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Chapter

New Insight into Metformin 
Mechanism of Action and Clinical 
Application
Yun Yan, Karen L. Kover and Wayne V. Moore

Abstract

Metformin is the first-line medication for Type 2 diabetes (T2D) treatment, 
and it is the only US FDA approved oral antidiabetic medication for pediatric 
patients with T2D 10 years and older. Metformin is also used to treat polycystic 
ovary syndrome (PCOS), another condition with underlying insulin resistance. 
The clinical applications of metformin are continuing to expand into other 
fields including cancer, aging, cardiovascular diseases, and neurodegenerative 
diseases. Metformin modulates multiple biological pathways. Its novel proper-
ties and effects continue to evolve; however, its molecular mechanism of action 
remains incompletely understood. In this chapter, we focus on the recent trans-
lational research and clinical data on the molecular action of metformin and the 
evidence linking the effects of metformin on insulin resistance, prediabetes, 
diabetes, aging, cancer, PCOS, cardiovascular diseases, and neurodegenerative 
diseases.

Keywords: metformin, insulin, insulin resistance, diabetes, aging, PCOS, cancer, 
cardiovascular, neurodegenerative

1. Introduction

Synthesis of metformin was reported in 1922 and its effect of lowering 
glucose was reported soon after. Metformin was first reported to be used for 
the treatment of diabetes by French physician Jean Steme in 1957. The effect of 
metformin on improvement of morbidity and mortality in type 2 diabetes (T2D) 
was confirmed in the United Kingdom Prospective Diabetes Study (UKPDS), a 
large clinical trial performed in 1980–1990s [1]. It was approved for T2D treat-
ment in adults by US FDA in 1994 and for pediatric patients 10 years and older 
in 2000. Metformin is prescribed world-wide as the first-line oral drug for adults 
and children with T2D. Its physiological effects related to T2D include increase 
in insulin sensitivity, reduction of gluconeogenesis in the liver, enhanced glucose 
uptake by muscle, and reduced intestinal glucose absorption. Several molecular 
mechanisms of action have been proposed but more remain to be discovered. In 
this chapter, we will review molecular mechanisms of action of metformin and its 
prospect for clinical application.
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2. Mechanisms of action

The potential mechanisms of metformin action involve several pathways. The 
AMPK-pathway plays an important role in metformin actions [2, 3]. Metformin 
inhibits the mitochondrial respiratory chain (complex I), which increases the AMP to 
ATP ratio, leading to the phosphorylation of AMP-activated protein kinase (AMPK) 
at Thr-172. We have demonstrated that metformin treatment increases protein level 
of phosphorylated AMPK in high-glucose-treated endothelial cells [4]. The phosphor-
ylated AMPK subsequently phosphorylates multiple downstream effectors to regulate 
cellular metabolism and energy homeostasis [5]. These downstream effectors include 
thioredoxin interacting protein (TXNIP) and TBC1D1, a RAB-GTPase activating 
protein and a member of the tre-2/BUB2/cdc1 domain family. Phosphorylated TXNIP 
and TBC1D1 increase the plasma membrane localization of glucose transporter 1 
(GLUT1) and GLUT4, respectively [6, 7], and regulate glycogen synthases (GYS1 and 
GYS2) to prevent the storage of glycogen [8]. Some actions of metformin have been 
found to be AMPK-independent [9].

In diabetic mice, metformin has an effect on gut microbiota by inducing a pro-
found shift in the gut microbial community profile, resulting in an increase in the 
Akkermansia spp. population [10] and cAMP-induced agmatine production [11], 
which may decrease absorption of glucose from the gastrointestinal tract and increase 
lipid metabolism respectively. In addition, metformin decreases insulin-induced 
suppression of fatty acid oxidation and lowers lipid content of hepatic cells [12].

