
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter

Design of Three-Term
Controller Using a PIC18F452
Microcontroller
Mostefa Ghassoul

Abstract

Microcontrollers are used in almost any applications that come across one’s mind,
from small control applications such as home appliances to aerospace. Microcontrol-
ler-based controllers are cost-effective and flexible to modify the design to meet the
requirement for any control of any industrial plant. Microcontrollers do not require
external hardware interface, memories, counter/timers, and ADCs, because they are
all integrated inside the chip. Those controllers could be programmed online and do
not require any backup memories except for big applications. This chapter presents
the implementation of the three-term PID controller using a Microchip PIC18F452
microcontroller. To read data into the controller, a 10-bit integrated ADC is used; and
to read data out of the machine, an external 12-bit serial DAC is used. Before pro-
gramming the PIC microcontroller, the task to be tested could be off-line using a
software simulator to make sure that it is working according. When that is the case, it
could be then fired into the controller on-line in a mater seconds. Not only that, if the
user decides to use different algorithm, he only programs the controller again online.

Keywords: PIC microcontroller, PID, timer, Digital to analog converter, serial
digital to converter, liquid crystal display

1. Introduction

The PID (Proportional Integral Differential) algorithm is the most popular feed-
back controller used within the process industries. It has been successfully used for
over 50 years. It is a robust easily understood algorithm that can provide excellent
control performance despite the varied dynamic characteristics of process plant. It is
designed to generate an output that causes some corrective effort to be applied to a
process so as to drive a measurable process variable towards a desired value, known as
the set point. The concept is based (as shown in Figure 1) on the re-input of the system
own output according to certain laws (hence the name “feedback”). It is desired for
the system output to follow the set point. All feedback controllers determine their
output by observing the difference, called error, between the set point and the actual
process variable measurement. The PID looks at (a) the current value of the error, (b)
the integral of the error over a recent time interval, and (c) the current derivative of
the error signal to determine not only how much of a correction to apply, but for how
long. Each of those three quantities are multiplied by a (tuning constant) and added
together. Thus the PID output is a weighted sum. Depending on the application one
may want a faster convergence speed or a lower overshoot. By adjusting the weighting
constants, Kp, Ki, and Kd, the PID is set to give the most desired performance.

1

As a result of enormous development in microcomputer technology, analog con-
trollers have been replaced by digital controllers either in small or large industry. It is
now a common practice to implement PID controllers in its digital version, which
means that they operate in discrete time domain and deal with analog signals quan-
tized in a limited number of levels. The trend toward digital rather than analog control
is mainly due to: (1) versatility where programs can be easily modified or completely
changed, (2) sophistication where advanced control laws could be implemented, (3)
cost effectiveness where microcontrollers are available at very low costs compared to
PLCs, industrial computers, RTUs or DCS. A typical digital feedback control system is
shown in Figure 2. In digital feedback systems, the controller input and output are
digital (sampled) rather than continuous signals. Thus, the continuous signal from the
measurement device (sensor/transmitter) is sampled and converted periodically to a
digital signal by an analog-to-digital converter (ADC). A digital control algorithm is
then used to calculate the controller output as a digital signal. Because most final

Figure 1.
Typical closed loop control system.

Figure 2.
Digital closed loop based on a microcontroller.

Figure 3.
The three-term PID controller.

2

Renewable Energy - Technologies and Applications

control elements are analog devices, the digital output signal is usually converted to a
corresponding analog signal by a digital-to-analog converter (DAC).

In feedback control, the objective is to reduce the error signal to zero where

e tð Þ ¼ ysp tð Þ � ym tð Þ (1)

where e tð Þ = error signal, ysp tð Þ = set point and ym tð Þ = measured value of the

controlled variable. For the PID controller, the three terms (proportional, integral,
and derivative) are combined to minimize the error as much as possible. The most
common combination of these three terms is in parallel as shown in Figure 3. The
PID equation [1, 2] is given by:

P tð Þ ¼ Pþ KC e tð Þ þ
1

τI

ðt

0
e tð Þdtþ τD

de tð Þ

dt

� �

(2)

where P(t) = controller output; P = bias (steady-state) value; KC = controller
gain; τI = integral time; τD = derivative time.

A straightforward way of deriving a digital version of the parallel form of the
PID controller is to replace the integral and derivative terms by finite difference
approximations,

ðt

0
e tð Þdt≈

X

k

j¼1

ejTS (3)

de

dt
≈

ek � ek�1

TS
(4)

where TS = the sampling time (the time between successive measurements of
the controlled variable); and ek = error at the kth sampling instant for k = 1, 2, 3, …

There are two alternative forms of the digital PID control equation, the position
form and the velocity form. Substituting Eqs. (3) and (4) into (2) gives the position
form:

Pk ¼ Pþ KC ek þ
TS

τI

X

k

j¼1

ej þ
τD

TS
ek � ek�1ð Þ

" #

(5)

where Pk is the controller output at the Kth sampling instant. Eq. (5) is referred
to as the position form of the PID control algorithm because the actual value of the
controller output is calculated [3, 4].

