simple monotonic vibration patterns in 
response to the user’s touch input. This is neither appealing nor satisfactory given 
the expectations users have from such modern devices [1].

With the introduction of variable friction displays, this limitation has been 
addressed by technologies collectively called surface haptics. These technologies 
modulate friction between a user’s fingertip and a touchscreen surface in order to 
create a variety of tactile sensations when the finger explores on the touchscreen. 
This functionality allows the user to see and feel the digital content simultane-
ously with richer haptic information, leading to improved user experience and/
or usability. There exist two major approaches in surface haptics: electrovibra-
tion and ultrasonic vibration. Whereas the former increases the surface friction 
by modulating attractive electrostatic force, the latter decreases the friction by 
vibrating the surface at an ultrasonic frequency and creating an air gap. Such 
electrovibration displays have the advantages that they require only electrical 
components and that the friction can be controlled uniformly on the screen, 
which are particularly attractive for mobile devices with a provision of adequate 
 amplifiers [2].

The rest of the chapter is organized as following. In the next section, a brief 
overview of the fundamental operation of the electrovibration technology is given. 
Next, the literature has been reviewed for the studies, and applications have been 
built upon. In the final section, conclusions and future remarks are provided.

2. Electrovibration technology

The earliest known observation of electrical attraction between the human 
skin and a charged surface was made by Gray in 1875 [3, 4]. Forgotten for a while, 
a similar phenomenon was rediscovered later and called electroadhesion by Johnsen 
and Rahbek in 1923 [4, 5]. In 1953, Mallinckrodt et al. again reported a rubber-like 
sensation when a coated metallic surface connected to a 110-V power line was 
touched by a grounded finger [4, 6]. This phenomenon is called electrovibration by 
Grimnes in 1983, explaining its principle of operation based on Coulomb’s electro-
static force [7]. Electrovibration is due to the electrostatic attraction force between 
two conductive plates separated by a dielectric. When the finger scans an insulated 
electrode, a condenser is formed between the electrode and the conductive sub-
stance under the skin [7] (Figure 1). Exciting the electrode using a periodic voltage 

Figure 1. 
Interaction between the finger, the isolating part of the skin (stratum corneum), and the conductive plate.
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induces electrostatic attraction, and this increases the friction force between the 
surface and the moving finger.

The induced friction is perceived by the mechanoreceptors in the fingertip 
skin. In general, mechanoreceptors are responsible to perceive sensations such as 
pressure, vibration, and texture, and there are four types of them in hairless skin, 
Merkel discs, Meissner’s corpuscles, Ruffini corpuscles, and Pacinian corpuscles, as 
shown in Figure 2. They are categorized into fast-adapting (Pacinian and Meissner) 
and slow-adapting (Merkel and Ruffini) receptors. The former ones detect small 
and fast changes such as surface roughness, while the latter ones detect static 
perception such as pressure. It has been shown that the electrovibration is primarily 
perceived through the Pacinian channel [9].

Nevertheless, when a potential is applied, the electrostatic force,   F  e   =   𝜖A  V   2  _ 
2  d   2 

   , 

compresses the stratum corneum, where A is contact area, d is thickness of stratum 
corneum, V is instantaneous potential difference, and  ϵ  is dielectric constant. 
Because there are no nerve endings in the stratum corneum, the compression will 
not be sensed. By moving the skin along the metal electrode, another force perpen-
dicular to the compressive force will arise. This frictional tangential force is given by   
F  t   = μ ( F  e   +  F  n  )  , where  μ  is coefficient of friction and   F  n    is contact pressure (normal 
force) exerted by human body.  μ  is therefore an appreciable amount of transfer 
from the perpendicular compressional force to the tangential frictional force.

