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Chapter

Potential of Biocatalysis in 
Pharmaceuticals
Snehi Soy, Riddhi Prabha and Vinod Kumar Nigam

Abstract

Biocatalysis has been continuously evolving as an essential tool which is playing 
a significant role in the industrial synthesis of chemicals, active pharmaceuticals, 
pharmaceutical intermediates, etc. where the high-yielding chemo-, regio-, and 
enantioselective reactions are needed. Despite its vital importance, industrial 
biocatalysis is facing certain limitations such as operational stability, economic 
viability, efficient recovery, and reusability. The limitations mentioned can be 
overcome by the isolation of specific enzyme producers from extreme environ-
ment by protein engineering, bioinformatics, and recombinant DNA technologies. 
Recently, chemoenzymatic pathway and biological cascade reactions have also 
been developed and designed to perform the synthesis of pharmaceuticals. In 
this chapter, we compile the broad applications of biocatalysts in the synthesis of 
pharmaceuticals.

Keywords: biocatalysis, biocatalyst, enantiomers, pharmaceuticals, substrate 
specificity, stability

1. Introduction

Biocatalysis is appropriately defined as the enzyme-based applications for the 
transformation of molecular substrate into several natural as well as synthetic 
chemicals [1, 2]. The enzymes used in the process are in the form of cell lysate, 
whole cells, or purified enzyme and are prepared either as recombinant expressed 
proteins in different host cells or expressed in their native cells itself [3]. The key 
players of biocatalysis are biocatalysts or enzymes that have been divided into six 
classes by the IUPAC nomenclature system based on the reactions they catalyze [4], 
as shown in Table 1.

Enzymes as biocatalysts are incredibly proficient and are always preferred to 
conventional chemical processes. It is due to the fact that enzyme-based biocatalysis 
has distinct advantages over chemical reactions such as (1) significant specificity 
towards catalyzed reactions and recognized substrates, (2) simplified synthetic 
route, (3) high yields with exceptional regio-, chemo-, and stereoselectivities, 
(4) minimum energy requirements, and (5) generation of less by-products and 
wastes [5–8]. Another preferred advantage includes whole bioprocess and bulk 
operations being carried out under mild conditions at elevated rates and with 
extreme specificity and with minimum environmental and physiological toxicity, 
thus making them an ideal candidate in the development and improvement of 
sustainable chemical processes [9–12].
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However, despite holding tremendous potential, biocatalysis has an inevitable 
pitfall associated with it when extreme conditions of industrial processes are to be 
considered. An efficient biocatalyst needs to be compatible enough with specific 
properties such as thermostability, catalytic ability, substrate specificity, and opera-
tional stability in turbulent flow regimes, toxic, hazardous solvents, and substrate 
inhibition [13–21].

Thus, there is a need for the identification and production of stable biocatalysts 
with broad industrial applicability by exploring and screening novel microbes or 
identification of new genes with desired properties through the analysis of genes 
responsible for enzyme production and stability. Further enhancement of the enzyme 
properties can be done by applying protein engineering tools such as molecular dock-
ing, directed evolution, molecular modeling, and process engineering [22–25].

2.  Scenario of biocatalysis in pharmaceuticals industries and its 
pertinent applications

In 1992, Roger Sheldon estimated environmental impact factor (E factor) (kg 
waste/kg product) for several chemical industries, and an E factor of 25–>100 was 
noted in the pharmaceutical industries [26]. Thus, to reduce the harmful impact of 
pharmaceutical manufacturing processes and making it more sustainable, “green 
chemistry” has been increasingly adopted. An efficient biocatalytic process encom-
passes the “12 principles of green chemistry” to an extent which give it an edge over 
other technologies [27], as shown in Figure 1.