In the velocity form, the change in controller output is calculated. The velocity form
can be derived by writing the position form of Eq. (5) for the (k� 1) sampling instant:

Pk�1 ¼ Pþ KC ek�1 þ
TS

τI

X

k�1

j¼1

ej þ
τD

TS
ek�1 � ek�2ð Þ

" #

(6)

Note that the summation still begins at j = 1 because it is assumed that the
process is at the desired steady state for j ≤ 0, and thus ej = 0 for j ≤ 0. Subtracting
Eq. (6) from (5) gives the velocity form of the digital PID algorithm:

ΔPk ¼ Pk � Pk�1 ¼ KC ek � ek�1ð Þ þ
TS

τI
ek þ

τD

TS
ek � 2ek�1 þ ek�2ð Þ

� �

(7)

3

Design of Three-Term Controller Using a PIC18F452 Microcontroller
DOI: http://dx.doi.org/10.5772/intechopen.89815

Pk ¼ Pk�1 þ KC ek � ek�1ð Þ þ
TS

τI
ek þ

τD

TS
ek � 2ek�1 þ ek�2ð Þ

� �

(8)

In this study, velocity form is chosen because of the following advantages:

1. It does not need initialization. The position form requires the initial value of

the controller output P, which is not normally known in practice. For example,
an operator keeps the control loop in the manual mode until a desired steady
state operation has been reached. At this point the error is zero and the

position of the control valve would correspond to the P value. Therefore, if the
operator would like to transfer the control from manual to automatic, he or she

should enter in the position control algorithm the value of P which is not
normally known. This difficulty can be bypassed with the velocity form of the
control algorithms, which do not need initialization.

2. It is protected against integral windup. The integral mode of a controller causes
its output to continue changing as long as there is a nonzero error. Often the
errors cannot be eliminated quickly enough and given enough time they
produce larger and larger values for the integral term, which in turn keeps
increasing the control action until it is “saturated” (e.g., the valve completely
opens or closes). This condition is called integral windup. Then, even if the
error returns to zero, the control action will remain saturated. The position
form with its continuous summation of errors will produce integral windup
and special attention will be required. The velocity form, on the other hand, is
protected from integral windup for the following reason: The control action
changes continuously until it becomes saturated. But then as soon as the error
changes sign, the control action can return within the control range in one
sampling period.

3. It protects the process against computer failure. With the velocity algorithm
one can send out a signal which is used to drive an integrating amplifier or a
stepper motor. These devices will retain the last calculated position of the
control valve (or other final control element) in case the computer fails, thus
avoiding total loss of control of the process.

2. PIC18F452 background

As mentioned earlier, the implementation is based on a Microchip PIC18F452
microcontroller, where the controller plays the role of the brain of the control
system [5]. The right choice of the microcontroller is essential, as it will be the core
of the final design. The PIC18F452 from Microchip has been chosen for the follow-
ing advantages:

1.Speed: with its maximum internal clock rate of 20 MHz and its 16-bit-wide
instruction bus, the CPU can execute most of its instructions at a single
machine cycle of four clocks which is equivalent to a 0.2 μs.

2.Math support: unlike classical microprocessors, the controller in hand has got a
hardware multiplier and divider for multiple-bytes, fixed-point numbers and
for floating-point numbers so multiplication is carried out in a single
instruction.

4

Renewable Energy - Technologies and Applications

3.Flexible timer resources: four independent timers modules support timing
measurements and output interval control with a timing resolution as fine as
0.1 μs. Those timers could be used to produce up to three pulse width
modulations which could be used for electrical motor control.

4.Free software tools: Microchip’s Development Package MPLAB® (consisting of
assembler, simulator, and user interface) as well as all manuals and application
notes are available at no cost from their Web site (www.microchip.com).

5.Development tool versatility: it supports in-circuit debugger which permits the
loading and execution of a user program as well as the use of breakpoints,
memory/ register modification, and single stepping.

6.Build-in ADCs: it has analogue-to-digital converters with 10 bits resolution.

7.Built-in serial peripheral interface: it has a variety of serial bus interfaces like
USART, I2C & SPI.

8.C programmable: it could be programmed using C language with the use of a
variety of built in C libraries developed by microchip.