This electrostatic stimulation was introduced into a tactile display by Strong 
et al. [10]. They developed the first electrostatic display using a stimulator array 
consisting of a large number of small electrodes. They reported that the intensity 
of the perceived vibration was mainly due to the peak applied voltage. Later, a 
polyimide-on-silicon electrostatic fingertip tactile display was fabricated with 49 
electrodes arranged in a square array [11]. They conducted experiments to assess 
the intensity and spatial resolution of the tactile percepts. In a following study, its 
application to present various spatial tactile patterns such as line, triangle, square, 
and circle to the visually impaired users is investigated [12]. In all these works, the 
dryness of fingertip is emphasized to be the key factor maintaining the percept, 
reporting that a small amount of sweat could cause the percept to fade or disappear. 
The direct method has difficulty in stable stimulation because of finger perspira-
tion. Indirect stimulation was suggested as a solution. Yamamoto et al. built a 
display with a thin slider film between electrostatic stator electrodes and fingertip 

Figure 2. 
Touch mechanoreceptors in the hairless (glabrous) skin of the human fingertip [8].
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for presenting surface roughness [13]. In another work, multiple contact pads are 
used for multi-finger interaction with a large electrostatic display [14]. This was 
mainly to address finger perspiration during direct interaction and also to create 
larger force by applying higher voltage. This also enables multi-finger interaction.

Electrovibration regained attention in 2010 after a collaboration between 
Disney Research and Carnegie Mellon University yielded to a system for render-
ing 3D textures onto an electrovibration touchscreen. Called TeslaTouch [15], the 
developed system could deliver variable friction to user’s sliding finger by modify-
ing amplitude and frequency of the excitation signal. Implemented on top of a 
tablet computer, a user could perceive real-time tactile feedback correspond to the 
displayed digital content. Different tactile effects could be generated mimicking 
surface geometry such as bumps and ridges or surface texture such as frictional 
patterns to enhance user experience interacting with the objects in the scene.

The core of TeslaTouch is a transparent capacitive touch panel (Microtouch, 
3 M, USA) driven by a high-voltage signal to modulate friction on a sliding finger. 
The panel is made of a thick glass layer on the bottom, a transparent electrode 
(indium tin oxide; ITO) in the middle, and a thin insulator layer on the top. In the 
usual setup, the electrode is excited by high AC voltage, and the human body is 
grounded electrically. The big advantage of TeslaTouch is that the capacitive panel is 
a commercial off-the-shelf product which requires only an additional high-voltage 
amplifier for proper operation. The same panel has been used in electrovibration 
displays by other groups [16–22]. Radivojevic et al. at Nokia introduced a flexible 
and bendable version by replacing indium tin oxide (ITO) with graphene [23].

While TeslaTouch was mainly designed for desktop applications, a company in 
Finland, Senseg, developed Tixel [24], a transparent electrostatic film targeting 
handheld devices. The touch panel is made of transparent electrodes on a glass plate 
coated with an insulating layer. By applying a periodic voltage to the electrodes via 
connections used for sensing a finger’s position on the screen, the researchers were 
able to effectively induce a charge in a finger dragged along the surface. By chang-
ing the amplitude and frequency of the applied voltage, the surface can be made to 
feel as though it is bumpy, rough, sticky, or vibrating. The major difference is the 
specially designed control circuit that produces the sensations.

The tactile experience comes from two components: a coating layered atop 
touchscreen and electronics that modulate the electrostatic field and produce 
textures. Senseg’s Tixel is the means by which Senseg’s technology transmits elec-
trovibration stimulus. It is an ultrathin durable coating on the touch interface that 
outputs tactile effects. The hardware inside a device modulates the signal for varied 
intensities of tactile sensation and types of tactile effects and provides accurate 
spatial resolution over the entire Tixel surface area.

Senseg later introduced a short-lived commercial product called Feelscreen, 
a 7″ Android tablet overlaid with Tixel, into the market between 2014 and 2016. 
Feelscreen has been used in several projects such as 3D shape rendering [25], tex-
ture gradients [26], and visual and haptic latency [27]. At the moment, Tanvas [28], 
a startup company in the USA, is commercializing similar products but on a larger 
10″ tablet with some improvements such as generating stronger friction forces and 
not requiring an external power supply.

Some other researchers developed their own electrovibration display not using 
the 3 M capacitive touch panel. Pyo et al. built a tactile display that provides both 
electrovibration and mechanical vibration on a large surface [29]. They fabricated 
an insulated ITO electrode on top of an electrostatic parallel plate actuator, both 
operating based on the electrostatic principle. A nontransparent electrostatic fric-
tion display was also developed in [30, 31] using an aluminum plate covered with a 
thin plastic insulator film.



