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Chapter

Bilinear Applications and Tensors
Rodrigo Garcia Eustaquio

Abstract

In this chapter, a theoretical approach to the vector space of tensor of order 3
and the vector space of bilinear applications will be presented in order to present an
isomorphism between these spaces and several properties about tensor and bilinear
applications. With this well-defined isomorphism, we will present how to calculate
the product between tensor of second derivatives and a vector, where such a
product is used in several numerical methods such as Chebyshev-Halley class and
others mentioned in the introduction. In addition, concepts on differentiability are
presented, allowing a better understanding for the reader about second-order
derivatives seen as a tensor.

Keywords: tensor, bilinear application, isomorphism, second derivative, inexact
tensor-free Chebyshev-Halley class

1. Introduction

Frequently, discretization of mathematical models demands solving a system of
equations, which is generally nonlinear. Such mathematical problems might be
written as

find x ∗
∈ IRnsuch that F x ∗ð Þ ¼ 0 (1)

where F : —IRn ! IRn.
There exist iterative methods for solving (1) that have cubic convergence rate,

for instance, the methods belonging to the following class of methods named
Chebyshev-Halley class, which was introduced by Hernández and Gutiérrez in [1]:

xkþ1 ¼ xk � I þ
1

2
L xk
� �

I � αL xk
� �� ��1

� �

JF xk
� ��1

F xk
� �

, (2)

for all k∈ IN, where

L xð Þ ¼ JF xð Þ�1T F xð Þ JF xð Þ�1F xð Þ
� �

, (3)

and JF xð Þ and T F xð Þ denote the first and second derivatives of F evaluated at x,
respectively. The parameter α is a real number and I is the identity matrix in IRn�n.

Discretized versions of Chebyshev-Halley class have already been considered in
[2] in such a way that the tensor of second derivatives of the function F was
approximated by bilinear operators. A tensor is a multi-way array or
multidimensional matrix. A generalization of the Chebyshev-Halley class 2ð Þ where
no second-order derivative information is required but that also has cubic
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convergence rate, named inexact tensor-free Chebyshev-Halley class, was intro-
duced by Eustaquio, Ribeiro, and Dumett [3]. Other families of iterative methods
with cubic convergence rate were extensively described in Traub’s book [4].

Several alternatives exist for the product of the tensor of second derivatives of F
by vectors [5–8], and this needs to be elucidated.

The aim of this chapter is to present concepts and relationships between tensors
of order 3 and bilinear applications, in order to relate them to the second derivative
of a two-differentiable application. We will see later that given the vectors u, v∈ IRn,

the i-th row of the matrix T F xð Þv is defined by vT∇2f i xð Þ, where ∇2f i xð Þ is the
Hessian of the i-th component of F evaluated at x. The i-th component of the vector

T F xð Þvu is defined by vT∇2f i xð Þu.

2. Tensors

Tensors naturally arise in some applications, such as chemometry [9], signal
processing [10], and others. According to [8], for many applications involving high-
order tensors, the known results of matrix algebra seemed to be insufficient in the
twentieth century. There were some workshops and congresses on the study of
tensors, such as:

• Workshop on Tensor Decomposition at the American Institute of Mathematics
which took place at the Palo Alto, California, 2004, organized by Golub, Kolda,
Nagy, and Van Loan. Details in [11];

• Workshop on Tensor Decompositions and Applications, 2005, organized by
Comon and De Lathauwer. Details in [12]; and

• Minisymposium on Numerical Multilinear Algebra: A New Beginning, 2007,
organized by Golub, Comon, De Lathauwer, and Lim and which took place at
the Zurich.

Readers interested in multilinear singular value decomposition, eigenvalues, and
eigenvectors may consult as references [5–8, 13, 14]. In this text, we will focus our
attention on tensors of order 3.

Let I1, I2, and I3 be three positive integers. A tensor T of order 3 is an three-way

array where its elements ti3i1i2 are indexed by i1 ¼ 1, … , I1, i2 ¼ 1, … , I2, and i3 ¼

1, … , I3 and the n-th dimension of the tensor is denoted by In, for n ¼ 1, 2, 3. For

example, the first, second, and third dimensions of a tensor T ∈ IR2�4�3 are 2, 4, 3,
respectively.

Obviously, tensors are generalizations of matrices. A matrix can be viewed as a
tensor of order 2, while a vector can be viewed as a tensor of order 1.