3. Insulin resistance

Insulin resistance (IR) is a condition in which the cellular response to insulin is 
decreased resulting in elevated insulin levels (hyperinsulinism). When the beta cells 
are not able to overcome the resistance by producing more insulin, hyperglycemia 
develops. Insulin resistance is more prevalent in certain racial populations suggesting 
a genetic basis for the resistance. The major “environmental” risk factors for insulin 
resistance are obesity and sedentary lifestyle. Exercise and weight loss are established 
approaches to improve insulin sensitivity and decrease insulin resistance [13]. Insulin 
resistance may also be the basis for polycystic ovary syndrome (PCOS) in women. 
Some studies have suggested that metabolic syndrome (insulin resistance, type 2 
diabetes, obesity, hyperlipidemia, and hypertension) and PCOS (insulin resistance, 
hyperandrogenism, amenorrhea, non-obese) are the ends of a spectrum of insulin 
resistance. The loss of microvascular insulin response and reduction of muscle 
glucose uptake are early events in the pathogenesis of insulin resistance [14, 15].

Metformin can increase insulin receptor tyrosine kinase activity, enhance 
glycogen synthesis, and increase the recruitment and activity of GLUT4 glucose 
transporters. In high-fat-diet-fed insulin resistant rats, metformin improved the 
insulin sensitivity of vascular and skeletal muscle and restored glucose uptake in 
insulin resistant skeletal muscle [16]. In adipose tissue, metformin promoted the re-
esterification of free fatty acids and inhibited lipolysis, which indirectly improved 
insulin sensitivity through reduced lipotoxicity [17].

Insulin resistance is a risk factor for the development of T2D [18] and occurs 
earlier than hyperglycemia. Blood-based biomarker that identify insulin resistance 
earlier than current glycemia-based approaches, including fasting glucose and 
HbA1C [19] might identify individual’s at risk for developing diabetes, and provide 
a novel tool to monitor metformin treatment in the high risk population. Several 
blood-based biomarkers of insulin resistance have been identified [19]. Branched-
chain amino acids [20] and asymmetric dimethylarginine (ADMA) [21] show an 
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association with insulin resistance. Metformin decreases the level of circulating 
branched-chain amino acids and reduces insulin resistance in a high-fat diet mouse 
model [22]. Metformin treatment lowers plasma ADMA which is associated with 
improved glycemic control in patients with T2D [23].

Recent studies indicate that phosphatidylinositol-3-kinase/protein kinase 
B protein (PI3K/PKB, also known as Akt) signaling pathway is associated with 
insulin resistance, and plays a critical role in insulin stimulation of glucose trans-
port into cells [24–30]. The key molecules involved in this pathway are PI3K, Akt, 
3-phosphoinositide-dependent protein kinase 1 (PDK1), and phosphoinositide 3.4.5 
trisphosphate (PIP3).

Akt has three isoforms Akt1, Akt2 and Akt3 (also referred to as protein kinase B 
(PKB) α, −β and –γ, respectively). Their domain structures are similar, including a 
pleckstrin homology (PH) kinase domain at the amino-terminal and a hydrophobic 
motif (HM) domain at the carboxyl-terminal [31]. Three isoforms share many sub-
strates, but each isoform also has specific substrate. Akt2 is specific for the insulin 
signaling pathway and plays a critical role in glucose homeostasis. Akt2 deficient 
mice have insulin resistance, hyperglycemia, and loss of pancreatic β cells while 
Akt1 deficient mice do not exhibit diabetes phenotypes [32, 33].

PIP3 binds to PDK1 and Akt protein and recruits Akt protein to the plasma 
membrane. PDK1 phosphorylates Akt at Thr308/309 of Akt1/Akt2, respectively 
of the kinase domain leading to partial Akt activation. PI3K might directly phos-
phorylate Akt1 at Thr308 [34]. Full Akt activation is associated with a second PI3K 
phosphorylation of Akt at Ser473/474 of Akt1/Akt2, respectively in the carboxyl-
terminal hydrophobic motif [34]. Subsequently, the phosphorylated Akt2 recruits 
insulin-regulated GLUT1 and GLUT4 glucose transporters from the cytoplasm onto 
the cell membrane surface and thereby increases glucose uptake [35].

GLUT1 is an insulin independent transporter whereas GLUT4 is an insulin 
dependent transporter. Insulin increases GLUT4 in the cell membrane and pro-
motes the glucose transport into muscle and fatty cells (Figure 1). Any defect in Akt 
pathway along with the downstream molecules could result in insulin resistance 
[29]. Clinical data indicate that acute myocardial insulin resistance that occurs after 
cardiac surgery with cardiopulmonary bypass is attributed to Akt inactivation. 

