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Chapter

Global DNA Methylation 
as a Potential Underlying 
Mechanism of Congenital Disease 
Development
Aleksandra Stanković

Abstract

During the last decade, quantitative measurement of the methylation status in 
white blood cells (WBCs) has been used as a potential biomarker in a variety of 
diseases. Long interspersed nucleotide element-1 (LINE-1) has been used widely as 
a surrogate marker of global DNA methylation. Altered maternal DNA methylation 
is suggested to be an underlying mechanism in the trisomy 21 and the development 
of birth defects, including congenital heart defects (CHDs). The molecular mecha-
nisms that underlie the epigenetic regulation of gene transcription are independent 
of DNA sequence, but they do depend on environmental stimuli, which are espe-
cially important in fetal development in utero environment. Folic acid deficiency 
and genetic variations of folate pathway genes, such as the methylenetetrahydro-
folate reductase gene (MTHFR), are foremost among these maternal risk factors. 
Also, there are exogenous risk factors (cigarette smoking, alcohol intake, medica-
tion use, periconceptional maternal supplementation, body mass index, and dietary 
habits) with impact on maternal LINE-1 methylation. MTHFR C677T genotype/
diet and other environmental factors as significant predictors of LINE-1 DNA 
methylation in regard to congenital diseases will be discussed in the chapter.

Keywords: DNA methylation, LINE-1, congenital anomaly, development, nutrition, 
folate intake, genotype

1. Introduction

According to WHO, congenital anomalies (CAs) are birth defects that can be 
defined as structural or functional malformations [1]. CAs occur during intra-
uterine life and can be identified prenatally or at birth or later in infancy. CAs are 
important causes of infant and childhood deaths and chronic illness/disability. 
Long-term disability may have significant impacts on patients, families, health-
care systems, and societies. Some CAs can be prevented by adequate intake of folic 
acid (FA) through fortification of staple foods or supplementation. Among severe 
congenital anomalies, the most common ones are congenital heart defects (CHDs), 
neural tube defects (NTD), and Down syndrome (DS). For renal dysplasia an 
increasing trend was observed recently in Europe [2]. Several factors have been 
proposed to have a significant role in the development of CAs: one or more genes; 
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infectious, maternal diabetes or obesity; and nutritional and environmental factors 
[2]. Identification of the exact cause/causes recently became even more complicated 
with addition of new factors. Epigenetic factors, as it is DNA methylation, have 
been shown to have an impact on the gene expression, through modulation by 
nutrition or environmental stimuli that occur during intrauterine development, but 
could even be a consequence of maternal or paternal lifestyle factors. Altered DNA 
methylation was suggested to be an underlying mechanism in the development of 
CAs, CHDs, NTD, congenital anomaly of the kidney and urinary tract (CAKUT), 
and autism spectrum disorders (ASD) and in imprinting genetic disorders [3–12]. 
Congenital heart defects (CHDs) are the most common birth defects in humans 
with a prevalence of 0.8% [13, 14]. Only about 15–20% of CHDs can be attributed 
to known causes, whereas chromosomal abnormalities occur in 5–10% of cases 
[14]. The highest association with major heart abnormalities is observed in DS [15]. 
CHDs are reported in approximately 40% of DS cases, typically involving septal 
defects such as atrial septal defect, ventricular septal defect, and complete atrio-
ventricular canal [16]. The etiology of most CHDs remains largely unknown, but it 
is considered to involve multiple genetic, epigenetic, environmental, and lifestyle 
factors [13, 14, 17]. Risk factors, including aging, body mass index (BMI), cigarette 
smoking, alcohol intake, folate deficiency, MTHFR polymorphisms, and hyper-
homocysteinemia, have been proposed to be the modulators of DNA methylation 
patterns [3–6, 18–20]. Maternal intrauterine milieu, such as maternal environment 
during pregnancy (hypoxia, stress, obesity, diabetes, toxins, altered nutrition, 
inflammation, and reduced utero-placental blood flow) could affect fetal methyla-
tion programming, thereby affecting fetal growth and the lifelong health of the 
fetus [21, 22]. It was reported that the maternal LINE-1 hypomethylation is linked 
with the increased risk for non-syndromic CHD, particularly septal defects [4, 5].