The PIC18F452 microcontroller is a 40 or 44-pin depending on the package,
where in the 40 pins configuration, a dual inline package is used; whereas in the 44
pins configuration, either thin quad flat package or dual flat no leads package is
used. Its design is based on Harvard technology where the program and data have
different buses. This type of microcontrollers is very cheap, small in size, and could
be customized. It could be easily programmed on-line using either assembly lan-
guage, BASIC or C language. In fact, it is ideal for small application such as the one
in hand. The controller has a 24 kbytes of flash memory and 2048 bytes of SDRAM.
It also has a 8 � 10 bits analog to digital channels. It also has 5 bidirectional digital
ports with 33 inputs/outputs, configured as follows: 3 � 8 digital I/O ports (PORTB,
PORTC and PORTD), one six digital I/O port (PORTA) and one three digital I/O
port (PORTE). Unfortunately, one of the drawbacks of microcontrollers, it is very
seldom to find one with a digital to analog converter. Luckily, they are few manu-
facturers around including microchip, which make serial DACs which could be
programmed through Serial Port Interface (SPI) using only three wires. The
PIC18F452 has four timer/counters which could be programmed either as 8 or 16 bit
timers/counters. It also has two ports which could be configured either as capture,
compare or pulse width modulation (PWM). It has two serial peripheral interfaces:
(SPI) and an inter-integrated circuit (I2C). An asynchronous port (USART) is also
provided. For the microcontroller to output analogue data, an MCP4921 device is
used. The device is a 12-bit buffered single voltage output Digital-to-Analog Con-
verter (DAC). The device operates from a single 2.7 V to 5.5 V supply with an SPI
compatible Serial Peripheral Interface. The user can configure the full-scale range of
the device to be VREF or 2*VREF by setting the gain selection option bit (gain of 1
of 2). The user can shut down the device by setting the Configuration Register bit.
In Shutdown mode, most of the internal circuits are turned off for power savings,
and the output amplifier is configured to present a known high resistance output
load (500 kΩ, typical). The device includes double-buffered registers, allowing
synchronous updates of the DAC output using the LDAC pin. The device also
incorporates a Power-on Reset (POR) circuit to ensure reliable powerup. The device
utilizes a resistive string architecture, with its inherent advantages of low Differen-
tial Non-Linearity (DNL) error and fast settling time. The device is specified over

5

Design of Three-Term Controller Using a PIC18F452 Microcontroller
DOI: http://dx.doi.org/10.5772/intechopen.89815

the extended temperature range (+125°C). It provides high accuracy and low noise
performance for consumer and industrial applications where calibration or com-
pensation of signals (such as temperature, pressure and humidity) is required. The
MCP4921 device is available in the PDIP, SOIC, MSOP and DFN packages. Figure 4
shows the chip pin configuration. The MCP4921 device is designed to interface
directly with the Serial Peripheral Interface (SPI) port, which is available on the
PIC18F452 microcontroller and supports Mode 0,0 and Mode 1,1. Commands and
data are sent to the device via the SDI pin, with data being clocked-in on the rising
edge of SCK. The communication is unidirectional; this means the data cannot be
read out of the MCP4921. The CS (chip select active low) pin must be held low for
the duration of a write command. The write command consists of 16 bits and is used
to configure the DAC’s control and data latches. Register shown in Figure 5, details
the write command which is loaded into the input register that is used to configure
and load the DAC register [6].

The write command is initiated by driving the CS pin low, followed by clocking
the four Configuration bits and the 12 data bits into the SDI pin on the rising edge of
SCK. The CS pin is then raised, causing the data to be latched into the DAC’s input
register. The MCP4921 utilizes a double-buffered latch structure to allow the analog
output to be synchronized with the LDAC pin, if desired. By bringing the LDAC pin
down to a low state, the content stored in the DAC’s input register is transferred
into the DAC’s output register (VOUT), and VOUT is updated. The write to the
MCP4921 device is 16-bit words. Any clocks past the 16th clock will be ignored. The
Most Significant 4 bits are Configuration bits. The remaining 12 bits are data bits.
No data can be transferred into the device with CS high. This transfer will only
occur if 16 clocks have been transferred into the device. If the rising edge of CS
occurs prior to that, shifting of data into the input register will be aborted. The most
four significant bits are defined as follows:

bit 15 0 = Write to DAC register
1 = Ignore this command

bit 14 BUF: VREF Input Buffer Control bit
1 = Buffered
0 = Unbuffered

Figure 4.
MCP4921 pin configuration.

Figure 5.
Write command register for MCP4921 (12-bit DAC).

6

Renewable Energy - Technologies and Applications

bit 13 : Output Gain Selection bit
1 = 1x (VOUT = VREF * D/4096)
0 = 2x (VOUT = 2 * VREF * D/4096)

bit 12 : Output Shutdown Control bit
1= Active mode operation. VOUT is available.
0 = Shutdown the device. Analog output is not available.