Figure 1. 
Insulin binds to insulin receptor and induces its dimerization and auto phosphorylation of tyrosine residues 
in two transmembrane β subunits, which further lead to the phosphorylation of tyrosine residues on the IRS 
protein. These molecules can further activate PI3K, resulting in activation of PDK1/2. AKT is recruited and gets 
phosphorylated by PDK1/2. Once activated, AKT promotes GLUT4 translocation to plasma membrane and 
facilitates glucose into cell. TXNIP inhibits glucose transporter by promoting GLUT4 endocytosis.
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Inactivated Akt impairs the membrane transposition of GLUT4, which results in 
insulin resistance accompanied with hyperinsulinemia, hyperglycemia and cardiac 
dysfunction [36]. It has been reported that metformin attenuates insulin resis-
tance by restoring PI3K/Akt/GLUT4 signaling in the hepatocytes of T2D rats [37]. 
Metformin combined with phloretin, a dihydrochalcone found in fruits, promoted 
glucose consumption and suppressed gluconeogenesis in skeletal muscle via PI3K/
Akt/GlUT4 signaling pathway in T2D rat models [38].

TXNIP is being considered as a novel mediator of insulin resistance [39, 40]. 
TXNIP induced by high-glucose concentration is a key intracellular regulator of 
glucose and lipid metabolism [6]. We have demonstrated that metformin improves 
endothelial cell function via down-regulation of high-glucose-induced TXNIP 
transcription [4].

Over expression of TXNIP induces apoptosis of pancreatic β cells and endo-
thelial cells, decreases muscle and adipose insulin sensitivity, promotes GLUT4 
endocytosis and reduces glucose uptake in myocytes and adipocytes [4, 41–43]. 
Reduction of TXNIP expression by RNA interference gene-silencing significantly 
improves insulin induced glucose uptake in cultured human skeletal muscle 
cells [41]. TXNIP knockout mice had improved insulin sensitivity and increased 
glucose uptake in both adipose and skeletal muscle [39]. In PCOS, metformin 
improved insulin resistance in a PCOS rat model via an AMPK alpha-SIRT1 
pathway [44].

4. Prediabetes

New criteria defining prediabetes includes the presence of one or more of the 
following, impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and 
HbA1C of 5.7–6.4% [45]. The progression from prediabetes to diabetes is related to 
insulin resistance and β-cell dysfunction. Prediabetes is a serious health condition 
which increases the risk of developing T2D, heart disease and stroke. In the US, 
approximately 84 million American adults (more than 1 out of 3) have prediabetes 
but 90% patients with prediabetes are not aware of their condition [46]. Metformin 
improves insulin sensitivity and provides an attractive pharmacological interven-
tion for prediabetes [47, 48]. Results from several clinical trials in the prediabetes 
population, including children, adolescents and adults, have indicated that 
metformin can delay or halt the progression from prediabetes to diabetes [49–51]. 
Metformin is generally well tolerated and has no significant safety issues with 
long-term use for diabetes prevention [48]. In the long-term “Diabetes Prevention 
Program Outcomes Study (DPPOS)”, either lifestyle intervention or metformin 
significantly reduced diabetes development over 15 years. Lifestyle intervention has 
been shown similar or greater effectiveness than metformin in clinical trials [52] 
and remains the cornerstone of care for patients with prediabetes. However, lifestyle 
interventions are difficult for patients to maintain and often fail to control weight 
over the long term. Metformin therapy was shown to be just as effective as lifestyle 
intervention in individual with prediabetes <60 years of age, BMI ≥ 35 kg/m2, and 
in women with a history of gestational diabetes mellitus [51, 53]. A study showed 
that metformin was underused in patients with prediabetes and only 3.7% of adult 
patients with prediabetes were prescribed metformin [54]. Currently metformin 
is not approved by FDA for prediabetes. Overweight patients with comorbidities 
may be at increased risk of diabetes. New guidelines recommended that metfor-
min therapy for T2D prevention should be considered in those with prediabetes, 
especially those with BMI ≥ 35 kg/m2, those aged <60 years, and women with prior 
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gestational diabetes mellitus [55]. The combinations of metformin with lifestyle or 
other treatments have shown more beneficial effects in diabetes prevention [48, 49].