2. DNA gene-specific methylation and global DNA methylation

DNA methylation is a key factor of the epigenetic machinery that is responsible 
for regulating gene expression and, therefore, cell function. This component is one 
of the most important in mammalian embryonic development, differentiation, and 
many of congenital and complex diseases [3–6, 23–25]. The DNA methylation has 
nonrandom, well-regulated, and tissue-specific patterns [26]. Abnormal gene-
specific demethylation and global hypomethylation (involving repeat sequences 
throughout the genome) can potentially lead to overexpression of genes and activa-
tion of transposable elements contributing to disease. Regulation of gene expression 
through methylated or unmethylated human genome can exist at approximately 
3 × 107 CpG short sequences of 5–10 CpG dinucleotides [27, 28].

DNA methylation is required in many processes such as X chromosome inac-
tivation, imprinting, embryogenesis, gametogenesis, and silencing of repetitive 
DNA elements [29]. It refers to the covalent addition of a methyl group to the 
cytosine located at the 5′-position to guanosine in a CpG dinucleotide, catalyzed 
by the activity of three DNA methyltransferases (DNMTs) [30]. Recent findings of 
tissue-specific expression of ten-eleven translocation (TET) proteins revealed that 
this epigenetic event is not irreversible and, even more, TET was shown to be able to 
modify methylcytosine and potentially erase DNA methylation [31].

Each of the three DNMT genes was found to be mutated in specific and diverse 
human syndromes [32]. DNA methylation is required to protect chromosomal 
integrity, by preventing reactivation of endoparasitic sequences that cause chro-
mosomal instability, translocations, increased mutation events, loss of imprinting, 
and gene disruption [29]. Genome-wide methylation profiling has recently become 
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possible and revealed genes of interest that were enriched in multiple biological 
processes involved in fetal development [3], and specific hypermethylation was 
linked to gene silencing in some pediatric disorders [33, 34]. Moreover, epigen-
etic mechanisms including parent of origin-specific DNA methylation include 
genomic imprinting as restriction of gene expression [35]. Moreover, imprinting 
in embryos was found to be parentally sex-specific, and this effect could be more 
complex than previously suggested [36]. Hypomethylation of imprinted loci (HIL) 
throughout the genome was observed in patients with imprinted disorders. Among 
approximately 70 known imprinted genes, there are some that are causing disorders 
affecting growth, including one in the DS critical region [35]. Aberrant methylation 
in four maternally methylated regions was observed at whole genome methylation 
analysis. However, methylation of a CpG island does not necessarily lead to gene 
silencing. For example, the gene for telomerase has been shown to be activated by 
methylation [37]. Telomerases are crucial elements in maintaining cell life, could 
possibly reverse an aging mechanism, and rejuvenate cell viability. Enzyme telom-
erase modulates elongation of telomeres, by adding repeating DNA sequences to 
the ends of the chromosomes, and telomere serves as a bioprotective mechanism of 
chromosome attrition at each cell division [38]. Telomeres could become too short 
to allow replication or dysfunctional in some congenital disease which may lead 
to chromosome instability or cell death [39]. Besides DNA coding region, studies 
have shown that DNA methylation of noncoding DNA plays an important role in 
modulating structure and dynamics of chromatin, as well as many other chromatin-
dependent processes and their associated biological functions [27].

2.1 LINE-1 DNA methylation

Gene-specific DNA methylation analysis does not provide a global picture of 
DNA methylation changes within a genome. Global DNA hypomethylation occurs 
mainly at heavily methylated noncoding regions of DNA, particularly repeat 
sequences and transposable elements [40, 41].

In humans, nearly 80% CpG islands occur in transposon-derived sequences, 
throughout the genome, such as long interspersed nuclear elements (LINEs) and 
short interspersed nuclear elements (SINEs) [42]. LINE-1 is the largest member of 
the LINE family with more than 500,000 copies comprising approximately 17% 
of the genome [43]. CpG islands within LINE-1 sequences and their methylation 
levels correlate with the global genomic DNA methylation level [44, 45], so LINE-1 
methylation has been widely used as a surrogate marker of global genomic DNA 
methylation [46], and methylation status of LINE-1 in white blood cells (WBC) 
is a potential biomarker in a variety of diseases [4, 45–48] in research on cancer, 
cardiovascular, neurodegenerative, and CAs [3–6, 48–51]. Human genome has on 
average 80–100 active LINE-1, and it has been estimated that new LINE-1 insertion 
in genome occurs in at least 1 in every 50 humans within a parental germ cell or 
during early fetal development [40]. Thus, LINE-1 hypomethylation in the parental 
germline, along with altered miRNA expression, might also significantly affect 
genome stability during the fetal development [52, 53].