VOUT pin is connected to 500 kΩ (typical).

3. Liquid crystal display (LCD)

This module is designed to display the value of the temperature detected by the
temperature sensor and to guide the user in changing the parameters of the con-
troller. The LCD is a 16 � 2 alphanumeric display with the built-in Hitachi 44780
controller and LED backlighting. It works with an 8-bit data bus, which means it
will require a total of 11 data lines. Three control lines (connected to port E) plus the
8 lines for the data bus (connected to port D) [7].

4. System design

The system is design around a stand-alone PIC18F452 controller, where the
measured variable (MV) is read through channel0 (pin 2). The MV is subtracted
from the set point automatically by the controller. The error is treated by the PIC
PID and produces a digital control variable. This control variable is outputted
through PIC serial data output pin (SDO pin 24) together with serial clock pin
(SCK pin 18) to synchronize the conversion process. For the conversion to take
place, the serial DAC chip select (CS) has to be pulled low. The CS is connected to
pin RC0. The positive reference voltage is connected to +5 V (pin 6) and the
negative reference voltage (pin 7) is tied to zero volt. The analog output is read
through pin8 (Vout). This voltage is small to drive an electric motor. This voltage
is pulled up to +12 V through the non-inverting operational amplifier (LM358).
The Darlington transistor 2SD1409 is used to bust the current. The motor is
connected to the emitter follower so that the driving current is sufficient enough
to drive the motor. Needless to say that the diode 1N4148 is used to protect the
Darlington transistor against any spike due to the change of current. Figure 6
shows the schematic of the system. The LCD is used to display the measured
temperature. To manipulate the setting of different parameters, six push buttons
are used as follows:

Six push buttons were used in the project to allow the user to change the setting
and the controller parameters. Their functions are as follows:

1.Reset: To reset the microcontroller.

2.Stop: interrupt the program to allow the user to change the controller settings

3.Run: To run the program

4.Mode: To allow the user to change between setting modes.

5.Increment: To increment the controller variables by 1 or 0.1.

6.Decrement: To decrement the controller variables by 1 or 0.1.

7

Design of Three-Term Controller Using a PIC18F452 Microcontroller
DOI: http://dx.doi.org/10.5772/intechopen.89815

These switches are connected to PIC PORTB to allow the user to use the
internal build-in pull up resistors to prevent floating instead of using external
pull-down resistors. The reset has got a separate button connected to MCLR pin.
A buzzer is used as an alarm to indicate that the temperature is more than what
the user specifies. Three LEDs were used to show the user the status of the
microcontroller program. The three colors green, yellow, and orange were used
as follows:

1.Green: means that the PID controller is working properly.

2.Yellow: means that the program is interrupted by (STOP) push button.

3.Red: means that the alarm is triggered.

5. Software design

To implement the control program, three major routines are used; the main
routine along with the timer and external interrupts. The program starts with the
main routine which contains all the configurations of the external pins whether
outputs or inputs. It also contains the configurations of timer and external inter-
rupts, so when one of these interrupts is triggered, the microcontroller will stop its

Figure 6.
System schematic circuit showing all the connection to the microcontroller, as well as the liquid crystal display
and the final control element.

8

Renewable Energy - Technologies and Applications

current execution and perform another action. The trigger will be caused by either
an overflow in timer register or a change on an external pin (RB0/INT0).

Because the time is a crucial element in digital control, the PID algorithm is controlled
through a timer interrupt. This choice allows the user the ability to calculate the sampling
time accurately. On the other hand, an external interrupt (INT0) is used to interrupt the
program in order to allow the user a chance tomodify the controller parameters. In the
followingwe discuss in some details about the functions of each routine.

5.1 Main routine

5.1.1 Routine function

This routine, as mentioned earlier, is dedicated to configure the direction of
external pins as well as interrupt sources. It also allows the user to choose the
measured variable (temperature, flow, level or others). The flow chart of this
routine is shown in Figure 7.

5.1.2 External ports configuration

First PORTA (pin RA0) is configured as an analog input channel0 and PORTB as
input digital port which is connected to the push button switches; while all other
pins are configured as outputs.

5.1.3 LCD configuration

The configuration of the LCD was performed by separate software from Micro-
chip called Application Maestro [8]. With the aid of this software, a configuration
code was produced after modifying the module parameters. It was then incorpo-
rated into the project. Once incorporated, the LCD is configured and ready to work.
One feature of using Application Maestro is its ability to use the prewritten code
that this software provides to initialize or to write to the LCD.

5.1.4 Timer0 configuration

Timer0 can operate as a timer or as a counter. In Timer mode, the Timer0
module will increment with every instruction cycle (without prescaler). It is con-
figured by setting a special function register called T0CON (timer0 control byte).
This register is a readable and writable register that controls all the aspects of
Timer0, including the prescale selection. In the design in hand, T0CON register is
set to 0x85 (0b10000101) as shown below [9, 10].