From an algebraic point of view, a tensor T of order 3 is an element of the vector

space IRI1�I2�I3 , whereas from the geometric point of view, a tensor T of order 3 can
be seen as a parallelepiped [15], with I1 rows, I2 columns, and I3 tubes. Figure 1

illustrates a tensor T ∈ IR2�4�3.
In linear algebra, it is common to see a matrix through its columns. If A∈ IRm�n,

then A can be viewed as A ¼ a1 … an½ �, where aj ∈ IRm denotes the j-th column of the
matrix A. In the case of tensor of order 3, we can see them through fibers and slices.
Hence follow the definitions.

Definition 1.1. A tensor fiber of a tensor of order 3 is a one-dimensional frag-
ment obtained by fixing only two indices.

2
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Definition 1.2. A tensor slice of a tensor of order 3 is a two-dimensional section
(fragment), obtained by fixing only one index.

Generally in tensors of order 3, a fiber is a vector and a slice is a matrix. We have
three types of fibers:

• column fibers (or mode-1 fiber), where the indices i2 and i3 are fixed;

• row fibers (or mode-2 fiber), where the indices i1 and i3 are fixed; and

• tube fibers (or mode-3 fiber), where the indices i1 and i2 are fixed.

We also have three types of slices:

• horizontal slice, where the index i1 is fixed;

• lateral slice, where the index i2 is fixed; and

• frontal slice, where the index i3 is fixed.

For example, consider a tensor T ∈ IR2�4�3 with i ¼ 1, 2, j ¼ 1, 2, 3, 4, and k ¼

1, 2, 3. The i-th horizontal slice, denoted by T i::, is the matrix

T i:: ¼

t1i1 t2i1 t3i1
t1i2 t2i2 t3i2
t1i3 t2i3 t3i3
t1i4 t2i4 t3i4

0

B

B

B

@

1

C

C

C

A

,

the j-th lateral slice, denoted by T :j:, is the matrix

T :j: ¼
t11j t21j t31j

t12j t22j t32j

 !

and the k-th frontal slice, denoted by T ::k, is the matrix

T ::k ¼
tk11 tk12 tk13 tk14
tk21 tk22 tk23 tk24

 !

: (4)

Figures 2 and 3 illustrate the three types of fibers and slices, respectively, of a

tensor T ∈ IR2�4�3.

Figure 1.

A tensor T ∈ IR
2�4�3.
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2.1 Tensor operations

The first issue to consider in this subsection is how to calculate the product
between tensors and matrices. It is well known from elementary algebra that given

matrices A∈ IRm�n and B∈ IRR�m, it is possible to calculate the product BA, because
the first dimension (number of rows) of matrix A agrees with the second dimension
(number of columns) of matrix B, and each product element is the result of the
inner product between rows of matrix B and columns of matrix A.

The product between tensors of order 3 and matrices or vectors is a bit more
complicated. In order to obtain an element of the product between a tensor and a
matrix, it is necessary to specify what dimension of the tensor will be chosen to
agree with the number of columns of the matrix, and each resulting element will be
a result of the inner product between the mode-n fibers (column, row, or tube) and
the columns of the matrix. We will use the solution adopted by [8], which defines
the product mode-n between tensors and matrices and the solution adopted by [5]
that defines the contracted product mode-n between tensors and vectors.

The mode-n product is useful when one wants to decompose into singular values
a high-order tensor in order to avoid the use of the generalized transpose concept.
We refer to [5, 7, 8, 13] for details.

Definition 1.3. (mode-n tensor matrix product) The mode-1 product between a

tensor T ∈ IRm�n�p and a matrix A∈ IRR�m is a tensor

Y ¼ T �1A∈ IRR�n�p

where its elements are defined by

ykrj ¼
X

m

i¼1

tkijari where r ¼ 1, … ,R, j ¼ 1, … , n, and k ¼ 1, … , p:

Figure 2.
Columns, rows, and tube fibers, respectively.