3. DNA methylation during gametogenesis and embryogenesis

DNA methylation changes are particularly dynamic in gametogenesis and early 
embryogenesis. During the course of mammalian differentiation and develop-
ment, DNA methylation undergoes remodeling to eventually generate the cell 
type-specific methylation patterns, found in somatic cells of adults. During the 
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gametogenesis, DNA is demethylated within each developing germ cell and then 
remethylated/reset to the methylation patterns specific to gametogenesis. The 
differentially methylated regions (DMRs) are sperm and egg specific [54, 55]. This 
process establishing the specific methylation of imprinted loci before fertilization, 
as well as other non-imprinted loci, may also be subject to at least partial erasure of 
methylation during gametogenesis [56–58]. The zygotic DNA demethylation after 
fertilization in mouse embryogenesis affects parental genome on a genome-wide 
level including single gene loci and repetitive elements. The maternal genome-wide 
methylation is unaffected [59]. This process changes the methylation patterns of the 
gametes and establishes the DNA methylation patterns found in somatic differenti-
ated cells in adults through induced expression of DNMT and de novo methylation 
of genome in post-implantation mouse embryos [60–62]. It has been shown that in 
small studies of human embryos, there is a demethylation process at the 4-cell stage 
followed by remethylation at late morula [63]. Even more, expression patterns of 
DNMTs after cryopreservation of human embryos could be disturbed and could 
have long-term developmental consequences [64] that suggest the importance 
of DNA methylation program maintenance during development. Periods during 
gametogenesis and embryogenesis may also present windows of opportunity for 
environmental influences on DNA methylation pattern. The DMRs are established 
during gametogenesis at imprinted and non-imprinted loci and are susceptible to 
environmental factors [65, 66]. LINE-1 methylation in sperm could be a risk marker 
of infertility in man at nicotine/alcohol exposure [67]. It is also possible to alter 
DNA methylation levels and patterns within intact mammalian cells by treatment 
with various chemical inhibitors, DNA-demethylating drugs, which have recently 
been introduced as potential therapeutic agents for the treatment of human dis-
eases, particularly myelodysplastic syndromes [68].

The dynamic reprogramming and other epigenetic patterns which could affect 
normal patterns of gene expression/genome stability during development could 
lead to an increased risk of CAs or complex diseases later in life [65–67].

4.  LINE-1 DNA methylation and environmental influences  
(e.g., diet and nutrition)

Previous research was focused on the effect of specific foods on the DNA 
methylation process, but there is currently growing interest in determining how 
dietary patterns may affect global and local DNA methylation in humans. There are 
some studies that suggest that frequent use of vegetables and/or fruits decreased 
the risk of LINE-1 hypomethylation [69–71]. Biological explanation could be in 
beneficial modulation of pathways involved in epigenetic mechanisms by intake of 
high variety of nutritive and bioactive substances included in fruit- and vegetable-
rich food. These components were polyphenols; flavonoids; carotenoids; folates; 
vitamins C, E, and A; minerals; and fibers [72, 73]. As it is known that many crucial 
cellular processes depend on folate, including DNA methylation [74], low folate 
intake in daily food could be supplemented by synthetic form as folic acid (FA) 
and through fortification programs [75]. Even more, harmful effect of particulate 
matter exposure on LINE-1 methylation level could be counteracted by healthy food 
consumption such as Mediterranean diet [76]. Also, fatty acids can modify DNA 
methylation in vitro, but limited information is available from human studies. Some 
studies observed that intake of vegetable oil/dietary fat seemed to be negatively cor-
related with LINE-1 methylation [69, 77]. Others show no changes in methylation 
profile after supplementation with grape seed flavanols [78]. The interindividual 
variation in blood cell DNA methylation in interventional studies, which are usually 
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rather small, demands studies with larger sample size to avoid masking the possibly 
subtle changes in DNA methylation in response to dietary factors.