This value will configure the timer0 as follows:

●Bit7 TMR0ON = 1 : Timer0 is enabled

●Bit6 T08BIT = 0 : Timer0 is configured as a 16-bit timer

●Bit5 T0CS = 0 : Internal instruction cycle clock

●Bit4 T0SE = 0 : This bit is used only with external clock

●Bit3 PSA = 0 : Timer0 prescaler is assigned

●Bit2 T0PS2 = 1 : Bit2: T0PS2 =1: } 1:64 prescaler value

●Bit1 T0PS1 = 0 : Bit1: T0PS1 =0:

●Bit0 T0PS0 = 1 : Bit0: T0PS0 =1:

9

Design of Three-Term Controller Using a PIC18F452 Microcontroller
DOI: http://dx.doi.org/10.5772/intechopen.89815

Figure 7.
Main routine.

10

Renewable Energy - Technologies and Applications

5.1.5 Interrupt configuration

There are ten registers which are used to control internal and external interrupt
operations to accommodate a variety of interrupts [11]. In the project in hand, only
two interrupts are required INT0 and timer0 interrupt. To do so, only three control
registers are required. These registers are INTCON, INTCON2, and RCON.
INTCON register contains various enable bits as well as several interrupt flags.
RCON is the Reset Control register which contains flag bits that allow differentia-
tion between the sources RESET. Timer0 interrupt is enabled by setting TMR0IE bit
(<5>) while external interrupt is enabled by setting INT0IE (INTCON<4>). Note
that the interrupt flags are reset before enabling the interrupt in order to avoid
unwanted interruptions.

To start the interrupt, the global interrupt bit GIE/GIEH (INTCON<7>) must
be set. If set, it enables all unmasked interrupts, so if more than one interrupt source
is used (as in our case) the Interrupt Priority Enable bit IPEN (RCON<7>) must be
set and the interrupt sources should be specified either as high or low priority
interrupt. The interrupt priority bit TMR0IP (INTCON2<2>) is used to specify the
interrupt priority for Timer0. This bit is reset so timer0 interrupt is set to low
priority. On the other hand, no need to specify the priority of the external interrupt
(INT0), because it is already set to high priority by default.

After configuring the interrupts, the program will enter an infinite loop until one
of the interrupt sources is triggered.

5.2 Timer interrupt routine

5.2.1 Routine function

The main purpose of this routine is to calculate the controller output and send it
to the DAC serially through the synchronous SPI module [12]. Figure 8 shows the
routine function.

5.2.2 Timer reloading

Because of the importance of time in calculating the timed controller output,
timer0 is used as an accurate hardware timer. The source clock of the timer is the
crystal oscillator which is fed to the clock pin of Timer0 internally. The clock used is
a 20 MHz derived from a stable crystal oscillator. This frequency is automatically
divided by 4 because the controller machine cycle is 4 clocks to give a 5 MHz which
is fed to the timer. The timer is exactly clocked every 0.2 μs and takes 13107.2 μs
(16-bit mode) to count from zero to zero again. However, by loading the timer with
a suitable value, a smaller time interval could be obtained. For example, by loading
the timer with the value 4095 (0xFFF), the overflow would occur after 12288.2 μs.
Alternatively, the time period can be extended by using a prescaler as was done in
the main routine. If a divide by 64 prescaler is selected, timer0 only overflows after
838.848 ms. This is obtained as follows:

5 MHz

64
¼ 78, 125 Hz

78, 125 Hzð Þ�1 ¼ 12:8 μs

12:8 μs� 65, 535 ¼ 838:848 ms

11

Design of Three-Term Controller Using a PIC18F452 Microcontroller
DOI: http://dx.doi.org/10.5772/intechopen.89815

Figure 8.
Timer interrupt routine.

12

Renewable Energy - Technologies and Applications

This time period is less than one second, while a one second sampling time is
required for the design in hand. To obtain a one second sampling time, the timer
should count 78,125 pulses.

