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Abstract

Peripheral nerve injuries remain a common clinical complication, and cur-
rently available therapies present significant limitations, often resulting in poor 
and suboptimal outcomes. Despite significant developments in microsurgical 
approaches in the last decades, no effective treatment options have been disclosed. 
Current research focuses on the optimization of such microsurgical techniques and 
on their combination with other pro-regenerative factors, such as mesenchymal 
stem cells or biomaterials. Mesenchymal stem cells present a remarkable capacity 
for bioactive molecule production that modulates inflammatory and regenerative 
processes, stimulating peripheral nerve regeneration. In parallel, efforts have been 
directed towards the development of biomaterial nerve guidance channels and 
nerve conduits. These biomaterials have been optimized in terms of biodegradabil-
ity, ability to release bioactive factors, incorporation of cellular agents, and internal 
matrix architecture (to enable cellular migration and mimic native tissue morphol-
ogy and to generate and bear specific electrical activity). The current literature 
review presents relevant advances in the development of mesenchymal stem cell 
and biomaterial-based therapeutic approaches aiming at the peripheral nerve tissue 
regeneration in diverse lesion scenarios, also exploring the advances achieved by 
our research group in this field in recent years.

Keywords: peripheral nerve injuries, nerve regeneration, cell-based therapies, 
biomaterials, animal models

1. Introduction

Peripheral nerve injuries result in temporary or permanent interruption of 
the connection between the nervous system and the effector organ, a phenomena 
defined as denervation, leading to functional changes and, ultimately, atrophic 
events [1]. These injuries bear significant impact to patients’ health and well-being 
at both functional/physiological and psychological levels [2]. The negative impact 
of such morbidities is not limited to human individuals, and veterinary patients 
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often present with comparable morbidities, contributing to the increased demand 
for improved therapeutic techniques [3]. Severe traumatic events (such as falls, 
road, or occupational accidents) result in the involvement of peripheral nerve 
structures in about 1–3% of the cases [3, 4]. Peripheral nerve affections may also 
present secondary to medical procedures such as surgeries, chemotherapy [5], and 
radiotherapy [6] or occur in consequence of chronic conditions such as neoplastic 
or metabolic diseases [7–9].

1.1 General anatomical features of the peripheral nerve

Peripheral nerve structures are composed of motor, sensory, and sympathetic 
fibers, forming specific nerve types that enervate the effector organs or sensory 
endings after emerging from the central nervous system (spinal cord) [10]. The 
cell bodies of sensory neurons are found in the dorsal root ganglia located in the 
intervertebral foramina, proximal to the site of fusion with the ventral roots. In 
the case of motor neurons, the cell body is situated in the central nervous system 
(CNS), more specifically in the anterior horns of the gray matter [11]. The nerve 
fiber is the functional unit of each nerve, consisting of axons and Schwann cells. 
Schwann cells are glial cells that are located longitudinally to the axons, of either 
myelinated or unmyelinated nerve fibers [10]. In the peripheral nerve, fibers 
of different diameters coexist, but only fibers with larger diameters are coated 
with a myelin sheath. In these cases, the Schwann cell wraps the axon segment 
concentrically. The small areas between two Schwann cells are called nodes of 
Ranvier, which enable the ionic exchange between the axon’s axoplasm and the 
intercellular space and the saltatory conduction of the nerve impulse. The “jumps” 
of the impulses between the different nodes of Ranvier accelerate signal conduc-
tion. The fibers with smaller diameters appear grouped, and, although enveloped 
by the Schwann cell membrane, they are not coated by a myelin sheath. Thus, 
these fibers do not have the necessary structure for saltatory conduction, and the 
transmission of impulses along the axons is slower. Besides the myelin production, 
Schwann cells and their basal membrane structurally orient the axons and are 
sources of trophic and growth factors, ensuring the maintenance of the neighbor-
ing axons [10, 12].