4.1  Methylenetetrahydrofolate reductase (MTHFR), folate metabolism,  
and its role in DNA methylation

Folate can be a limiting factor in many biological reactions. The methylene 
tetrahydrofolate reductase (MTHFR) is an enzyme important for the folate metabo-
lism which is in the basis of the DNA, RNA, and protein methylation. Genomic 
DNA methylation directly correlates with folate status and inversely with plasma 
homocysteine (tHcy) levels [79–82]. The one-carbon pathway and thus DNA 
methylation function under tight regulatory controls. S-Adenosyl methionine 
(SAM) is the major regulator of folate-dependent Hcy remethylation because it 
is a potent inhibitor of MTHFR. When the SAM concentration is high, MTHFR is 
inhibited and hence remethylation of homocysteine. Conversely, if SAM concentra-
tions are low, remethylation of homocysteine is favored. Hyperhomocysteinemia is 
an emerging risk factor for various cardiovascular diseases, and, with the increasing 
significance of this genetic variant in the view of morbidity and mortality impact 
on the patients, further prevention strategies and nutritional recommendations 
with the supplementation of folate would be necessary as part of future health 
education. Other essential nutrients that are naturally present in some foods 
or as dietary supplement, like vitamin B6, B12, B2, and choline, are necessary in 
addition to folate to maintain DNA methylation [83]. It is also recognized that 
S-adenosylhomocysteine (SAH) functions as a potent product inhibitor of SAM-
dependent methyltransferases [84]. For this reason, continual hydrolysis of SAH 
to homocysteine is important for DNA methylation [85]. Plasma homocysteine 
elevation has been associated with increased concentration of SAH, and increased 
SAH was in correlation with global DNA hypomethylation [86]. Methionine is the 
substrate for SAM, a cofactor and methyl group donor for numerous methylation 
reactions including the methylation of DNA, RNA, and histones [87]. A number of 
SAM-dependent reactions have regulatory roles by affecting both, genome stability 
and gene transcription [88].

4.2  Epigenetic, genetic, and nutrigenomic risk factors for congenital 
diseases: DNA methylation, global DNA methylation, miRNA, MTHFR 
polymorphism, and low folate status