Because timer0 register is only 16 bit wide, it is only limited to count up to 65,535
pulses. The interruption is trigged several times to obtain one second timing, after
which the controller computes the control action and sends it to the DAC. By using
MPLAP simulator, it was found that 5362 cycles are required to calculate the con-
troller output and send it to the DAC besides 51 extra cycles needed to reload the
timer with time constant. If the interruption is required to repeat itself five times
before calculating the controller output, one needs 5362 + 51 � 5 = 5617 cycles
(1.1234 ms). Thus, in order to get exactly one second sampling time, the timer
register (TMR0) has to be reloaded with a value that interrupts the program every
998.8766 ms (1 s–1.1234 ms). The following shows how this value is obtained:

No:of cycles for 1 s ¼ 5� 106 cycles

Therefore no:of cycles between interrupts ¼ 5� 106 � 5617 ¼ 4, 997, 383 cycles

By using a timer with 64 prescaler:

No: of counts ¼
4, 997, 383

64
¼ 78, 084:10938

When we repeat the interrupt for 5 times:

No: of counts ¼
78, 084:10938

5
¼ 15, 616:82188

But because the timer counts in ascending order (from 0x0000 to 0xFFFF):

Reload value ¼ 65, 535� 15616:82188 ¼ 49918:17812

repeat=5*sampling_time;

term_1=((repeat)*51.0+5362.0);

term_2=(5000000.0*sampling_time-term_1)/64.0;

term_3=term_2/repeat;

cycle=65535-term_3;

However, the timer register accepts only integer numbers, thus the final value
that should be added to the timer register is 49918. Because we omitted the numbers
after the decimal point, our error will be � 1 count which is equal to 64 cycles.
Therefore, our error in calculating the sampling time will be:

Timer error ¼ 64� 0:2 μs ¼ 12:8 μs

This calculation is for getting 1 s sampling time. To expand the calculation in
order to enable the user to change the sampling time, one defines two integer
variables (repeat and cycle). The first variable repeat is to determine how many
times we need to repeat the interrupt, while the second one cycle is the final value
that should be added to the timer register. The following pseudo code shows the
general formula used to reload the timer register.

5.2.3 Analog to digital converter module

The ADCmodule normally operates at 10-bits resolution, giving output digital
values 0–1024 [13]. It needs a reference voltage to set the maximum andminimum

13

Design of Three-Term Controller Using a PIC18F452 Microcontroller
DOI: http://dx.doi.org/10.5772/intechopen.89815

values for the input conversion. This reference can be provided internally as Vdd and
Vss (supply values) or externally through Vref

+ and Vref
� pins. To configure this

module, OpenADC function fromMicrochip C library is used. This function performs
a bitwise AND operation (“&”) between its arguments which are defined in the file
adc.h. The parameters of this function along with their meaning of each argument are
discussed below [1]

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_8ANA_0REF,

ADC_CH0 & ADC_INT_OFF);

• ADC_FOSC_32: FOSC/32.

A clock divider to allow the minimum specified conversion time (about 20 μs). A
32 prescaler was chosen because the clock source is 20 MHz

• ADC_RIGHT_JUST: Right justified.

Because the ADRES register pair (where the converted values are loaded) is 16-
bit wide. But the ADC is only 10bit wide. The ADC module could either be
configured as right or left justified. In this project, right justified is chosen as shown
in Figure 9. This sets the 6 most significant bits of register ADRES to zeros.

• ADC_8ANA_0REF: VREF+ = VDD, VREF� = VSS

The supply values are chosen as the voltage references to the ADC.

• ADC_CH0: Channel0 (AN0) is selected

• ADC_INT_OFF: Interrupts of ADC interrupts are disabled.

• Once the A/D conversion is completed, the result is stored in an integer
variable called result. After reading the analog value by the ADC module, the
result will be compared with the variable alarm-trigger which was previously
specified. If the result is greater than this value, the microcontroller triggers the
buzzer and lights the red LED.

5.2.4 Controller calculation

Due to the limitation in the microcontroller’s memory, the PID equation is divided
into three terms (term_1, term_2, and term_3) and after calculating each term sepa-
rately, they are added together along with the previous output to give the controller

Figure 9.
Choosing right justified for data input.

14

Renewable Energy - Technologies and Applications

output which will be sent to the DAC. The following code shows how to calculate the
controller output

term_1 = KC*(error-last_error);

term_2 = KC*(sampling_time/TI)*error;

term_3 = KC*(TD/sampling_time)*(error-(2*last_error)+prev_error);

pid_output_v = term_1 + term_2 + term_3+pid_output_v;

5.2.5 SPI module

To send the control variable to the final control element, the serial DAC, which
is interfaced to the Serial Peripheral Interface (SPI) port, is used. The SPI is initiated
using Microchip C library called OpenSPI. This function also performs a bitwise
AND operation between its arguments which are defined in the file SPI.h according
to the following formula.

• SPI_FOSC_16: Master mode and the clock = FOSC/16

• MODE_00: Mode 0,0 (change takes place on the rising edge)

• SMPEND: Input data sample at end of data out

OpenSPI(SPI_FOSC_16, MODE_00, SMPEND);

After configuring the module, it is time to write a command to the DAC in order
to convert it into analog signal. The write command is initiated by driving the CS
pin low, followed by clocking the four configuration bits and the 12 data bits into
the SDI pin on the rising edge of SCK. The CS pin is then raised, causing the data to
be latched into the DAC’s input registers and when the LDAC pin is pulled down
through RC1, the values held in the DAC’s input registers are transferred into the
DAC’s output registers to provide the analog signal. It is important to mention here
that we wrote the write command in two steps (as shown in the following code)
because the SPI module send only 8 bit at a time.