The peripheral nerves are lined by three layers of connective tissue. Each axon 
is directly involved by the endoneurium, a matrix of longitudinal collagen fibers 
of small diameter associated with a thin network of microvessels. It grants little 
mechanical protection, and the capillary network acts as blood-nerve barrier [13]. 
Within the endoneurial layer, there are myelinated or non-myelinated fibers in 
association with the Schwann cells. A nervous fascicle is a set of axons covered by 
endoneurium, and the interfascicular endoneurium is the supporting framework 
for the nerve fibers. Nerve fasciculi may vary in number and size, depending on 
the nerve and the more proximal or distal anatomical position. Each nerve fascicle 
is further coated with a layer of consistent connective tissue called perineurium. 
Perineurium comprises a set of collagen fibrils of oblique, circular, and longitudinal 
orientation, constituted by two lamellae, working as a diffusion barrier. The outer 
lamella presents endocytic vesicles responsible for molecular transport. The inner 
lamella has tight junctions between adjacent perineurial cells, regulating the trans-
port of macromolecules and contributing to the maintenance of the blood-nerve 
barrier. The perineurium is the greatest mechanical protection against tensile forces 
[14, 15]. The entire nerve trunk is further covered by a final layer of connective tis-
sue, named epineurium, representing about half of the total diameter of the periph-
eral nerve. In some locations, the epineurium extends internally and separates 
directly the nerve fascicles (interfascicular epineurium). The internal portion of the 
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epineurium has its own network of blood vessels and varying amounts of fat tissue. 
The external portion, enveloping the entire nerve, defines its anatomical shape. 
Although the epineurium contributes to protection against tensile forces, it does not 
form specific barriers [16]. The blood supply of the peripheral nerves is achieved 
through the small vessels of the epineurium, perineurium, and endoneurium. This 
intrinsic blood supply system presents particular features, such as endothelial 
tight junctions that aid in the diffusion of compounds. Thus, this intrinsic vascular 
network is crucial during nerve regeneration, as the blood-nerve barrier modulates 
its function after the injury, allowing the flow of growth factors, immune cells, and 
other macromolecules into the endoneurial space [17]. The extrinsic blood supply 
component consists of blood vessels with different diameter that originate from 
larger arteries and veins in the vicinity of the nerve. Once these vessels reach the 
epineurium, they branch out, and their ascending and descending branches supply 
the intraneural plexuses [10].

1.2 Peripheral nerve lesions and their functional consequences

The most common type of peripheral nerve injuries are those resulting from 
transections (usually because of penetrating traumas), over-stretching, and 
compression. The effects of nerve compression are reversible when the aggression is 
sustained for a short period [18]. Other lesions include those caused by lacerations 
and ischemia [2]. Primary nerve affections originate from a force directly applied to 
the nerve tissue, with secondary lesions developing from the vascular and ischemic 
damages. Peripheral nerves have notable inherent malleability due to their collagen 
content. When this adaptation threshold is exceeded, the lesion occurs [19]. For 
example, the small arteries responsible for blood irrigation of the peripheral nerves 
can be compressed by hematomas developed secondarily to the initial lesion, with 
subsequent restriction in blood supply [20]. The main consequences are motor, 
sensory, and autonomic functional disturbances and deficits in the body segments 
that undergo denervation [21].

Seddon introduced a grading system for PNI, initially considering three levels 
of injury: neuropraxia, axonotmesis, and neurotmesis [22]. Later, Sunderland 
expanded the system to five categories, with grades 1 and 5 corresponding to 
neuropraxia and neurotmesis, respectively, and grades 2–4 corresponding to sub-
divisions of axonotmesis [23]. Grade 4 and 5 injuries are those that require surgical 
intervention/reconstruction. Although this classification system correlates with the 
histological image of specific injury models, most lesions are mixed and encompass 
two or more components. In 1988 a sixth mixed injury was added to the Sunderland 
system by Mackinnon and Dellon (Table 1) [24].

Peripheral nervous system (PNS) has a superior regenerative capacity when 
compared to the CNS [25], due to the intrinsic and functional characteristics of 
each system: while the cell body of the peripheral nerve is not often affected during 
the lesion, CNS damage frequently results in direct neuronal death. Concerning 
the PNS, the age of the patient, category of the injury, and integrity of the cell body 
directly influence the regenerative efficiency [26]. Most importantly, the regenera-
tive efficiency relates to the time elapsed between the occurrence of the injury and 
the therapeutic intervention. This time frame influences speed of recovery of nerve 
structures, its function, and the capacity to respond to electrophysiological stimula-
tion, which are all essential factors in the prevention of muscular atrophy and organ 
dysfunctions [27].