Figure 3.
Horizontal, lateral, and frontal slices, respectively.
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Themode-2 product between a tensor T ∈ IRm�n�p and amatrixA∈ IRR�n is a tensor

Y ¼ T �2A∈ IRm�R�p

where its elements are defined by

ykir ¼
X

n

j¼1

tkijarj where i ¼ 1, … ,m, r ¼ 1, … ,R and k ¼ 1, … , p:

Themode-3product between a tensor T ∈ IRm�n�p and amatrixA∈ IRR�p is a tensor

Y ¼ T �3A∈ IRm�n�R

where its elements are defined by

yrij ¼
X

p

k¼1

tkijark where i ¼ 1, … ,m, j ¼ 1, … , n and r ¼ 1, … ,R:

To understand the mode-n product in terms of matrix, consider matrices

A∈ IRm�n, B∈ IRk�m, and C∈ IRq�n. By Definition 1.3 we have

A�1B ¼ BA∈ IRk�n and A�2C ¼ ACT
∈ IRm�q

:

Thus, the singular value decomposition of matrix A can be written as

UΣVT ¼ Σ�1Uð Þ�2V ¼ Σ�2Vð Þ�1U:

The mode-n product satisfies the following property [8]:
Property 1. Let T be a tensor of order 3 and matrices A and B of convenient

sizes. We have for all r, s ¼ 1, 2, 3

T �rAð Þ�sB ¼ T �sBð Þ�rA ¼ T �rA�sB for r 6¼ s and (5)

T �rAð Þ�rB ¼ T �r BAð Þ (6)

The idea of Bader and Kolda [5] to calculate the product between tensor and
vector is to calculate the inner product of each mode-n fiber (column, row, or tube)
with the vector. It is not advantageous to treat an m-dimensional vector as a matrix

m� 1. For example, if we consider a tensor T ∈ IRm�n�p and a vector v∈ IRm�1, with
m, n, p 6¼ 1, by Definition 1.3, the product between T and v is not well defined, but

it is possible to calculate T �1v
T.

Definition 1.4. (Contracted product mode-n between tensors and vectors) The
contracted product mode-1 between a tensor T ∈ IRm�n�p and a vector v∈ IRm is the
matrix

A ¼ T �1v∈ IRn�p

where its elements are defined by

ajk ¼
X

m

i¼1

tkijvi where j ¼ 1, … , n and k ¼ 1, … , p

where vi is the i-th component of the vector v.
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The contracted product mode-2 between a tensor T ∈ IRm�n�p and a vector
v∈ IRn is the matrix

A ¼ T �2v∈ IRm�p

where its elements are defined by

aik ¼
X

n

j¼1

tkijvj where i ¼ 1, … ,m and k ¼ 1, … , p

where vj is the j-th component of the vector v.
The contracted product mode-3 between a tensor T ∈ IRm�n�p and a vector

v∈ IRp is the matrix

A ¼ T �3v∈ IRm�n

where its elements are defined by

aij ¼
X

p

k¼1

tkijvk where i ¼ 1, … ,m and j ¼ 1, … , n

where vk is the k-th component of the vector v.
A caution must be added when calculating the product between matrices

and vectors by considering the definitions 1.3 and 1.4. For example, note that
if A∈ IRm�n, u∈ IRn, and v∈ IRm, then A�2u and A�2u

T have the same elements, but

A�2u 6¼ A�2u
T,

because A�2u∈ IRm (column vector) and A�2u
T ∈ IR1�m (row vector). Note

that, in relation to the matrix product of elementary algebra, we have

Au ¼ A�2u (7)

vTA ¼ A�1v
T 6¼ A�1v: (8)

In particular, given a tensor T ∈ IRn�m�m and a vector v∈ IRm, by Definition 1.4
together with (8), it follows that T �2v∈ IRn�m and

T �2vð Þ�2v ¼ T �2vð Þv∈ IRn
:

The contracted product mode-n satisfies the following property [5]:
Property 2. Given a tensor T of order 3 and vectors u and v of convenient sizes,

we have for all r ¼ 1, 2, 3 and s ¼ 2, 3 that

T �ruð Þ�s�1v ¼ T �svð Þ�ru for r< s:

For example, consider a tensor T ∈ IR2�4�3, and denote the k-th column and the
q-th row of matrix A by colk Að Þ and rowq Að Þ, respectively. Note that if:

1.x∈ IR2, then T �1x∈ IR4�3 and

6
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colk T �1xð Þ ¼

a1k

a2k

a3k

a4k

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼

tk11 tk21

tk12 tk22

tk13 tk23

tk14 tk24

0

B

B

B

B

B

@

1

C

C

C

C

C

A

x1

x2

 !

¼ T ::k
� �T

x and

rowj T �1xð Þ ¼ aj1 aj2 aj3
� �

¼ x1 x2ð Þ
t11j t21j t311

t12j t22j t321

0

@

1

A ¼ xTT :j:

2.x∈ IR4, then T �2x∈ IR2�3 and

colk T �2xð Þ ¼
a1k

a2k

 !