LATCbits.LATC0 = 0; // Chip Select is set

WriteSPI(pid_output_16_high); //4MSB as command + 4LSB as data

WriteSPI(pid_output_16_low); // 8 bit data

LATCbits.LATC0 = 1; // Chip Select is reset

LATCbits.LATC1=0; // enable LDAC for data output to DAC

LATCbits.LATC1=1; // disable LDAC

CloseSPI();

5.2.6 Writing on the LCD

To write characters to the LCD, required prewritten functions are provided by
Application Maestro. Some of These functions are listed in following table:

XLCDInit() It is used to initialize the LCD module according to the

Application Maestro options

XLCDPut(data) It sends the clocking signal and data to be displayed to the LCD

15

Design of Three-Term Controller Using a PIC18F452 Microcontroller
DOI: http://dx.doi.org/10.5772/intechopen.89815

XLCDL1home() Points to the first address location of line one of the LCD

XLCDL2home() Points to the first address location of line two of the LCD

XLCDClear() Clears the DDRAM content of the LCD and points to the 00

address location

XLCDPutRomString(addr) Displays String in Program memory

XLCDPutRamString(addr) Displays String in Data memory

XLCDCommand(Command) It sends clocking signal and instructions to the LCD

For numbers to be displayed, they are first converted into strings (characters)
before being sent to the LCD, since the latter only accepts strings. To do so a C
function called sprintf is called upon. This function saves the number in an array
after converting it into string. The subroutine to do so is shown below [4]:

sprintf (buf,"%d",temp_set);

XLCDPutRamString(buf);

5.3 External interrupt routine

5.3.1 Routine function

The main function of this routine is to allow the user to change the controller
parameters. The routine is initiated by pressing the push button (STOP) which is
connected to the external interrupt pin (RB0/INT0). Once initiated, the user is able
to change all the parameters of the controller (KC, τI, τD, sampling time, alarm
trigger and sensitivity) by using three push buttons (MODE, INCREMENT and
DECREMENT [11].

To determine which action the microcontroller should take if any push button is
pressed, we defined two integer variables (present_button and present_mode) to be
used as statuses. That is, each bit of them has specific meaning as described below:

• present_button

Np ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ dec inc Mod

bit15 bit0

● bit 15 Np: set if there are no push buttons pressed

● bit 14-3 Unimplemented

● bit 2 dec: set if the DECREMENT push button pressed

● bit 1 inc: set if the INCREMENT push button pressed

● bit 0 mod: set if the MODE push button pressed

• present_mode

____ Srt Spt KC TI TD Stm Sen Alm Tun Dp Tp Kp ____ ____ ____

bit15 bit0

● bit 15 Unimplemented

● bit 14 Srt: set in the starting mode

16

Renewable Energy - Technologies and Applications

● bit 13 Spt: set in the set point mode

● bit 12 KC: set in the controller gain mode

● bit 11 TI: set in the integral time mode

● bit 10 TD: set in the derivative time mode

● bit 9 Stm: set in the sampling time mode

● bit 8 Sen: set in the sensitivity mode

● bit 7 Alm: set in the alarm mode

● bit 6 Tun: set in the tuning mode

● bit 5 Dp: set in the process delay mode

● bit 4 Tp: set in the process time constant mode

● bit 3 Kp: set in the process gain mode

● bit 2-0 Unimplemented

Initially, before pressing any push button, present_button variable is loaded
with 0x8000 (no push button pressed), and present_mode with 0x2000 (starting
mode).Then if any push button is pressed, the corresponding bit of that push button
will be set, giving a specific value of present_button which indicates the push
button that was pressed by the user. So by performing a bitwise OR operation
between the two variables (present_button and present_mode) we will come up
with a number indicates the push button pressed and the present mode and based
on that number we can decide the proper action to be taken by the microcontroller.
The following code shows how to perform the OR operation after checking which of
the push buttons was pressed. Beside changing the controller variables, this routine
has another feature, it gives the user preliminary values of the controller parameters
after entering the process variables. The result is derived based on Cohen-Koon
tuning method. However, this feature is impractical if the sampling time is big [14].

if (mode_pin==0){

Delay10KTCYx(70);

present_button=mode_pushed;

}

else if (inc_pin==0){

Delay10KTCYx(70);

present_button=inc_pushed;

}

else if (dec_pin==0){

Delay10KTCYx(70);

present_button=dec_pushed;

}

else if(end_pin==0)

return;

action= present_mode | present_button;

6. Testing and verification

To test the system, a first order system given by the equation below was used. To
run the control action, the system was converted into a difference equation given by
Eq. (10).