When therapeutic or surgical interventions are delayed, the activation of 
Schwann cells and their stimulation over axonal growth have been demonstrated to 
be less effective, and more severe degenerative phenomena are observed [28, 29]. 
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Likewise, muscles and effector organs that do not receive nervous stimuli during 
long periods suffer more serious structural and contractile changes, and the recov-
ery of electrical communication becomes increasingly difficult to achieve [28].

1.3  Wallerian degeneration, endogenous regeneration, and response to nerve 
damage

The regenerative process is preceded by an initial physiological degenerative 
phase [30]. Immediately after the PNI (Figure 1a), a complex local response is 
established, involving both the axon segments of the injured nerve and the sur-
rounding non-neural cells. With no communication with the neuron’s cell body, the 
distal axonal segment maintains the ability to transmit electrical impulses for 48–96 
h after injury. However, the swelling of the axonal end occurs within few hours after 
injury, due to the accumulation of lysosomes and axoplasmatic organelles in the 
paranodal regions that cannot progress beyond the site of injury. These events incur 
in the stretching and thinning of adjacent myelin sheaths (Figure 1b). After 12–24 
h, the axonal microtubules disorganize, and the dissolution of the axonal skeleton 
begins. In the first or second days after injury, an influx of calcium ions activates 

Table 1. 
Peripheral nerve injury grading system and respective characteristics.
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calcium-dependent calpain proteins, which degrade axonal neurofilaments, releas-
ing granular debris (granular disintegration) (Figure 1c) [31].

Within few minutes of lesion, the Schwann cells promote the degeneration 
of the myelin sheaths associated with the distal segment. After 24–36 h, changes 
become evident throughout the distal segment, with swelling of Schwann cells, 
compressing the associated axons. Myelin destruction is installed within 48 h after 
injury, which is fragmented into ovoid structures by the digestive chambers present 
in the cytoplasm of Schwann cells. An identical process is observed on unmyelin-
ated Schwann cells, minus the fragmentation of the myelin [32]. Axonal and myelin 
fragments are then eliminated by cells with phagocytic capacity (macrophages and 
other myelomonocytic cells) and by the Schwann cells themselves (Figure 1c) [33]. 
The production and release of interleukins by these cells activates and stimulates 
the activity of other Schwann cells and fibroblastic populations [34, 35]. Once clear-
ance of all axonal and myelin debris occurs, macrophages are eliminated by local 
apoptosis or by reentering in circulation.

Simultaneously, the mitotically quiescent Schwann cells are activated and 
proliferate within their original basal lamina, organizing themselves to create lon-
gitudinally oriented structures. These structures are called bands of Büngner and 
are important in the next phase of nerve regeneration, providing biochemical and 
structural support to the new axonal sprouts as they proliferate (Figure 1d) [36].

After the degeneration phase, the regeneration begins, which can be suc-
cessfully concluded or abortive. The proximal segment undergoes an initial 
degeneration phase up to the last preserved internode in an identical manner to 

Figure 1. 
Schematic representation of degeneration and regeneration of the peripheral nerve after injury: (a) PNI. (b) 
Chromatolysis and terminal swelling in the proximal and distal axonal segments. (c) Degradation of axons 
and myelin with release of debris. Cell and myelin debris are phagocytosed by macrophages and Schwann 
cells. Axonal sprouts are formed. (d) The axonal sprouts grow with the support of the bands of Büngner. The 
remaining macrophages undergo apoptosis or return to circulation. (e) Regenerated neuron.
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that occurring in the distal segment but of smaller extension. The most important 
phenomenon of the proximal segment is chromatolysis, while genetic upregula-
tion and downregulation are established, metabolically preparing cells for the next 
phase (Figure 1b) [35, 37].

In the first 24 h after the injury, many axonal sprouts protrude from the most 
distal node of Ranvier of the proximal segment and bulge into a growth cone rich 
in metabolically active organelles. The progression of these sprouts is guided by the 
bands of Büngner [38], which are indispensable for guiding the expanding axons 
and secrete neurotrophic and transcription factors, creating a conducive environ-
ment to the growth of axonal buds [29]. Proteases are also released from the growth 
cone to degrade the fibrous, hemorrhagic, or inflammatory tissues and facilitate 
the progression of the axonal sprouts [39]. Only a few of the axonal extensions will 
contact the receptor at the distal ends (Figure 1d). In theory, an increased number 
of axonal sprouts reaching the target segment correspond to more extensive and 
effective neural regeneration (Figure 1e). The axonal extensions that do not reach 
the distal segment are eliminated to prevent misdirected and disorganized growth 
and possible development of neuromas. Nevertheless, occurrence of misdirected or 
erroneous axonal growth and its subsequent ineffective innervation of target tissues 
is often observed [40].