5

Electrostatic Friction Displays to Enhance Touchscreen Experience
DOI: http://dx.doi.org/10.5772/intechopen.91056

These displays do not support multi-touch or localized friction modulation, and 
all fingers in contact with the surface experience the same sensation. This issue was 
addressed by several prototypes presenting local stimulation. For example, a display 
panel was developed with multiple horizontal and vertical ITO electrodes in a grid 
enabling localized stimulation at the region where the vertical and horizontal elec-
trodes cross each other [32]. In [14], a multi-finger electrostatic display was devel-
oped consisting of a transparent electrode and multiple contact pads on which users 
place their fingers. Applying different voltages to the pads and electrically grounding 
the transparent electrode induce different frictional stimuli to the multiple fingers.

The relationship between input signal and output friction in electrostatic friction 
displays is not clearly understood, and a number of studies have shown great interest 
in defining such relationship. Researchers have worked on this topic either by mea-
suring friction forces using a tribometer [16, 31] or by estimating perceived intensi-
ties in psychophysical experiments [17, 33]. For instance, Meyer et al. [16] developed 
a tribometer to make precise measurements of finger friction and confirmed the 
expected square law of frictional force to driving voltage. They also showed a linear 
mapping between friction and normal force, confirming the Coulombic model 
of dry friction. Conducting a six-value effect strength subjective index rating, 
Wijekoon et al. showed a significant correlation (0.8) between signal amplitude and 
perceived intensity but no correlation between frequency and perceived intensity 
[33]. In [17], participants assigned a number between 0 and 100 to the subjective 
friction intensity. A linear fit in log-log scale was observed in the normalized results 
relating applied voltage amplitude to perceived friction force intensity.

As well as fabrication, various properties of electrovibration have been inves-
tigated too. The polarity effect of the actuation signal is studied in [34], reporting 
that tactile sensation is more sensitive to negative than positive pulses. Meyer et al. 
showed an expected square law dependence of frictional force, measured by a 
tribometer, on actuation voltage [16]. A similar approach is taken by Vezzoli et al. to 
develop a model for electrovibration effect considering frequency dependence [31]. 
Kim et al. proposed a current control method to provide more uniform perceived 
intensity of electrovibration [19]. In another work and by comparing two actua-
tion signals, it is reported that square waves are more detectable than sine waves at 
frequencies lower than 60 Hz while they are same at higher frequencies [35]. Testing 
three methods, amplitude modulation, adding DC offset, and their combination, 
Kang et al. investigated low-voltage operation of electrovibration display [22]. 
They showed all methods increased dynamic friction force, while only DC offset 
increased static friction force.

3. Applications

To perceive the friction force generated on an electrovibration display, one 
requires to drag or slide their finger over the surface. While this type of interaction 
is natural and intuitive for most of handheld touchscreen devices, however, it limits 
the range of applications can benefit from this functionality. It is worth to recall 
that the two key attributes of real and simulated objects are shape (surface geom-
etry) and texture (simply surface frictional properties) [36]. Addressing these two 
attributes separately, in this section we review the relevant work in the literature.

3.1 Rendering surface geometry

Rendering 3D objects on a flat surface, either using a haptic interface or a 
variable friction display, has not been addressed much in the literature. In an early 



Modern Applications of Electrostatics and Dielectrics

6

work regarding haptic perception of curvature, Gordon and Morison showed that 
the gradient is an effective stimulus for curvature perception and humans rely on 
local curvature when perceiving surface [37]. Later, Minsky et al. demonstrated 
that tangential force alone can be sufficient for rendering surface texture assum-
ing it is made of little bumps [38]. They introduced gradient technique to create 
the illusion of bumps and valleys using a 2D force-feedback joystick. As the user 
moves the joystick in a direction which is up a bump, his motion is opposed by a 
spring force proportional to the height of the bump. This gives the sense that it is 
very difficult to move to the top of the bump (springs resist being stretched) and 
easy to fall off the bump back into a lower region of the simulated surface (springs 
like to revert to a short length). For fine-grained surfaces, joystick spring forces 
can be computed based on a local gradient. As the user moves the joystick on the 
virtual surface, the change in height in the direction of motion is noted. We create 
virtual springs opposing the motion “up” the sides of each tiny bump. Thus, the 
spring forces applied to the hand are computed from local gradients of the height 
of the surface.