¼
tk11 tk12 tk13 tk14

tk21 tk22 tk23 tk24

 !

x1

x2

x3

x4

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼ T ::k
� �

x and

rowi T �2xð Þ ¼ ai1 ai2 ai3ð Þ ¼ x1 x2 x3 x4ð Þ

t1i1 t2i1 t3i1

t1i2 t2i2 t3i2

t1i3 t2i3 t3i3

t1i4 t2i4 t3i4

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼ xTT i::

3.x∈ IR3, then T �3x∈ IR2�4 and

colj T �3xð Þ ¼
a1j

a2j

 !

¼
t11j t21j t31j

t12j t22j t32j

0

@

1

A

x1

x2

x3

0

B

B

@

1

C

C

A

¼ T :j:
� �

x and

rowi T �3xð Þ ¼ ai1 ai2 ai3ð Þ ¼ x1 x2 x3ð Þ

t1i1 t1i2 t1i3 t1i4

t2i1 t2i2 t2i3 t2i4

t3i1 t3i2 t3i3 t3i4

0

B

B

@

1

C

C

A

¼ xT T i::
� �T

This example can be easily generalized to arbitrary dimensions. In particular, for
a tensor T ∈ IRm�n�n and a vector x∈ IRn, we have

rowi T �2xð Þ ¼ xTT i:: (9)

rowi T �3xð Þ ¼ xT T i::
� �T

(10)

Lemma 1.5. Let T ∈ IRn�n�n be a tensor. If T i:: is a symmetric matrix for all
i ¼ 1, … , n, then

T �2uð Þv ¼ T �2vð Þu

for all u, v∈ IRn.
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Proof. By Property 2, it follows that T �2uð Þv ¼ T �3vð Þu. By (10), (11), and the

symmetry of T i::, we have T �3v ¼ T �2v. □

3. Space of bilinear applications

In this section, we define bilinear applications on finite dimensional vector
spaces, in order to relate them to the second derivative of a two-differentiable
application, as well as a tensor of order 3.

Definition 1.6. Let U,V,W be vector spaces. An application f : U � V ! W is a
bilinear application if:

i. f λu1 þ u2, vð Þ ¼ λf u1, vð Þ þ f u2, vð Þ for all λ∈ IR, u1, u2 ∈U, and v∈V.

ii. f u, λv1 þ v2ð Þ ¼ λf u, v1ð Þ þ f u, v2ð Þ for all λ∈ IR, u∈U, and v1, v2 ∈V.

In other words, an application f : U � V ! W is a bilinear application if it is
linear in each of the variables when the other variable is fixed. We denote by
B U � V,Wð Þ the set of all bilinear applications of U � V in W . In particular, if
U ¼ V andW ¼ IR in Definition 1.6, then f : U �U ! IR is a bilinear form in which
we are used to quadratic forms, for example.

A simple example of bilinear application is the function f : U � V ! IR defined by

f u, vð Þ ¼ h uð Þg vð Þ, (11)

with h∈U ∗ and g∈V ∗ , where U ∗ denotes the dual space to U. In fact, we have
for all λ∈ IR, u1, u2 ∈U and v∈V such that

f λu1 þ u2, vð Þ ¼ h λu1 þ u2ð Þg vð Þ ¼ λh u1ð Þ þ h u2ð Þð Þg vð Þ ¼ λf u1, vð Þ þ f u2, vð Þ:

Similarly, it is easy to see that f u, λv1 þ v2ð Þ ¼ λf u, v1ð Þ þ f u, v2ð Þ for all
λ∈ IR, u∈U and v1, v2 ∈V.

The next theorem ensures that a bilinear application f : U � V ! W is well
defined when the image of f applied in the bases elements of U and V is known.

Theorem 1.7. LetU,V, andW be vector spaces; u1, … , umf g and v1, … , vnf g bases

of theU and V, respectively; and wijji ¼ 1, … ,m and j ¼ 1, … , n
� 	

a subset ofW.

Then, there exists an only bilinear application f : U � V ! W such that f ui, vj
� �

¼ wij.

Proof. Let u ¼
Pm

i¼1αiui and v ¼
Pn

j¼1βjvj be arbitrary elements of U and V,

respectively. We defined an application f : U � V ! W by

f u, vð Þ ¼
X

m

i¼1

X

n

j¼1

αiβjwij:

It is easy to see that f is a bilinear application and f ui, vj
� �

¼ wij. Such an applica-

tion is unique because if g is another bilinear application satisfying g ui, vj
� �

¼ wij, then

g u, vð Þ ¼ g
X

m

i¼1

αiui,
X

n

j¼1

βjvj

 !