Low folate status (as defined by various measures including blood folate 
concentrations, folate intake, and/or FA intake) has been associated with an 
increased risk of cardiovascular disease, cancers, CAs, CHD, and NTD [5, 6, 
89–94]. Also, this deficiency is clearly detrimental to the embryo and shows 
possible longer-term risks of diabetes or other health outcomes and health 
problems associated with child mortality and morbidity [95]. Periconceptional 
supplementation of FA also reduces the risk of congenital heart diseases (previous 
ref) and preterm birth and low birth weight [96, 97]. The prevalence of neural 
tube defects (NTDs) has been significantly lowered in more than 70 countries 
worldwide by applying fortification with FA, but in all European governments 
there is still an issue with FA fortification of centrally processed and widely 
eaten foods in prevention of unwanted birth outcomes [98]. The mechanisms by 
which low folate status contributes to these disorders have not been understood 
completely but, to a certain extent, could be explained by different molecular 
pathways. Folate depletion could be a destabilizing factor during DNA replication. 
If inadequate folate availability is present during cell division, the production of 
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thymidine could be compromised and may be substituted in the DNA sequence 
by uracil. This mutagenic event may trigger the defect in an effort to repair DNA 
and increase the frequency of chromosomal breaks [90]. Low FA in tissue culture 
has been shown to result in the formation of micronuclei (chromosome breakage) 
and that the presence of MTHFR C677T polymorphism (TT genotype) increases 
the micronuclei formation, under the low folate conditions [99]. This MTHFR 
polymorphism was associated with various diseases, and allele frequencies vary 
depending on ethnicity (reviewed in [100]). This gene is mapped on chromosome 
1 (1p36.6), and the genetic variant assigned as C677T (rs1801133) is located in 
exon 4 in this gene. This polymorphism results in the conversion at codon 222, 
valine to alanine. Carriers of the T allele have lower enzyme activity [101]. The 
MTHFR 677TT homozygous subjects have higher homocysteine levels than the 
normal, non-mutated controls. To date, most studies have shown that the MTHFR 
C677T genotype is related to biomarkers, such as serum folate, tHcy concentration, 
and folate intake. Elevated blood tHcy is a well-recognized and modifiable risk 
factor for cerebral and cardiovascular disease [101, 102]. Reduction of the enzyme 
activity leads to elevated Hcy concentrations [103]. The TT genotype has been 
associated with elevated tHcy levels in populations with low folate intake [104]. 
Previous tHcy-lowering trials have not considered whether and to what extent 
these factors could modify the efficacy of folic acid (FA) treatment. In some 
countries with folate fortification like America, Australia, and New Zealand, the 
effect of TT genotype is not so obvious like in Asia region where folate intake is 
low [94]. In those who are homozygous for the mutation (TT genotype), enzyme 
function is only 30% of normal, and data provide evidence that nutrition can 
counteract genetic susceptibility. Recently, large, randomized trial in a population 
without mandatory FA fortification demonstrated that the adverse effect of the TT 
genotype on tHcy levels can be ameliorated by raising serum folate levels above the 
threshold (15 ng/mg or 34 nmol/L) via FA treatment and it provides new evidence 
to support a personalized FA treatment [94]. The gene-nutrient interaction 
between MTHFR C677T variant and folate status was also observed on the risk 
of anencephaly. Mothers with 677TT genotype with serum folate levels in the 
upper tercile (>14.1 ng/ml) had a 95% lower risk to have a child with anencephaly 
than mothers with serum folate levels in the first and second terciles [92]. Results 
about DS and MTHFRC677T polymorphism as a risk factor of its occurrence are 
still conflicting. The recent meta-analysis suggested that MTHFR 677T is a major 
risk factor for DS birth [105], while previous smaller studies did not recognize 
such risk [106, 107]. Studies performed analyzing peripheral lymphocytes of 
women with DS offspring revealed several markers of global genome instability, 
including an increased frequency of micronuclei, shorter telomeres, and impaired 
DNA methylation at MTHFR promoter [108, 109]. Hypermethylation of MTHFR 
promoter may lead to CHD in DS subjects [109]. Functional inactivation of 
MTHFR gene expression could be a mechanism of impaired folate metabolism, 
which is known to play a role in chromosomal breakage, abnormal chromosomal 
segregation, and genomic instability and therefore a developmental defect in 
the CHD in DS. Another suggested mechanism is lower LINE-1 methylation, the 
surrogate marker for global methylation levels, in young mothers of DS compared 
to controls, suggesting the possibility of impaired DNA methylation causing 
maternally derived trisomy 21 [6]. Also, there is evidence from intervention studies 
of the effects of dietary factors, where FA was the most common intervention agent 
(33%). Meta-regression analysis showed that the dose of supplementary FA was 
the only identified factor (p < 0.001) showing a positive relationship with DNA 
methylation patterns in humans [93]. MTHFR genotype-dependent association 
between lower global DNA methylation and lower plasma folate concentration 
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was detected in observational studies in healthy subjects [81, 82, 110]. Global 
DNA methylation at maternal front (p = 0.04) and hypomethylation of MTHFR 
gene at fetal front (p = 0.001) might be a characteristic of preeclampsia [111]. The 
combination of MTHFR C677T genotype and diet significantly influenced global 
DNA methylation in mothers with DS children. The lowest values of global DNA 
methylation were observed in mothers with MTHFR 677 CT+TT genotype and low 
dietary folate [6]. Even more, recently the association between maternal LINE-1 
methylation and the occurrence of CHD in children with DS was shown, as well 
as the impact of endogenous maternal factors (MTHFR C677T polymorphism) 
and exogenous maternal factors (body mass index and dietary habits such as folate 
intake) on maternal LINE-1 methylation and on the occurrence of CHD in children 
with DS. Study showed that the MTHFR genotype/diet combination and BMI were 
significantly associated with LINE-1 methylation in mothers of children with DS/
CHD+ [5]. Recently, micro-RNA signatures discordant for CHD in monozygotic 
twins were observed [112].

4.3  DNA methylation in developmental exposure to the maternal environment 
and diet

It has been suggested that disease risk of long-term health outcomes may be in 
part determined by maternal (in utero effects of environmental exposures, toxins/
nutrition) [21, 113] and paternal diet [114, 115].

Birth defects occur in 6–10% of babies born to mothers with pregestational 
diabetes, which is a significant health problem. It has been demonstrated that 
exposure to maternal diabetes during pregnancy changes gene expression levels 
in the mouse embryo, disrupting essential cellular activities [116], and could 
lead to disruption of crucial epithelial and mesenchymal cell interactions in 
developing kidney, leading to kidney and urinary tract malformation [117]. 
Underlying mechanisms are still unknown. There is a proposed lack of precision 
in the developmental program, which is essential for organogenesis induced by 
hyperglycemia effects on oxidative stress. That exposure to a diabetic intrauterine 
environment during pregnancy could be teratogenic by leading to defects like 
CAKUT in the fetus and associate with metabolic or cardiovascular diseases in 
later life [118–121].