5. Diabetes

Metformin is approved for use in patients with T2D. It is still under debated 
whether metformin can be an adjunct therapy for T1D though many overweight 
T1D patients have been prescribed metformin due to its beneficial effects on 
improving insulin resistance.

5.1 Adult T2D

Metformin is considered first-line therapy to treat T2D due to its blood glucose-
lowering effects, safety and relatively low cost. Metformin lowers blood glucose 
level by decreasing glucose production in liver, reducing intestinal glucose absorp-
tion, increasing insulin sensitivity and promoting muscle glucose uptake in muscle. 
Metformin treatment can be combined with lifestyle modification and other anti-
diabetic drugs, such as dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like 
peptide-1 (GLP-1) receptor agonists or sodium-glucose cotransporter-2 (SGLT2) 
[56, 57]. Combined therapy is individualized depending on effectiveness, safety, 
tolerability, and the characteristics of each patient [58].

Metformin is safe and tolerable with the exception of the risk of lactic acidosis in 
patients with risk factors for lactic acidosis [59], including impairment of renal, car-
diac, and hepatic function [60–62]. Another concern is metformin-induced vitamin 
B12 deficiency; patients who receive long-term metformin treatment (>6 months) 
at large doses have developed B12 deficiency [63, 64], so that annual screening of 
vitamin B12 level is recommended [65].

5.2 Adult T1D

Insulin resistance in T1D patients may contribute to poor glycemic control and is 
associated with increased insulin dose requirement [66]. Metformin treatment has 
been shown to increase insulin sensitivity, improve glycemic control, and reduce 
cardiovascular risk in patients with T1D [67]. The studies reported that metformin 
used as an adjunct therapy in T1D reduced insulin dose and body weight with no 
improvement in HbA1c and glycemic control [68, 69]. Another short term adjunct 
therapy with metformin demonstrated improved glycemic control, insulin sensitiv-
ity, and quality of life without weight gain, while long-term (2 years) metformin 
treatment was associated with decreased BMI [70]. A 1 year retrospective investiga-
tion reported an association between metformin as adjunct therapy and decreased 
glucose levels, decreased prevalence metabolic syndrome traits, and decreased 
insulin dose [71].

5.3 Pediatric T2D

Metformin was shown to be safe and effective for treatment of pediatric patients 
with T2D age 10 to 16 years old [72]. Treatment Options for Type 2 Diabetes in 
Adolescents and Youth (TODAY) recruited 699 youth and adolescents over a 4-year 
period. In this cohort study, metformin was used alone or in combination with 
life style modification or other antidiabetics drugs [73]. Metformin treatment was 
associated with decreased HbA1c and improved glycemic control in more than 
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half of the participants. Metformin plus rosiglitazone was significantly better than 
metformin monotherapy [74].

5.4 Pediatric T1D

Using metformin to improve glycemic control and insulin sensitivity in youth 
and adolescents with T1D has been reported in several clinical trials. Studies that 
report a positive association of metformin have reported: 1. Decreased insulin dose, 
BMI and waist circumference in adolescents with T1D [75]. 2. Lower daily insulin 
dose improved whole-body and peripheral insulin resistance in adolescents with 
T1D who were overweight/obese [76]. 3. Lower insulin dose and improved vascular 
smooth muscle function and HbA1c children with T1D [77]. 4. Decreased cardio-
vascular disease risk factors in youth with T1D [78]. 5. Improvement in HbA1c level 
in adolescents with T1D [79, 80]. In contrast, some trials did not observe improve-
ment in HbA1c [76, 81], or glycemic control. As expected, there was an increased 
gastrointestinal adverse event in overweight adolescents with T1D [81].

6. Aging

Metformin has attracted interest for its potential effects on aging [82]. 
Metformin treatment has a positive association with reduction in the incidence 
of mortality from age-related diseases including diabetes, cancer, cardiovascular 
diseases, and neurodegenerative diseases. Metformin is reported to increase lifespan 
in several animal models. Cohort clinical trials, Metformin in Longevity Study 
(MILES) and Targeting Aging with Metformin (TAME), have been initiated to 
investigate metformin’s anti-aging effects in human.