In Europe, a project CHEM21 was launched by the collaboration of both govern-
ment and industries for the implementation of green technology in the chemical and 
pharmaceutical sectors [28–30]. The project was launched because of the replace-
ment of biocatalysis over chemical in the synthesis of pharmaceuticals involving 
several redox reactions, chiral amine synthesis, and regio- and stereospecific 
hydroxylation of abundant compounds [18, 28, 31]. Since then biocatalysis has been 

Enzyme class IUPAC 

code

Catalyzed reactions Important subclasses

Hydrolases EC3 Hydrolytic reactions and their 

reversal

Esterases, glycosidases, lipases, 

proteases, peptidases, amidases

Oxidoreductases EC1 Redox reactions Dehydrogenases, oxidases, 

oxygenases, peroxidases, 

reductases

Transferases EC2 Functional group 

transformation, addition/

elimination involving C-C, 

C-N, and C-C bond formation 

or breakage

C1-transferases, 

glycosyltransferases, 

aminotransferases, 

phosphotransferases

Lyases EC4 Elimination reactions Aldolases, decarboxylases, 

dehydratase, few pectinases

Isomerases EC5 Molecular isomerizations Epimerases, racemases 

intramolecular transferases

Ligases/synthetases EC6 Formation of a covalent bond 

joining two molecules together, 

coupled to hydrolysis of an ATP 

or analog

C-C, C-N, C-O, C-S ligases

Table 1. 
IUPAC classification of enzymes based on reactions they catalyze.
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profitably used for the production of pharmaceutically active chemicals and several 
blockbuster drugs at the industrial level and some of which are mentioned below:

• Sitagliptin—Sitagliptin, an antidiabetic compound, was successfully produced 
via biocatalytic approach. It finds application in the treatment of type II diabe-
tes and is sold under the trade name “Januvia” by Merck [32, 33]. This work was 
accomplished by engineering R-selective transaminase (R-ATA, ATA-117) from 
Arthrobacter species by researchers at Codexis and Merck. The drug produced 
was having 99.95% enantiopurity even in the presence of 1 M i-PrNH2 with 50% 
DMSO and at a temperature >40°C [33]. Conventionally, it was prepared using 
rhodium, a heavy metal as a catalyst. However, on comparing both processes, 
the biocatalytic method showed a massive reduction in waste as well as the use 
of heavy metal. Besides this, the overall yield and productivity were increased 
by 10 and 53% [34]. The R- and S-selective ATA was also used in the production 
of a variety of drugs such as niraparib and the production of an antagonist of 
orexin receptor with the formation of inhibitor of JAK kinase pathway [35–38].

• Boceprevir—This is a product of chiral amine synthesis and is marketed by 
Merck under trade name Victrelis. It is used for the treatment of chronic 
hepatitis C infections. In the production process, monoamine oxidase (MAO) 
from fungus Aspergillus niger was used for the asymmetrical amine oxidation 
of bicyclic proline intermediate [39]. The biocatalytic process increased yield 
by 150%, with an overall reduction in raw materials and side products as waste. 
At present, engineered monoamine oxidase (MAO) is also used in the produc-
tion of another hepatitis C drug, telaprevir [34, 40], and various other syn-
thetic drugs such as solifenacin, levocetirizine along with few natural alkaloid 
products (confine, harmicine, elegance, and leptaflorine).

• Montelukast—Montelukast or Singulair (trade name) is an anti-asthmatic drug 
marketed by Merck [41]. The engineered keto-reductase (KRED) was used for 
the production of montelukast, which displayed significant enantioselectivity 

Figure 1. 
Schematic representation of biocatalysis benefits embracing the principles of green chemistry.
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(99.9%) and was stable in 70% organic solvent and temperature of 45°C [24]. 
The biocatalytic method was advantageous in the sense that it omitted the use 
of hazardous chemical catalyst chlorodiisopinocampheylborane (DIP-CI), 
which was conventionally used. Several other drugs such as atorvastatin, 
crizotinib, duloxetine, and phenylephrine were also developed by biocatalytic 
process using KRED from bacterium Lactobacillus kefir [29].

• Atorvastatin—It comes from the statin family and is marketed under the trade 
name Lipitor by Pfizer. This drug reduces cholesterol levels by inhibiting the 
synthesis of cholesterol in the liver [42]. Atorvastatin production is also carried 
out by employing KRED for the production of hydroxy nitrile, an important 
intermediate. It is a multienzyme process involving glucose dehydrogenase 
(GDH), KRED, and halohydrindehalogenase (HHDH). Thus, the process is 
environmentally as well as economically feasible.