Changes in maternal dietary FA can affect the DNA methylation patterns of 
offspring in mice [61]. The agouti mouse is a best-studied example [122]. Recently, 
in the human genome, loci were found to show differential methylation in response 
to season of birth that is similar to the agouti locus, but the identity of the causative 
agent for the changes in DNA methylation is unclear [123]. Recent study examined 
the prospective association between multivitamin supplementation during preg-
nancy and maternal plasma folate/vitamin B12 levels at birth and child’s autism 
spectrum disorder (ASD) risk. Moderate (3–5 times/week) self-reported supple-
mentation during pregnancy was associated with decreased risk of ASD, consistent 
with previous findings. But, extremely high maternal plasma folate and B12 levels 
at birth were associated with ASD risk. This study raises new questions about the 
impact of extremely elevated levels of plasma folate and B12 exposure in utero 
on early brain development [124]. However, study on postmortem cortical brain 
samples reveals that global DNA methylation was markedly enriched in ASD brains 
[125]. In some diseases, methylation mosaicism was found to be present. This is a 
common phenomenon in Fragile X syndrome (FXS). A decreased gene expression 
was found to be a main contributor to the cognitive impairment observed in the 
study of 12 FXS males with atypical mosaicism, seven of whom presented with 
ASD [126].
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5.  Epigenetic pattern transmission from parent to offspring: 
understanding disease inheritance

The heritability of epigenetic modifications, including histone modifica-
tions and DNA methylation, provides a memory of cell function and identity. 
Transmission of epigenetic information to subsequent generations may provide 
evolutionary mechanisms that impact on adaptation to changed environment. 
Defining the mechanisms that establish and regulate the transmission of epigenetic 
information from parent to offspring is critical for understanding disease heredity. 
Detection of modified methylation patterns is important in inappropriate imprint-
ing of certain either maternal or paternal genes, which are “turned on” by epigene-
tic phenomenon that leads to diseases such as Angelman syndrome and Prader-Willi 
syndrome. Methylation patterns with detrimental effects on development have 
been established for disorders of methylation, by several groups of researchers [127, 
128]. One of the developed blood tests (EpiSign) claims to diagnose 19 congenital 
diseases [129]. Also, it is important to establish the potential for epigenomic drugs 
that have an impact on the germline epigenome and subsequent offspring [130, 
131]. Currently, the molecular pathways that regulate epigenetic information 
in the germline and its transmission to offspring are poorly understood. Recent 
study reveals a novel role for the histone-modifying complex, PRC2, in maternal 
intergenerational transmission of epigenetic effects on offspring, with important 
implications for understanding disease inheritance [115]. PRC2 is involved in the 
regulation of many fundamental biological processes and is especially essential 
for embryonic stem cells. However, how the formation and function of PRC2 are 
regulated is mostly unknown. Recent findings identify miR-323-3p as a new regula-
tor for PRC2, providing a new approach for regulating PRC2 activity via microRNAs 
[132]. Specific epigenetic pattern was observed to be essential in the development of 
CHD and CAKUT. Impaired transcriptional profiles in individuals with CHDs [133] 
and CAKUT [134, 135] were shown to be affected by epigenetic regulators of gene 
expression, using bioinformatical analysis and integrated prediction algorithms 
[136]. The miRNA-145 expression was confirmed in infants with CHD that nega-
tively regulates gene expression important for heart development [133]. The altered 
hsa-miR-144 expression was, for the first time, identified in CAKUT and could be 
connected with biological processes crucial for normal development of kidney and 
urinary tract [135]. Although the importance of mothers’ health prior to concep-
tion and during pregnancy is now well accepted, recent data also implicate fathers’ 
health/nutritional status (overnutrition, undernutrition, and other forms of stress) 
in contribution to the risk of metabolic disease and obesity in offspring. Epigenetic 
paternal inheritance of chronic disease provides novel opportunities for multigen-
erational disease prevention [137]. Germ cell-dependent mechanisms have recently 
been linked to these intergenerational effects. There is increasing evidence that dis-
ruptions in male germ cell epigenetic reprogramming are associated with offspring 
abnormalities. Adequate supply of methyl donors is required in the fetal period, 
which is the critical time of DNA methylation pattern acquisition for developing 
male germ cells. In addition, DNA methylation patterns continue to be remod-
eled postnatal during spermatogenesis. Previous studies have shown that lifetime 
(prenatal and postnatal) folic acid deficiency and high-dose supplementation can 
alter the DNA methylation in sperm [138]. Recent study examined the genome-wide 
DNA methylation patterns in placentas and embryos in correlation with maternal 
FA supplementation in the prevention of CAs associated with assisted reproductive 
technologies (ART). Results demonstrate dose-dependent and sex-specific effects of 
FA intake; moderate dose of FA supplements may be optimal in ART for both sexes 
[139]. Even more, recent data suggest that genome-wide DNA methylation in the 
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placentas from preterm infants could be associated with maternal socioeconomic 
status [140]. On the other hand, genomic information was identical in monozygotic 
twins, but they could be discordant for congenital renal agenesis which could be a 
consequence of epigenomic regulation of gene expression [141].