In several animal models, including nematodes and rodents, metformin has been 
shown to delay aging. Metformin treated female outbred mice (100 mg/kg in drink-
ing water) showed an increased mean lifespan 37.8% [83]. The effects of metformin 
treatment were shown to be age dependent in mice. When treatment was started 
at the early stage of life, middle-age and late stages of life, the mean lifespan was 
increased by 21%, 7% and 13% respectively compared to the controls [84]. In a mouse 
breast cancer model, metformin delayed the onset of mammary adenocarcinoma and 
increased lifespan by a mean of 8% compared to the control group [85]. Metformin 
prolonged the survival time of male mice with Huntington’s disease by 21.1%, but 
had no effects in female [86]. A recent study found that metformin reduced oxidative 
stress and inflammation, extended both lifespan and healthspan by 4–6% in different 
strains of mice, and attenuated the deleterious effects of aging in male mice [87].

Gut microbiota has been shown to affect health status and longevity and play a 
role in resistance to infection, inflammation, autoimmunity, and cancer, and the 
regulation of the brain-gut axis [88, 89]. Metformin acts directly on gut bacteria 
to decrease absorption of glucose, improve lipid metabolism and elevate agmatine 
production to extend host lifespan [10, 90].

The reported effects of metformin on microbiota and animals have promoted 
interest in evaluating its effects on human longevity. In 2014, Metformin in 
Longevity Study (MILES, NCT02432287) clinical trial was initiated to examine 
the effects of metformin treatment on the biology of aging in humans, and to 
determine if treatment with metformin (1700 mg/day) could restore more youthful 
gene expression in elderly people with impaired glucose tolerance. Results from 
MILES showed that 6-weeks of metformin treatment in older adults (~70-year-old 
participants) improved age-associated gene expression, and significantly influ-
enced metabolic and non-metabolic pathways in skeletal muscle and subcutaneous 
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adipose tissue [91]. Currently, MILES has progressed to a phase 4 trial. Targeting 
Aging with Metformin (TAME) is managed by America Federation for Aging 
Research (AFAR) to investigate metformin’s ability to delay the onset of comorbidi-
ties related to aging. The plan is to recruit 3000 older adults (aged 65–79 years old) 
without diabetes who will be randomly assigned to 1500 mg metformin daily or 
placebo for 6 years, with a mean follow-up time of more than 3–5 years (https://
www.afar.org/research/TAME). These ongoing trials are expected to further evalu-
ate and update the roles of metformin in antiaging.

7. PCOS

Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting 
about 5–15% of reproductive age women [92, 93]. PCOS is associated with insulin 
resistance and hyperinsulinemia, even in lean women. The condition puts women 
at risk for infertility, obesity, diabetes, as well as cardiovascular disease [94]. 
Metformin has been used to treat PCOS for 25 years and is currently recommended 
in combination with other therapy.

Clinically, metformin was first reported as a treatment for PCOS in 1994 [95]. A 
6-month trial of metformin or placebo in women with PCOS found that metformin 
improved menstruation and insulin sensitivity, and reduced hyperinsulinemia 
and hyperandrogenemia [96]. In addition, metformin has been found to inhibit 
androgen production by repressing the steroidogenic enzymatic activities of 
17α-hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 
2 (HSD3B2) in the theca cells taken from the ovaries of women with PCOS [97].

Women treated with metformin had increased rates of ovulation and pregnancy 
[93], reduced rates of early pregnancy loss, preterm delivery, preeclampsia, and 
fetal growth restriction [98, 99], and improved live birth rates [93]. There were no 
serious adverse effects in pregnant women with PCOS treated with metformin or 
their offspring [98–100]. These results indicate that the roles of metformin are not 
only in glucose metabolism, but also in regulating ovarian hormonal activities and 
functions in women with PCOS.