• Pregabalin—Pregabalin, a lipophilic GABA (γ-aminobutyric acid) analog, finds 
use in the treatment of various central nervous system ailments including neu-
ropathic pain, fibromyalgia, epilepsy, and anxiety [43, 44]. Its production was 
carried out by biocatalytic conversion of rac-2-carboxyethyl-3-cyano-5-meth-
ylhexanoic acid ethyl ester to 2-carboxyethyl-3-cyano-5-methylhexanoic acid 
using lipolase. A heat-promoted decarboxylation of 2-carboxyethyl-3-cyano-
5-methylhexanoic acid yielded (S)-3-cyano-5-methylhexanoic acid ethyl 
ester, which is a principal known precursor of pregabalin [45]. The mentioned 
chemoenzymatic synthesis route not only produced increased yields of prega-
balin (40–45%) but also eliminated wastes and usage of organic solvent.

• 7-ACA (7-aminocephalosporic acid)—Cephalosporin has been extensively 
used as semisynthetic antibiotics; it acts on bacterial cell wall (peptidoglycan) 
synthesis. 7-Aminocephalosporanic acid (7-ACA), the critical intermediate or 
precursor for the production cephalosporins, is biocatalytically produced by 

Biocatalysts Microbial sources Pharmaceutical 

compounds

References

Lipase B Candida antarctica Reboxetine [49]

Carbonyl reductase 

(YlCR2)

Yarrowia lipolytica Statins [50]

Oxidase P. simplicissimum Pinoresinol [51]

Acyltransferase (LovD) Whole-cell Escherichia coli strain 

overexpressing LovD

Simvastatin [52, 53]

Engineered 

cyclohexanone 

monooxygenase

— Armodafinil [54]

(+)-γ-lactamases Bradyrhizobium japonicum 

USDA 6

Carbovir, abacavir, 

melogliptin

[5, 55]

Immobilized lipase Thermomyces lanuginosus Rasagiline mesylate 

(active ingredient of 

AZILECT®)

[56]

Expressing tyrosine 

phenollyase

Erwinia herbicola cells l-DOPA [57]

E. coli cells expressing 

cellobiose 2-epimerase

Caldicellulosiruptor saccharolyticus Lactulose [58]

Table 2. 
List of biocatalysts and their microbial source employed for the synthesis of pharmaceutical drugs.
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enzymatic deacylation of cephalosporin-C (CPC). A two-step enzymatic pro-
cess utilizes D-amino acid oxidase (DAAO) and 7-β-(4-carboxybutanamido)-
cephalosporanic acid acylase (GLA) for two consecutive reactions. Also, a 
single-step conversion from CPC to 7-ACA has been reported [46]. It has been 
successfully applied for the conversion of CPC to 7-ACA at industrial level 
[47]. Similarly, 6-aminopencillanic acid has been reported for the synthesis of 
semisynthetic penicillins using penicillin acylase [48].

Some other noteworthy examples and recent progress being made in pharma-
ceutical synthesis using enzymes from various sources are represented in Table 2.

3. Conclusion

Biocatalysis has made a remarkable journey so far and has been successfully 
applied for the numerous biotransformation processes in several industries. It 
has benefitted nearly all sectors, particularly chemical and pharmaceuticals. The 
flourishing development of economically viable and sustainable chemoenzymatic 
processes highly depends on the broader availability and applicability of enzymes 
with robust performance irrespective of extreme conditions. Recent surveys have 
shown that most of the biocatalysts are being used in the synthesis of pharmaceu-
ticals or drugs or intermediates replacing some of the chemical processes, but their 
stability, selectivity, and specificity are of prime concern.

4. Future prospects

Based on the literature available on the role of biocatalysts in the drug/phar-
maceutical synthesis, biocatalysts with improved desired characteristics can be 
achieved by a multifaceted approach, as shown in Figure 2.

Figure 2. 
Schematic representation of improving the operational stability of biocatalyst and enhancing its performance.
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tured by optimizing safe process development. Thus, we envision that biocatalysis 
will be a more radical approach that is going to feat the arena of pharmaceutical 
manufacturing as well as other sectors such as bioenergy and waste treatment that 
are far more challenging at present.
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