The quality and speed of nerve regeneration is improved when occurring in a 
well-vascularized site and in the presence of small amounts of scar tissue. Besides 
mechanical factors, the time elapsed between injury and complete repair and its 
functional recuperation prognosis depend on factors such as the age of the patient, 
the type of nerve, the site of the nerve that was injured, the cause of the injury and 
effect on neighboring tissues resulting from the injury [1, 2, 41, 42]. Nonetheless, 
even when endogenous repair mechanisms are effective, regenerated nerves often 
present thinner myelin sheets and shorter nodal lengths and result in functional 
deficits [43].

1.4 Therapeutic options for peripheral nerve injury

There are several therapeutic options available to address PNI, ranging from 
conservative to surgical approaches. Despite all efforts and advances achieved 
in recent years towards the effective repair of peripheral nerve after injury, the 
ultimate outcomes are still far from ideal, and recovery rates remain limited.

The success of any therapy prospected for the application in PNI will depend 
on the acceleration of the axonal regeneration rate achieved and modulation of 
the local microenvironment, therefore impacting on the chronicity of installed 
denervation and established consequences in the effector organs [44]. Thus, even 
if initial immobilization with physical therapy may be considered in some cases to 
ensure patient comfort, quick surgical reconstruction, associated or not to other 
therapeutic options, should be favored to promote improved nerve regeneration 
(Figure 2).

The primary repair of the injured nerve resourcing to microsurgical techniques 
is the recommended approach in case of neurotmesis lesion. To get the desired 
results, however, the expected success in peripheral nerve structure and function 
depends on the timing of reconstruction, and the intervention must be performed 
within a short period after the occurrence of the lesion. Epineural repair is one of 
such techniques, employed when tension-free coaptation of the nerve margins is 
possible within a well-vascularized local microenvironment [45]. In the first phase 
of the surgical technique, the injured nerve endings are intervened to remove 
necrotic tissue, cells, and inflammatory debris (originating from neurolysis), 
exposing the viable nerve stumps. In the subsequent phase, the two nerve tops 
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are re-approached and anatomically coapted to achieve a minimum gap between 
them. This small space is quickly filled in with blood, phagocytes, and a fibrin 
matrix and plays a critical role in the transportation of Schwann cells between the 
two segments of injured nerves. Perfect coaptation between the two nerve ends is 
achieved through the application of interrupted micro sutures (neurorrhaphy) in 
the epineurium, aiming at the maintenance of the physiological position of the nerve 
segments, avoiding relative rotation displacement [46]. In larger nerve structures, 
the application of a micro suture between nerve fascicles of the two nerve segments 
after a careful intranerve dissection may be necessary. Theoretically, this technique 
sustains better fascicular alignment, but the trauma resulting from the extended 
dissection and the exuberant scarring phenomena resulting from the presence of 
the suture embedded in the nerve structure entail undesired side effects, precluding 
the success of this nerve reconstruction technique [47]. When direct neurorrhaphy 
is not possible [48, 49], an alternative technique includes the connection between 
the proximal segment of a nearby healthy nerve and the distal segment of the 
injured one (neurotization). A reimplantation when nerve root avulsion occurs is 
also possible [50].

When the injury results in nerve tissue loss and a gap forms between the two 
nerve segments, grafting techniques may be used to bridge the tissue gap and 
guide the regenerating axons in a tension-free manner [51]. Nevertheless, graft-
ing techniques are not devoid of disadvantages [51, 52]. Autologous nerve grafts 
are one of the described options, due to the microstructural composition that 
facilitates axonal migration and the decreased risk of immune rejection reactions 
at the grafting site. However, this technique requires the sacrifice of a healthy nerve 
with proper dimensions and diameter, which is a limiting factor to its widespread 
application [53]. Allogeneic grafts are a complementary option, generally collected 
from cadaveric donors. Despite retaining the tissular microstructures, the risk of 
rejection at the receptor site increases, and concomitant immunosuppressive treat-
ments are required [54]. These allografts can be decellularized through enzymatic 
treatment, minimizing the risk of inflammatory reaction and reducing the necessity 
for immunosuppression, improving their success rate [55].