There is not enough evidence to recommend metformin as first-line therapy 
for women with PCOS but adding metformin to other PCOS treatment seems an 
optimal option. Gastrointestinal side effects were more common in metformin 
combined with clomiphene citrate than clomiphene citrate alone, but the combined 
therapy may have beneficial effects in the rates of ovulation and pregnancy [93, 101]. 
Combination of metformin with clomiphene citrate can be considered as the first 
line therapy in anovulatory PCOS women without other infertility factors [102]. 
Metformin was less effective than clomiphene citrate in obese women with PCOS [93, 
102]. Combined therapy of metformin and spironolactone showed greater improve-
ment in menstrual cycles and hyperinsulinemia. Adding metformin to ethinyl 
estradiol-cyproterone acetate treatment in non-obese women with PCOS resulted in 
significant decreases in androgen levels and increases sex hormone-binding globulin 
level, which confirmed that metformin also, has some beneficial effects in non-obese 
women with PCOS [103]. In a DHEA-induced PCOS rat animal model, metformin 
treatment restored ovarian angiogenesis and follicular development [104].

8. Cardiovascular diseases

Cardiovascular diseases (CVD) are the leading cause of death and disability in 
the world. Metformin might have sustained beneficial role on reducing CVD risk 
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and mortality [105, 106]. The cardioprotective effects include reduction of weight 
gain and hyperinsulinemia, improvement of endothelial function and fibrinolysis, 
and reduction of low-grade inflammation, oxidative stress, and glycation.

Recent clinical studies have shown that metformin has protective effects 
on vascular endothelial function and angiogenesis in patients with T2D [107]. 
Several clinical trials have reported that metformin treatment reduced CVD risk 
in T2D [1, 108]. Recently the efficacy of metformin in modifying CVD outcomes 
has been challenged [109–111] but updated evidence support that metformin is 
cardiovascular protective [112]. A meta-analysis that included 40 clinical trials 
comprising 1,066,408 patients has shown that metformin reduced cardiovascu-
lar mortality, all-cause mortality and cardiovascular events in coronary artery 
disease [105].

Diabetes increases CVD risk and mortality. More than 75% of male and more 
than 57% female T2D patients died from cardiovascular disease. The mortality of 
CVD with T2D patients is twice those without T2D [113]. Patients with chronic 
cardiovascular disease (CVD) comorbidity are likely to benefit from metformin 
treatment [1, 105, 108]. Metformin is recommended to be used alone or in combina-
tion with other drugs as the first line therapy in T2D patients with high risk of CVD, 
including atherosclerotic cardiovascular disease [114, 115].

Several clinical trials for metformin on participants with or without T1D 
diabetes have been completed [106]. Trials Metformin in Insulin Resistant 
Left Ventricular Dysfunction (TAYSIDE, NCT00473876) and Reducing 
with Metformin Vascular Adverse Lesions of Type 1 Diabetes (REMOVAL, 
NCT01483560) have promising data. TAYSIDE found that metformin had a 
beneficial effect in participants with nondiabetic chronic heart failure and insulin 
resistance, significantly improved the secondary endpoint of the slope of the ratio 
of minute ventilation to carbon dioxide production, fasting insulin resistance and 
weight loss [116]. REMOVAL showed that metformin reduced the prespecified 
tertiary end point of carotid artery intima-media thickness in T1D suggesting a 
cardiovascular protective effect [117]. In an 8-week period of metformin treat-
ment for nondiabetic participants with cardiac syndrome X, metformin improved 
endothelium-dependent microvascular response, maximal ST-segment depres-
sion, Duke score, and chest pain incidence, which suggested that metformin may 
improve vascular function and decrease myocardial ischemia [118]. However, 
several studies reported that metformin was not found to be effective in their 
participants [106].

Investigation of Metformin in Pre-diabetes on Atherosclerotic Cardiovascular 
OuTcomes (VA-IMPACT, NCT02915198) and Glucose Lowering in Non-diabetic 
Hyperglycemia Trial (GLINT, ISRCTN34875079) are current ongoing studies to 
further evaluate the effects of metformin on CVD [119]. The trials will evaluate 
the incidence of cardiovascular death and non-fatal myocardial infarction events. 
Their data will provide more insight on the association of metformin treatment 
on CVD.