6. Future perspectives

CAs are complex traits with polygenic, epigenetic, and environmental compo-
nents. Advances in human DNA methylation research and growing epigenetic data 
offer a new avenue for the translation of research to clinical applications. Current 
methylome analysis has been helpful in major human diseases revealing an epigen-
etic influence, but current approaches are inadequate for the translation of these 
advances to clinical diagnostics. There is a need to deal with big data in modern 
genomic medicine, so bioinformatics and applied mathematics are of a fundamen-
tal help in simulation studies and tests of methylome datasets. Signal detection 
theory and machine learning approaches applied on methylome datasets from 
ASD patients demonstrate high discriminatory power for the methylation signal 
induced by disease [142]. Even more, advanced machine learning analysis includes 
a combination of active learning and imbalanced class learning and deep learning 
to develop a more efficient feature selection process and for the generation and 
simultaneous computation of any genomic or biological dataset applied to medicine 
[143]. This approach demonstrates the feasibility in clinical diagnostics. Genetic 
risk scores (GRS) are widely used for risk prediction in complex diseases. Evidence 
is growing that methylation risk scores (MRS) may be constructed for multiple 
health purposes. MRS is defined as weighted sums of the individual’s methylation 
markers’ beta values of a preselected number of CpG sites and can be useful in 
interaction and mediation analyses, for environmental exposures as biomarker, 
and for prediction of individual risks of disease predisposition or treatment success 
[144]. As we know that methylation data is specific (for different tissues) and sensi-
tive to confounding factor, e.g., by age or sex, adaption of current GRS approaches 
is complex and needs deep profiling in construction of such risk scores. The analysis 
of whole biomarker genomic and epigenomic regions and prediction of disease 
predisposition, course and therapy response by risk scores could in future suffice 
for a diagnostic and decreasing cost of patients’ treatment.

7. Conclusion

The heritability of epigenetic modifications, including histone modifica-
tions and DNA methylation, provides a memory of cell function and identity. 
The dynamic reprogramming and other epigenetic patterns which could affect 
normal patterns of gene expression/genome stability during development could 
lead to an increased risk of CAs or complex diseases later in life. The sperm- and 
egg-specific DMT established during gametogenesis at imprint and non-imprint 
loci are susceptible to environmental factors. Embryogenesis may also present a 
window of opportunity for environmental influences on DNA methylation pattern. 
Changes in maternal dietary FA can affect the DNA methylation of offspring that 
could affect CA development. LINE-1 hypomethylation in the parental germline 
might also significantly affect genome stability during the fetal development. The 
MTHFR T carriers have lower enzyme activity, and dose of supplementary FA 
shows a positive relationship with DNA methylation patterns in humans. The lowest 
values of LINE-1 methylation, the surrogate marker for global DNA methylation, 
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were observed in mothers with MTHFR 677 CT+TT genotype and low dietary 
folate, suggesting the possibility of impaired DNA methylation causing maternally 
derived trisomy 21. Also, MTHFR genotype/diet and BMI combination influence 
LINE-1 methylation in mothers that could be a risk factor for DS/CHD+ develop-
ment in children. The studies discussed in this chapter provide new evidence to 
support nutrigenomic personalized FA treatment of mothers with risk genotype to 
prevent global DNA hypomethylation as potential underlying mechanism of CA 
development.
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