Gp ¼
10

5Sþ 1
(9)

17

Design of Three-Term Controller Using a PIC18F452 Microcontroller
DOI: http://dx.doi.org/10.5772/intechopen.89815

The process transfer function is first order, thus the discrete transfer function
obtained using Zero-Order Hold will be:

HG zð Þ ¼
az�1

1� bz�1 (10)

where:

a ¼ kp 1� exp
�Ts

τp

� �� �

b ¼ exp
�Ts

τp

� �

If kp = 10, τp = 5, and Ts = 1, The discrete transfer function will be:

HG zð Þ ¼
1:813z�1

1� 0:8187z�1
(11)

) 1� 0:8187z�1
� �

Y zð Þ ¼ 1:813z�1C zð Þ

Y zð Þ � 0:8187z�1Y zð Þ ¼ 1:813z�1C zð Þ

yn � 0:8187yn�1 ¼ 1:813cn�1

Therefore the difference equation of the output is:

yn ¼ 0:8187yn�1 þ 1:813cn�1 (12)

After getting the difference equation, the control scheme was tested and the
output of Figure 10 was obtained with the parameters set to: Kc = 0.2,Ti = 4.0 and
Td = 0.0. The parameters were then changed to: Kc = 0.1,Ti = 3.0 and Td = 0.2. The
response is shown in Figure 11.

Figure 10.
Controller response with Kc = 0.2,Ti = 4.0 and Td = 0.

18

Renewable Energy - Technologies and Applications

7. Conclusion

By referring to the previous graphs, it could be concluded that the response
tracks the set point as expected. In addition, the increase in controller gain (Kc) does
speed up the response but at the expense of the overshoot. Based on these results, it
could be concluded that the three-term controller is working according to plan.
Because of the flexibility of the microcontroller and its programming, any control
scheme could be developed and implemented in the manner as described in this
chapter. Not only that, the scheme could be transferred to several high range
microcontrollers from the same company such as 16 or 32 bits with the use of the
benefits those types of controllers offer.

Author details

Mostefa Ghassoul
Chemical Engineering, University of Bahrain, Bahrain

*Address all correspondence to: mghassoul@uob.edu.bh

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

Figure 11.
Controller response with Kc = 0.1,Ti = 3.0 and Td = 0.2.

19

Design of Three-Term Controller Using a PIC18F452 Microcontroller
DOI: http://dx.doi.org/10.5772/intechopen.89815

References

[1]Ogunnaike BA, Ray WH. Process
Dynamics, Modeling, and Control. 1st
ed. USA: Oxford University Press; 1994

[2] Stephanopoulos G. Chemical Process
Control: An Introduction to Theory and
Practice. USA: Prentice Hall; 1983

[3] Seborg DE, Edgar TF,
Mellichamp DA, Doyle FJ. Process
Dynamics and Control. 4th ed.
New York, USA: John Wiley and Son;
2017. pp. 115-117

[4] Phillips CL, Nagle HT,
Chakrabortty A. Digital Control System
Analysis and Design. UK: Pearson; 2015.
pp. 279-335

[5]Microchip PIC18FXX2 Data Sheet
“High-Performance, Enhanced Flash
Microcontrollers” Microchip 2006
(DS39564C)

[6]Microchip MCP4921/4922 datasheet
“12-Bit DAC with SPI™ Interface”
Microchip 2007

[7]HD44780 LCD starter guide. 2001

[8]Microchip application maestro
software user’s guide. 2003

[9]Microchip PIC18FXX2 Data Sheet
“High-Performance, Enhanced Flash
Microcontrollers: Timers” Microchip
2006 (DS39564C). pp. 103-115

[10] Bates M. PIC Microcontrollers: An
Introduction to Microelectronics.
Newnes; 2011

[11]Microchip PIC18FXX2 Data Sheet
“High-Performance, Enhanced Flash
Microcontrollers: External interrupts”
Microchip 2006 (DS39564C). pp. 73-85

[12]Microchip PIC18FXX2 Data Sheet
“High-Performance, Enhanced Flash
Microcontrollers: Timer0 interrupt”
Microchip 2006 (DS39564C). p. 85

[13]Microchip PIC18FXX2 Data Sheet
“High-Performance, Enhanced Flash
Microcontrollers: 10 bit ADC”
Microchip 2006 (DS39564C). Chandler,
Arizona USA; pp. 181-188

[14]Deitel PJ, Deitel HM. C How to
Program. 6th ed. New Jersey USA:
Pearson Prentice Hall; 2010

20

Renewable Energy - Technologies and Applications