The role of metformin in inhibiting mitochondrial enzymes and activating 
AMPK pathway are the most likely cellular mechanisms in cardiovascular protec-
tion. We have demonstrated that AMPK activated by metformin improved cellular 
function, decreased apoptosis, and reduced inflammation in vascular endothelial 
cells [4, 42]. TXNIP is a key regulator of cellular redox state induced by high glucose 
and promotes high-glucose-induced macrovascular endothelial dysfunction. We 
have also reported that metformin down-regulated high-glucose-induced TXNIP 
expression by inactivating ChREBP and Forkhead box O1 (FOXO1) through AMPK 
pathway (Figure 2) [4].
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9. Cancer

Preexisting diabetes is a risk factor for cancers, including liver, pancreas, endome-
trium, colon, breast, and bladder cancers [120]. Epidemiological studies show that the 
incidence of cancer is decreased in patients with T2D treated with metformin [121]. 
Metformin has shown to inhibit cancer cell growth in clinical trials including cancer 
patients without diabetes [122–124]. Based on http://ClinicalTrials.gov in January 
2020, there are more than 300 clinical trials investigating metformin in cancer treat-
ment, more than 100 of them have been completed. The results were published or 
posted on http://ClinicalTrials.gov. These trials included patients with or without dia-
betes with different cancers using metformin treatment or combination of metformin 
with other anticancer drugs. Accumulating evidence from clinical trials and a national 
cohort study suggest that metformin treatment may improve therapeutic response and 
have potential beneficial effects on cancer prevention and therapy [125–127].

The effect of metformin on inhibiting cell proliferation can be classified as 
AMPK independent and AMPK dependent [128]. Metformin inhibits the electron 
transport chain, resulting in an elevated NADH/NAD+ ratio and decrease of ATP 
production in mitochondrial complex I ATP as well as activation of AMPK [129, 
130]. AMPK activated by metformin subsequently regulates cell growth and sur-
vival by targeting metabolic enzymes and transporters [131, 132]. AMPK downreg-
ulates mTOR activity that plays a central role in the regulation of cell proliferation, 
growth, differentiation, migration, and survival [133–135].

Tumor protein 53 (p53) plays a central role in the cellular responses to repair of 
DNA damage, cell survival and apoptosis. p53 mutations occur in almost every type 
of human cancer cells and more than 50% of human cancers have a somatic p53 
mutation [136]. AMPK activation induced phosphorylation at Ser15 of p53, leading 
to cell-cycle arrest [137].

Metformin was reported to inhibit melanoma cell invasion and metastasis via an 
AMPK/p53 dependent manner [138]. In a pre-clinical lymphoma model, metformin 

Figure 2. 
Metformin inhibits the nuclear entry of ChREBP and FOXO1 from cytosol and their binding capacity to the 
TXNIP promoter, thus potently and effectively suppresses TXNIP transcription induced by high glucose at last. 
The inhibitory effect of metformin on nuclear translocation is AMPK-phosphorylation-dependent.
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treatment resulted in activation of p53, leading to cell apoptosis [139]. In the 
prostate cancer cells, the combination of metformin and 2-deoxyglucose resulted 
in p53-dependent cell apoptosis [140]. Metformin has been found to inhibit human 
cervical cancer cell proliferation and induce apoptosis via modulating p53 and 
cyclin D1 expression [141].

The effect of metformin on anti-cancer also has a p53-independent mechanism. 
Metformin has been shown to induce G2M arrest in p53-deficient colorectal cancer 
cells and tumors. When combined with ionizing radiation metformin therapy 
enhanced antitumor effects in radioresistant p53-deficient colorectal cancer cells 
[142]. Treatment with metformin increased apoptosis in p53-deficient human colon 
cancer cell and reduced tumor growth in xenografts of p53-deficient human colon 
cancer cells [143].

The p53 homologs, P63 and p73 have overlapping function in tumorigenesis and 
development [144]. P63 and P73 mutations are rare in human tumors, but they can 
be overexpressed. P63 plays a critical role in development of squamous epithelium 
and is overexpressed in squamous cell carcinoma [145]. Metformin inhibited p63 pro-
tein expression in squamous carcinoma cell, resulting in decreased cell viability and 
xenographic tumor growth [146]. P73 overexpression induces apoptosis and cell cycle 
arrest of tumor cells [147]. AMPK activated by metformin phosphorylated Ser426 of 
p73 leading to p73 accumulation and cell apoptosis in human colon cancer cells [148].