Based on the gradient technique, an early attempt to create the haptic illusion of 
a non-flat shape on a nominally flat surface was introduced in [39] using a force-
shading algorithm. Later continuing their earlier work [40], Robles-De-La-Torre 
and Hayward demonstrated that in active exploration of a physical shape, lateral 
force applied to the sliding finger plays the main role in the perception of shape 
[41]. They investigated the accuracy of physical shape recognition using a one-
degree of freedom (DoF) force-feedback device without visual cues. Different com-
binations of physical and virtual geometries (bump, hole, and flat surface), e.g., 
a virtual bump laid on a physical flat surface, were presented to participants. The 
virtual shapes were rendered using lateral force only. Participants could accurately 
identify the virtual shapes in all conditions.

This study was foundational to the gradient-based algorithm of Kim et al. [17] 
for rendering 3D features on a touchscreen using electrovibration. In their work, a 
psychophysical perceptual model, subjectively relating the perceived friction to the 
applied voltage, was formulated. The model was a straight line in log–log scale, fit-
ted over average users’ ratings of the perceived friction intensity in a scale of 0–100. 
The model then utilized to modulate friction and render three lateral force profiles: 
height, slope, and rectangular. They compared users’ preference for three types of 
force profile for a visual bump displayed on the screen. Results indicated that the 
slope profile best matched the visual bump. They generalized this finding to a 2D 
gradient-based rendering algorithm for 3D features and applied the algorithm to 
many user interface examples.

In Ref. [25], the authors presented an effective rendering method for improving 
the recognition of 3D features rendered on a touchscreen using an electrostatic fric-
tion display. First, a formative user study is carried out using a basic gradient-based 
algorithm adapted from [41] in order to assess users’ ability of recognizing primi-
tive 3D shapes based on lateral force feedback provided by an electrostatic tablet 
and a force-feedback interface. Experimental results demonstrated that users are 
not able to associate electrovibration patterns with geometric shapes in an abso-
lute manner without contextual information. However, when such guidance was 
given, participants achieved moderate recognition. Then, they extended the basic 
algorithm to support general 3D mesh objects. The generalized algorithm computes 
the frictional rendering force by estimating the gradient at the touch point and also 
emphasizes sharp edges on the surface by rendering perceptually salient friction 
effects. Lastly, they conducted a summative user study to evaluate the effectiveness 
of their proposed shape rendering algorithm in reducing the visual uncertainty in 
3D shape perception. They found that when frictional feedback was provided, the 
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correct recognition performance was notably increased in comparison with when 
only visual rendering was presented.

3.2 Rendering surface texture

Compared to the problem of rendering 3D geometries on a flat electrostatic 
display, rendering surface textures seems more feasible and intuitive on such 
displays. As mentioned earlier, depending on the actuation signal, an electrovibra-
tion display generates different textural patterns. A simple illustration is given in 
Figure 3. On one hand, a sinusoid actuation signal creates a smooth bumpiness 
underneath of sliding finger. On the other hand, a square wave signal generates 
a rough and edgy feeling. A more complicated texture can be re-created using a 
proper complex signal.

Therefore, the type of input signal, its waveform, its amplitude, and its fre-
quency components play a significant role on the generated textural patterns. Hence 
looking at the problem from a systematic standpoint, knowing the input–output 
relationship of the display is vital for this problem. As stated earlier, several efforts 
have been made modeling the display and drawing a relationship between the input 
actuation voltage and the output friction force. However, aside from the fact that 
the output force is somehow proportional to the squared input voltage, there exists 
no reliable general model covering all type of input signals across a wide range of 
frequencies. This suggests an alternative method, the so called data-driven texture 
rendering. Data-driven, or measurement-based, haptic rendering is a general 
approach that uses recordings from real objects to generate realistic haptic feedback 
in virtual environments [42, 43]. It can be either parametric- and physics-based, 
to optimize parameters of a predefined model, or nonparametric and generic. It is 
usually accompanied by a generic interpolation scheme to handle the data sets not 
being measured. It provides a unified framework to capture and display a diverse 
range of physical phenomena, while not requiring simulations of complex contact 
dynamics. This data-driven approach enables researchers to bypass the complex 
step of hand tuning a dynamic simulation of the target interaction to try to match a 
haptic sensation. Instead, the goal of the modeling process is to capture the output 
response of the system (e.g., force and acceleration) given some set of user inputs 
(e.g., position, velocity, and force). Such methods shift the focus from reproducing 
the physics of the interaction to reproducing the real sensations felt by the user, and 
thus they have been largely successful at realistic haptic simulation [44].