Figure 2. 
Schematic representation of therapeutic options for PNI treatment.
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Nerve sheets have also been used to promote the reparation of diverse injured 
tissues and in the promotion of nerve recovery after PNI, stimulating an early 
restitution of vascularization. The nerve sheet plays a scaffold function without 
promoting immunogenic reactions, ensuring cytokines and growth factors that 
stimulate axonal survival and regrowth [56, 57].

The use of nerve guidance conduits (NGCs), in a technique known as entubula-
tion or tubulization, presents as an alternative to the use of grafts. These conduits 
provide physical separation between the regenerative site and the neighboring 
reactive (fibrous) tissue, preserving the neurogenic factors secreted by the injured 
nerve terminations [58–60]. The NGCs are described to outperform organic grafts 
in small nerve reconstruction [55], but the general lack of internal microstructural 
characteristics limits their application in the bridging of small nerve gaps [61, 62], 
particularly when not combined with cell-based therapies or locally applied growth 
factors (Figure 3). Therefore, NGCs function mostly as structural guides to pro-
mote the alignment of the two nerve ends, while the repair process of the nerve gap 
itself is promoted by the complementary therapies applied [63]. The biomaterials 
deemed adequate to shape the NGCs are expected to comply with a set of criteria 
that guarantee their safety and efficacy, as listed:

• Biocompatibility with target tissue (not triggering local or systemic inflamma-
tory or organic rejection responses) [64]

• Absence of toxicity

• Biodegradability [65]

• Mechanical and structural stability during the regenerative process [66]

• Mechanical resistance to application of sutures and to the occurrence of mild 
local inflammatory reactions [66]

• Balanced flexibility and resistance to avoid compression of the nervous tissue 
during the reparation and to attenuate the hoarding of fibrous tissue and 
inflammatory secretions within the NGCs [67]

• Selective porosity and permeability (avoiding excessive loss of neurotrophic 
factors, tolerating entry of nutrients and oxygen, while controlling inflamma-
tory cell influx to the injury site) [59, 68]

• Capacity to direct axonal growth distally [69]

• Adequate technical production, sterilizations, storing, and manipulation 
procedures [70]

The selection of the most suited biomaterial must also address the required 
dimensions and wall thickness required for the proper alignment and connection 
between the two nerve ends, without tension or compression, factors that may 
influence the rate of regeneration [71]. Diverse materials have been described, 
from natural and synthetic resorbable to non-resorbable devices. Regardless of 
the selected option, the ideal biomaterial must be capable of protecting the nerve 
tissue, avoid the development of neuromas, diminish the occurrence of tissue adhe-
sions, guarantee a negligible inflammatory response, and stimulate regeneration of 
the axon [72].
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Although biomaterials alone can withstand, guide, and, in some extent, rees-
tablish the continuity of the injured axons, the effectiveness of this entire process 
remains globally limited, particularly if longer gaps are considered [62]. In the cur-
rent therapeutic scenario, the true advantages of using biomaterials reside in their 
combined use with cellular systems and neurotrophic factors [73]. Neurotrophic 
factors or neutrophins are produced and released naturally during the nerve regen-
eration process. These can be secreted by neuronal or non-neuronal cells, at both 
nerve ends, and are essential to conduct the regenerative sequence. Its function is 
mainly to stimulate neural differentiation and guide axonal growth [74]. Although 
these factors can be directly administered to the injured nerve, their application 
inside the lumen or on the wall of the NGCs (allowing a continuous release by 
diffusion into the lesion) presents as a more effective technique in longer nerve 
gaps. Without NGC support, the neurotrophic factors may diffuse freely towards 
neighboring tissues, deviating from the injury site, failing to support the regenera-
tive process [57]. Different neurogenic factors have been proposed in studies on 
axonal regeneration, including glial cell-derived neurotrophic factor (GDNF); 
neuregulin-1, superfamily growth factor beta; brain-derived neurotrophic factor 
(BDNF); neurotrophins 3, 4, and 5; insulin-like growth factors; nerve growth factor 
(NGF); ciliary neurotrophic factor; and a combination of several factors such as 
platelet-rich plasma [75, 76].