¼
X

m

i¼1

X

n

j¼1

αiβjg ui, vj
� �

¼ (12)

¼
X

m

i¼1

X

n

j¼1

αiβjwij ¼ f u, vð Þ: (13)

Therefore g ¼ f . □

8
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The following theorem guarantees the isomorphism between space of bilinear
applications and space of tensor of order 3.

Theorem 1.8. Let U, V, and W be vector spaces with dimensions n, p, and m,
respectively. Then, the space B U � V,Wð Þ has dimension mnp.

Proof. The idea of the proof is to exhibit a basis for space B U � V,Wð Þ. For this,
let w1, … ,wmf g, u1, … , unf g, and v1, … , vp

� 	

be bases of the W, U, and V,
respectively. For each triple i, j, kð Þ, with i ¼ 1, … ,m, j ¼ 1, … , n, and k ¼ 1, … , p,

we define a bilinear application f kij : U � V ! W such that

f kij ur, vsð Þ ¼
wi if r ¼ j and s ¼ k

0 if r 6¼ j or s 6¼ k:




(14)

Theorem 1.7 ensures the existence of the f kij. We will then show that the set

A ¼ f kijji ¼ 1, … ,m, j ¼ 1, … , n and k ¼ 1, … , p
n o

is a basis of the space B U � V,Wð Þ. Let f ∈B U � V,Wð Þ. We note in
passing that

f ur, vsð Þ ¼
X

m

i¼1

asirwi (15)

for all r ¼ 1, … , n and s ¼ 1, … , p. Consider the bilinear application

g ¼
X

m

i¼1

X

n

j¼1

X

p

k¼1

akij f
k
ij:

Our goal is to show that g ¼ f . In particular, we have

g ur, vsð Þ ¼
X

m

i¼1

X

n

j¼1

X

p

k¼1

akij f
k
ij ur, vsð Þ ¼

X

m

i¼1

asirwi ¼ f ur, vsð Þ

for all r ¼ 1, … , n and s ¼ 1, … , p. Therefore g ¼ f . The set A is linearly
independent, because if

X

m

i¼1

X

n

j¼1

X

p

k¼1

akij f
k
ij ¼ 0,

then

0 ¼
X

p

k¼1

X

m

i¼1

X

n

j¼1

akij f
k
ij ur, vsð Þ ¼

X

m

i¼1

asirwi:

Since w1, … ,wmf g is a basis of W, it follows that asir ¼ 0 for all i ¼ 1, … ,m, r ¼
1, … , n, and k ¼ 1, … , p. □

In particular, if the dimensions of the vector spaces U and V are m and n,
respectively, then the vector space B U � V, IRð Þ has dimension mn. Now, as two
vector spaces of the same finite dimension are isomorphic [16], there exists a matrix

9
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m� n associated with each f ∈B U � V, IRð Þ. By considering B ¼ u1, … , umf g and

C ¼ v1, … , vnf g bases of U and V, respectively, and if u ¼
P

m

i¼1
αiui and v ¼

P

n

j¼1
βjvj,

then by doing f ui, vj
� �

¼ aij for all i ¼ 1, … ,m and j ¼ 1, … , n, we have

f u, vð Þ ¼
X

m

i¼1

X

n

j¼1

αiaijβj,

which in matrix form is f u, vð Þ ¼ u½ �TBA v½ �C, where A ¼ aij
� �

and v½ �C denote the
vector components v in the basis C. Hence follows the next definition:

Definition 1.9. Let U and V be vector spaces of finite dimension and ordered
bases B ¼ u1, … , umf g⊂U and C ¼ v1, … , vnf g⊂V. We define, for each
f ∈B U � V, IRð Þ, the matrix A ¼ aij

� �

∈ IRm�n of the f relative to the ordered bases B

and C, whose elements are given by aij ¼ f ui, vj
� �

with i ¼ 1, … ,m and j ¼ 1, … , n.
Consider now the space B IRm � IRn, IRpð Þ and the canonical bases e1, … , emf g,

e1, … , enf g, ê1, … , êp
� 	

of the IRm, IRn, and IRp, respectively. Consider
f ∈B IRm � IRn, IRpð Þ. For all u∈ IRm and v∈ IRn, we have

f u, vð Þ ¼
X

m

j¼1

X

n

k¼1

ujvkf ej, ek
� �

where uj and vk are the components of the u and v in the canonical bases of IRm

and IRn, respectively. Denote the i-th component of the f by f i. Note that
f i ∈B IRm � IRn, IRð Þ. So for each i ¼ 1, … , p, we have

f i u, vð Þ ¼
X

m

j¼1

X

n

k¼1

ujvkf i ej, ek
� �

:

By Definition 1.9, the matrix of the f i in relation to the canonical bases is the
matrix

Ai ¼ tkij

� �

∈ IRm�n,

where tkij ¼ f i ej, ek
� �

. So, we can write

f i u, vð Þ ¼ uTAiv:

In general, we can define p matrices m� n as a tensor T ∈ IRp�m�n; this means
that the p matrices can be seen as the horizontal slices of the tensor T . We note in
passing that we can write f u, vð Þ as a product between tensor T and vectors u and v,
that is,

f u, vð Þ ¼

uTA1v

uTA2v

⋮

uTApv

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼ T �2uð Þv: (16)

Thus, we can generalize Definition 1.9 as follows:

10
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Definition 1.10. Let U and V be finite dimension vector spaces. For fixed bases
B ¼ u1, … , umf g and C ¼ v1, … , vnf g of the U and V, respectively, we define, for

each f ∈B U � V, IRpð Þ, the tensor T ¼ tkij

� �

∈ IRp�m�n of the f relative to the ordered

bases B and C, whose elements are given by tkij ¼ f i uj, vk
� �

where f i is the i-th

component of the f , that is, f i ∈B U � V, IRð Þ, with i ¼ 1, … , p, j ¼ 1, … ,m, and
k ¼ 1, … , n.

4. Differentiability

Let U be an open subset of IRm and F : U ⊂ IRm ! IRn a differentiable application
throughout U and a∈U. Denote L IRm, IRnð Þ the set of all linear applications of IRm

in IRn. When F0
: U ⊂ IRm ! L IRm, IRnð Þ is differentiable in a∈U, we say that the

application F is twice differentiable in a∈U and then the linear transformation

F00 að Þ∈L IRm,Lð IRm, IRnð ÞÞ is the second derivative of F in a∈U.

The norm of F00 að Þ is naturally defined. For any h∈ IRm, it follows that

F00 að Þh
�

�

�

� ¼ sup
kk k¼1

F00 að Þhk
�

�

�

� com k∈ IRm
� 	

and then

F00 að Þ
�

�

�

� ¼ sup
hk k¼1

F00 að Þh
�

�

�

� ¼ sup
hk k¼1

sup
kk k¼1

F00 að Þhk
�

�

�

�

:

An important observation with respect to Theorem 1.8 is that the spaces

L IRm,Lð IRm, IRnð ÞÞ and B IRm � IRm, IRnð Þ are isomorphic. This means that F00 að Þ is a
bilinear application belonging to space B IRm � IRm, IRnð Þ. Such isomorphism can be
found in classical analysis books [17, 18]. On the other hand, by the same theorem,
the space of bilinear applications B IRm � IRm, IRnð Þ and space of tensor IRn�m�m are
also isomorphic.

In many practical applications, such as algorithm implementations, the second

derivative F00 að Þ may be implemented as a tensor belonging to space IRn�m�m.
The question now is how the tensor elements are formed. For this, consider the
application A : IR ! IRn�m and α∈ IR. We have A αð Þ as a matrix with n rows and m
columns. Its elements are denoted by aij αð Þwhere aij are components functions of A
with i ¼ 1, … , n and j ¼ 1, … ,m. Case aij : IR ! IR is differentiable in α for all i ¼
1, … , n and j ¼ 1, … ,m; the derivative of A in α is the matrix

A0 αð Þ ¼ a0ij αð Þ
� �

∈ IRn�m
: (17)

The definition of the derivative of A αð Þ (17) is a classical definition. We refer to
[19] for details.

In the sense of generalizing (17), consider now A : U ⊂ IRp ! IRn�m a differen-
tiable application in u∈U with component function aij : IR

p ! IR with i ¼ 1, … , n
and j ¼ 1, … ,m. When aij is differentiable in u for all i ¼ 1, … , n and j ¼ 1, … ,m,
we defined the derivative of A in u as the tensor

A0 uð Þ ¼ ∇aij uð Þ
� �

∈ IRn�m�p
: (18)
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Note that in fact (18) is a generalization of (17). With fixed i and j, ∇aij uð Þ is a

tube fiber of the tensor A0 uð Þ, whose elements are

A0 uð Þkij ¼
∂aij
∂xk

uð Þ (19)

for all k ¼ 1, … , p.