While the problem of data-driven haptic texture rendering has been fairly 
addressed in the literature using conventional or customized haptic interfaces 

Figure 3. 
How the input actuation signal makes the perceived friction different.
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[45–51], little work has been done on variable friction displays and particularly 
using electrovibration attraction.

An electrostatic friction display creates clearly perceptible stimuli when the 
surface is laterally scanned, but not when the finger is stationary. This fundamen-
tal limitation has confined the application of electrostatic friction displays mostly 
to texture rendering. In the only relevant work [18], Ilkhani et al. proposed a 
data-driven texture rendering method by recording accelerations from three real 
materials and playing them back on an electrovibration display. Their automated 
data collection is done under single constraint condition (contact force 0.35 N 
and scanning velocity 0.74 m/s) using a servomotor controlled by an Arduino 
Uno. They conducted a user study to compare the perceived surface roughness 
generated with their data-driven signals and with that of square wave signals. 
The frequency of each square wave is set based on the main frequency of the 
corresponding acceleration. Using a visual indicator, they made the user to keep 
a constant scanning velocity, but not equal to the data collection velocity and 
presumably very slower than that. In addition, there is no mention of contact 
force status during experimentation. Nevertheless, they reported higher percent-
age of similarity between data-driven textures and real ones than square wave 
patterns. In their extended work [52], they applied the same approach on the data 
from Penn Haptic Texture Toolkit [53] and performed MDS analysis to create 
a perceptual space and to extract underlying dimensions of the textures. Their 
results showed roughness and stickiness as the primary dimensions of texture 
perception.

In ref. [54], a data-driven neural network for realistic texture rendering on 
an electrovibration display is proposed. First, a motorized linear tribometer is 
developed to collect lateral frictional forces from the textured surfaces under 
various scanning velocities and normal forces. Then an inverse dynamics model 
of the display is created to describe its output-input relationship using nonlinear 
autoregressive with external input (NARX) neural networks. Forces resulting from 
applying a full-band pseudorandom binary signal (PRBS) to the display are used to 
train each network under the given experimental condition. A comparison between 
the real and virtual forces in frequency domain shows promising results and reveals 
the capabilities and limitations of the proposed technique.

4. Conclusions

In this chapter, we have introduced the concept behind electrostatic friction 
displays (also called electrovibration displays) and their potential applications 
for shape and texture rendering. The potential uses for the technique are exciting. 
Electrovibration could make interactive textbooks more engaging on tablets, allow-
ing students to explore the three-dimensional features of an object directly on each 
page. Software for iOS or Android could be augmented with unique haptic feedback 
for button presses and swipe gestures. Games could incorporate electrovibration to 
add a new layer of interactivity to touch controls. With some smart design, it could 
really improve the functionality of touchscreens used in other fields, as well. For 
instance, the use of touchscreens in automobiles to navigate the map or control the 
music playback persuades drivers to avert their eyes from the road. Possibly, with 
an appropriate design, the same control functionalities could be delivered using a 
variable touch-based feedback without the need to take our eyes off the road. Given 
the commonness of capacitive touchscreens, the addition of richer tactile feedback 
through electrovibration promises to enhance almost all of our interactions with 
digital contents.
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While the technique has a lot of potential, the form factor remains a primary 
barrier to adoption. Implementing the alternating voltage results in a much bulkier 
device than with an ordinary capacitive touchscreen. As the technology sees more 
frequent use, however, there may be technological developments that allow more 
smartphone and tablet manufacturers to feature electrovibration without sacrific-
ing the compactness of their designs.
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