Regenerative therapies based on the use of cellular agents are a promise to 
improve the therapeutic efficacy of techniques developed to stimulate peripheral 
nerve regeneration. Embryonic stem cells are theoretically the most versatile regen-
erative population, but their affective applicability for clinical purposes remains a 
contradictory topic, mostly due to the extreme ethical issues associated [77]. In the 
regenerative processes, native to the peripheral nerve, the Schwann cells represent 
a crucial regulatory role and therefore have been proposed as regenerative enablers. 
However, important limitations envisioning their clinical application have been 
noted, such as the associated donor site morbidity, the challenging ex vivo cultur-
ing and expansion protocols, and the complex therapeutic application. In addition, 
Schwann cells’ availability is age-dependent (decreasing with the increasing age of 
the donor) [78].

In recent years, interest in the use of mesenchymal stem cells (MSCs) has 
increased significantly, particularly because of their assigned aptitude for cell 
and tissue differentiation and their capacity to adapt to each site of injury and to 
produce growth factors related to reparative phenomena. Also, they locally and 
systemically modulate the inflammatory reactions [79]. MSCs can be isolated 

Figure 3. 
Schematic representation of the application of an NGC in the rat sciatic nerve.
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from virtually all tissues on the organism (niches), such as the dental pulp, 
the synovial membrane, the olfactory mucosa, the placenta, and the umbilical 
cord Wharton’s jelly [80–83]. To be classified as “true” MSCs, these cells have to 
manifest a set of specific characteristics: plastic adherence under standard culture 
conditions; lack of expression of hematopoietic markers (CD11b, CD14, CD34, 
CD45, CD79α, or CD19) as well as major histocompatibility complex II/human 
leukocyte antigen-DR; expression of the unspecific markers CD44, CD73, CD90, 
CD105; and capacity to, at least, trilineage in vitro differentiation (osteogenic, 
chondrogenic, and adipogenic) [84]. The ease of expansion of these popula-
tions, their capacity of differentiation in different cell lines, the tropism for lesion 
sites, their immunoprivileged phenotype, and capacity of trophic stimulation and 
modulation of tissue functions turn them into excellent candidates for therapeutic 
adjuvants [85]. Regarding the immunoprivileges of MSCs, these cells have long 
been referred as hypoimmunogenic, with the ability to cross most of the histo-
compatibility barriers without triggering an immune response [86]. However, 
some studies identified the production of antibodies against these populations 
and immune rejection after allogeneic donation, raising debate on this topic [87]. 
MSCs administered from allogeneic donations have been described to promote 
infiltration of macrophages and neutrophils at the injection site [88, 89] and to 
stimulate a donor- and dose-dependent blood-mediated inflammatory reaction 
[90]. There are also references to adverse clinical reactions following intra-articu-
lar administration of allogenic MSCs in the equine model [91, 92] and evidence of 
early death of MSCs after administration [93]. To fully understand the potential 
and limitations of allogeneic MSC therapies, deeper investigation is required on 
the immune response elicited and whether such responses may affect the thera-
peutic outcome.

In specific PNI scenarios, MSCs are described to intervene through several 
mechanisms, namely, secreting neurotrophic factors that stimulate neurogenesis 
and proliferation of Schwann cells; undergoing neurogenic or neuroglial (Schwann 
cells) differentiation; or modulating the local inflammatory response and the 
Wallerian degeneration [94]. The neurotrophic factors produced and secreted by 
MSCs include ciliary growth factors, neurotrophins, endothelial growth factors, 
glial-derived neurotrophic factors, NGF, and BDNF [29]. Remyelination of injured 
axons is also promoted by the MSCs since they can differentiate into cells present-
ing morphology and phenotypical markers of Schwann cells, becoming capable of 
promoting myelination [85, 95, 96].

Despite the prospected advantages, the optimum mode of administration of 
MSCs to the lesion site is still unclear. The simplest technique would be the micro-
injection of a cellular suspension at the injury site, but associated risks include 
trauma to resident cells and intraneural architecture and uneven cell distribution. 
The individual application of the MSCs, although being associated with improved 
outcomes, still denotes limited advantage over the traditional surgical techniques 
[97]. An alternative to the direct injection of the MSCs is their combination with a 
supporting matrix (such as fibrin) and their combined deposition at the lesion site 
[98]. Overall, the efficacy of MSCs is suggested to increase when in association with 
biomaterials (such as NGCs) and growth factors, granting increased success rate 
and functional recovery [99].