For example, consider an application F : U ⊂ IR2 ! IR3 twice differentiable in
a∈U where U is an open set. The Jacobian matrix of F in a is given by

JF að Þ ¼

∇f 1 að ÞT

∇f 2 að ÞT

∇f 3 að ÞT

0

B

B

B

@

1

C

C

C

A

¼

∂f 1
∂x1

að Þ
∂f 1
∂x2

að Þ

∂f 2
∂x1

að Þ
∂f 2
∂x2

að Þ

∂f 3
∂x1

að Þ
∂f 3
∂x2

að Þ

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

and its derivative is, by (18), the tensor

JF0 að Þ ¼ T F að Þ ¼ ∇
∂f i
∂xj

að Þ

� 


∈ IR3�2�2 (20)

where, by (19), its elements are described as

tkij ¼
∂
2f i

∂xk∂xj
að Þ:

With fixed i, it is easy to see that the i-th horizontal slice of the T F að Þ is the

Hessian matrix ∇2f i að Þ defined by

∇
2f i að Þ ¼ T F að Þi:: ¼

∂
2f i

∂x1∂x1
að Þ

∂
2f i

∂x1∂x2
að Þ

∂
2f i

∂x2∂x1
að Þ

∂
2f i

∂x2∂x2
að Þ

0

B

B

B

@

1

C

C

C

A

: (21)

We note in passing that any column of the matrix ∇
2f i xð Þ is a row fiber of the

i-th horizontal slice.
As mentioned in the introduction, some numerical methods need to calculate the

product between tensor T F að Þ and vectors in IR2.
From Definition 1.4, it is possible to calculate the contracted product mode-2

and mode-3. As Hessian matrices are symmetrical, given v∈ IR2, by Lemma 1.5
together with (10) and (11), we have

T F að Þ�3v ¼ T F að Þ�2v ¼

row1 T F að Þ�2vð Þ

row2 T F að Þ�2vð Þ

row3 T F að Þ�2vð Þ

0

B

B

@

1

C

C

A

¼

vT∇2f 1 að Þ

vT∇2f 2 að Þ

vT∇2f 3 að Þ

0

B

B

B

@

1

C

C

C

A

∈ IR3�2

and consequently it follows that
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T F að Þ�2vð Þu ¼

vT∇2f 1 að Þu

vT∇2f 2 að Þu

vT∇2f 3 að Þu

0

B

B

B

@

1

C

C

C

A

∈ IR3 (22)

for all u, v∈ IR2.
This means that the tensor T F að Þ defined by (20) is the associate tensor to

bilinear application F00 að Þ, in relation to canonical basis of IR2, by means of Defini-
tion 1.10. Without loss of generality, we have

T F að Þ�3v ¼ T F að Þ�2v ¼ T F að Þv

and by means of Lemma 1.5, it follows that

T F að Þuð Þv ¼ T F að Þvð Þu ¼ T F að Þvu:

To finish, we consider the following particular case. We know that the k-th
column of Jacobian JF xð Þ is equal to product JF xð Þek, where ek is the k-th canonical
vector of IRn. It is worth noting what the slice of the matrix T F xð Þek is. By definition,
we have

T F xð Þek ¼

eTk∇
2f 1 xð Þ

eTk∇
2f 2 xð Þ

⋮

eTk∇
2f n xð Þ

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

¼

rowk∇
2f 1 xð Þ

rowk∇
2f 2 xð Þ

⋮

rowk∇
2f n xð Þ

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

Given that rowk∇
2f i xð Þ is the k-th tube fiber of i-th horizontal slice, we have

T F xð Þek as the k-th lateral slice, or, by symmetry of Hessians, it is the transpose of k-
th frontal slice. In short, for the twice differentiable application F : U ⊂ IRn ! IRm,

we have T F xð Þ∈ IRm�n�n where the m horizontal slices are the Hessians ∇2f i xð Þ,
with i ¼ 1, … ,m and the n lateral and frontal slices obtained by the following
product T F xð Þek, with k ¼ 1, … , n.

5. Conclusions

In this text, we have shown some properties of tensors, in particular those of
order 3. In addition, we have approached bilinear applications, and we have shown
the isomorphism between space of bilinear applications and of tensor of order 3. As
mentioned in the introduction, to solve a nonlinear system, some numerical
methods use tensors, either in the iterative scheme or in the proof of theorems. For
this reason, we have written a section on differentiability of applications by show-
ing how to calculate the product between tensor of second derivatives and vectors.