Metformin may prevent tumorigenesis by inhibiting the insulin like growth 
factor (IGF)-1 signaling pathway and increasing insulin sensitivity. The prolifera-
tion marker Ki-67 was significantly decreased in patients with endometrial cancer 
cell after metformin treatment [149]. Metformin enhances cytotoxic T lymphocyte 
(CTL) antitumor activity via activating AMPK to phosphorylate Ser195 of PDL-1 in 
a murine model of breast cancer which is consistent with the finding that tumor tis-
sues from metformin-treated breast cancer patients exhibited reduced PDL-1 level 
with AMPK activation [150].

These findings suggest that metformin could be a useful adjuvant agent and 
has therapeutic benefits in several tumor types, including colorectal, prostate and 
breast cancers. However, there is limited evidence in other tumor types, and further 
clinical investigations are needed to evaluate metformin effects in cancer therapy.

10. Neurodegenerative diseases

Metformin is described to have a beneficial effect in neurodegenerative diseases 
(ND), including dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s 
disease and mild cognitive impairment [151, 152].

Population-based studies support an association between the elevated risk of 
ND in patients with T2D [153–155]. A large population cohort study used Taiwan’s 
National Health Insurance Database to investigate the relationship between demen-
tia, T2D, and metformin treatment. They found that the prevalence of dementia 
was increased in patients with T2D and that metformin therapy was associated with 
a 24% decrease in the incidence of dementia in patients with T2D. The combination 
treatment of metformin with sulfonylureas was associated with a 35% decrease in 
the risk of dementia in T2D patients over 8 years of observation [156]. In a recent 
study, long-term (>2 years) metformin therapy was associated with lower incidence 
of dementia among elderly adults with T2D. Longer term treatment (>4 years) was 
associated with reduced risk of Alzheimer’s and Parkinson’s diseases, and none with 
mild cognitive impairment [157]. A large T2D population cohort study found that 
sulfonylureas therapy increased the risk of Parkinson’s disease, but adding met-
formin as a co-therapy significantly reduced the risk of Parkinson’s disease in T2D 



11

New Insight into Metformin Mechanism of Action and Clinical Application
DOI: http://dx.doi.org/10.5772/intechopen.91148

[158]. Long-term (>6 years) metformin treatment significantly reduced the risk of 
cognitive impairment among older adults with T2D [159].

In contrast, other studies have shown that the metformin therapy of T2D is 
associated with: 1. a slightly higher risk of Alzheimer’s disease [160], 2. increased 
risk for cognitive impairment [161], and 3. no beneficial effects on preventing 
development of Alzheimer’s disease after adjusting for underlying risk factors and 
the duration of diabetes since diagnosis [162]. In addition, metformin treatment 
aggravated neurodegenerative process in ApoE knockout mice [163].

The current evidence suggests that the neuroprotective effects of metformin 
occur via activation of AMPK/mTOR pathway and inhibition of tau phosphoryla-
tion [164, 165]. In addition, it is known that metformin enhances angiogenesis 
and neurogenesis, induces autophagy, reduces oxidative stress, and improves 
neurological deficits [166–170].

Despite the different findings from these studies, a recent meta-analysis suggests 
that metformin may prevent development of dementia in patients with diabetes 
indicating that metformin should be continued in patients with T2D patients at risk 
of the dementia or Alzheimer’s disease. Use of metformin to prevent neurodegener-
ative diseases in people without diabetes is not supported by current evidence [152].

11. Conclusions

Metformin is currently approved and widely prescribed for patients with T2D 
and PCOS. The clinical trial data and clinical experience over several decades have 
demonstrated its safety and efficacy. The interest in metformin therapy has dra-
matically increased as the population-based cohort studies indicate that metformin 
can decrease the risk of cancer, cardiovascular and cerebral disease. Current studies 
indicate that metformin has potential for treatment of T1D, cancer, aging, cardio-
vascular and neurodegenerative diseases. Translational and clinical trials need to 
be continued and expanded to determine if there are indications for metformin 
therapy in diseases other than T2D.
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