13

Bilinear Applications and Tensors
DOI: http://dx.doi.org/10.5772/intechopen.90904



Author details

Rodrigo Garcia Eustaquio
Department of Mathematics, Federal Technological University of Paraná, Curitiba,
PR, Brazil

*Address all correspondence to: eustaquio@utfpr.edu.br;
rodrigogeustaquio@gmail.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

14

Advances on Tensor Analysis and Their Applications



References

[1]Hernández MA, Gutiérrez JM.
A family of Chebyshev-Halley type
methods in Banach spaces. Bulletin of
the Australian Mathematical Society.
1997;55:113-130

[2] Ehle GP, Schwetlick H. Discretized
Euler-Chebyshev multistep methods.
SIAM Journal on Numerical Analysis.
1976;13(3):432-447

[3] Eustaquio RG, Ribeiro AA,
Dumett MA. A new class of root-finding
methods in IRn: The inexact tensor-free
Chebyshev-Halley class. Computational
and Applied Mathematics. 2018;37:
6654-6675

[4] Traub JF. Iterative Methods for the
Solution of Equations. Prentice-Hall
Series in Automatic Computation.
Englewood Cliffs, NJ: Prentice-Hall;
1964

[5] Bader BW, Kolda TG. Algorithm 862:
MATLAB tensor classes for fast
algorithm prototyping. ACM
Transactions on Mathematical Software.
2006;32(4):635-653. DOI: 10.1145/
1186785.1186794

[6] Cichocki A, Zdunek R, Phan AH,
Amari S. Nonnegative Matrix and
Tensor Factorizations: Applications to
Exploratory Multiway Data Analysis
and Blind Source Separation. JohnWiley
Sons, Ltd; 2009

[7] Kolda TG, Bader BW. Tensor
decompositions and applications. SIAM
Review. 2009;51(3):455-500

[8]De Lathauwer L, De Moor B,
VandeWalle J. A multilinear singular
value decomposition. SIAM Journal on
Matrix Analysis and Applications. 2000;
21:1253-1278

[9] Smilde A, Bro R, Geladi P. Multi-
Way Analysis: Applications in the
Chemical Sciences. Wiley; 2004

[10] Chen B, Petropulu A,
De Lathauwer L. Blind identification of
convolutive MIMO systems with 3
sources and 2 sensors. Applied Signal
Processing. 2002;5:487-496. Special
Issue: Space-time Coding and Its
Applications—Part II. Available from:
http://publi-etis.ensea.fr/2002/CPD02a

[11]Golub GH, Kolda TG, Nagy JG,
Van Loan CF. Workshop on Tensor
Decompositions. Palo Alto, California:
American Institute of Mathematics;
2004. Available from http://www.
aimath.org/WWN/tensordecomp/

[12]De Lathauwer L, Comon P.
Workshop on Tensor Decompositions
and Applications. Marseille, France;
2005. Available from: http://www.etis.
ensea.fr/wtda/

[13] Bader BW, Kolda TG. Efficient
MATLAB Computations with Sparse
and Factored Tensors. Albuquerque,
NM/Livermore, CA: Sandia National
Laboratories; 2006. SAND2006-7592.
Available from: http://www.prod.sandia.
gov/cgi-bin/techlib/access-control.pl/
2006/067592.pdf

[14] Ishteva M. Numerical methods
for the best low multilinear rank
approximation of higher-order tensors
[PhD thesis]. Belgium: Faculty of
Engineering, Katholieke Universiteit
Leuven; 2009

[15] Kiers HAL. Towards a standardized
notation and terminology in multiway
analysis. Journal of Chemometrics.
2000;14:105-122

[16] Coelho FU, Loureno ML. Um Curso
de lgebra Linear. So Paulo, Brasil: Editora
da Universidade de So Paulo; 2007

[17] Lima EL. Anlise no Espao IRn. So
Paulo: Editora Universidade de Braslia;
1970

15

Bilinear Applications and Tensors
DOI: http://dx.doi.org/10.5772/intechopen.90904



[18] Lima EL. Curso de Anlise, Volume 2.
Rio de Janeiro, Brasil: IMPA; 1981

[19]Golub GH, Van Loan CF. Matrix
Computations. The Johns Hopkins
University Press; 1996

16

Advances on Tensor Analysis and Their Applications