2. Biomaterials and peripheral nerve regeneration

Diverse biomaterials have been proposed in attempt to establish the best options 
to promote peripheral nerve regeneration after PNI.
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2.1 Biological nerve conduits

Natural polymers, usually based on carbohydrates or proteins, are frequently 
applied as scaffolds to promote the regeneration of different tissues. Natural or 
biological biomaterials are described to easily stimulate cell adhesion, migration, 
proliferation, and growth. However, batch-to-batch variations of raw materials 
are often observed and limit the standardization of final product composition and 
manufacturing protocols [100].

2.1.1 Collagen

Collagen is seen by many researchers as the “perfect” material for regenerative 
medicine applications, since it is a major protein constituent in the extracellular 
matrix. Collagen has a regenerative effect on nerve tissue by transducing essential 
signals that stimulate cell adhesion, migration, proliferation, survival, and differen-
tiation. Besides, it creates a supportive environment for connective tissues sur-
rounding the blood vessels, ligaments, bone, cartilage, tendons, and skin, in both 
natural environment and regeneration sites. Collagen can be found and isolated 
from various animal tissue sources.

The advantageous characteristics of collagen include its physical resistance, low 
level of antigenicity, good biological compatibility, and the ability to be tailored and 
cross-linked, modulating water uptake and mechanical degradation rates. Of the 27 
different types of collagen identified to date, the most abundant and widely inves-
tigated in biomedical engineering and regenerative medicine is the type I [101], 
which constitutes approximately 30% of mammalian musculoskeletal tissue [102]. 
For nerve regeneration, collagen type IV, a non-fibril forming collagen and the main 
component of the basement membrane, must also be considered due to its interac-
tion with the Schwann cells [103]. Studies on the effectiveness of equine collagen 
type III have also been performed [104].

Collagen has been utilized as a scaffold, in the form of a gelatinous matrix, to 
stimulate neural regeneration, but it can also be processed in different formats of 
three-dimensional structures like gels, porous sponges, sheets [101], particles, and 
foams [105]. The application of collagen filaments (not organized in a conduit shape) 
promoted an effective guided axonal regeneration of 20 mm nerve defects [106], 
and NGCs containing a gel of collagen with Schwann cells were described to induce 
the growing of new neurites [107]. Collagen fibers within gels can be longitudinally 
aligned using magnetic fields and result in an improved neurite outgrowth when 
compared to that observed with randomly oriented collagen fibers [108]. Moreover, 
collagen NGCs containing a porous collagen glycosaminoglycan matrix promoted 
regeneration levels similar to those resulting from nerve autograft [109, 110]. Finally, 
commercial collagen type III membranes (commercially available as GentaFleece®, 
Baxter, Nuremberg, Germany) were demonstrated to promote the regeneration of 
rat sciatic nerves undergoing neurotmesis [104] and axonotmesis [111].

Various collagen-based conduits/devices are FDA-approved. In the process of 
manufacturing these NGCs, the matrix is molded tubularly while preserving the 
natural fibrillar characteristics of the collagen:

• NeuraGen® (approved in 2001) was demonstrated not to cause neuropathy 
by compression [112], a common observation when using rigid materials, and 
sustained nerve repair in the period of 4 weeks [110].

• NeuroMatrix™ and Neuroflex™ (both approved in 2001; Collagen Matrix, Inc., 
Franklin Lakes, NJ, USA) are flexible, resorbable, and non-friable NGCs that 
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present a semipermeable tubular matrix, holding pores with diameters between 
0.1 and 0.5 μm, thus allowing the transference of nutrients. Both nerve conduits 
are absorbed within 4–8 months after implantation, differ in the kink resistance, 
and are indicated for application in nerve defects smaller than 2.5 cm [68].

• NeuraWrap™ (2004; Integra LifeSciences Co), presenting the same consti-
tution of NeuraGen®, is described to promote minimal scar tissue forma-
tion due to the porous outer membrane, capable of resisting compression 
by the neighboring tissue. Also, NeuraWrap™ promotes minimal nerve 
encapsulation and entrapment and avoids the formation of neuromas. 
Finally, it promotes an environment conducive to regeneration, because of a 
semipermeable inner membrane that allows the exchange and transport of 
nutrients [113].

• NeuroMend™ (2006; Collagen Matrix, Inc.) is a semipermeable device, 
designed so it can be unwound and spontaneously curl around the injured 
nerve, adapting perfectly to its shape and dimensions. The semipermeable 
membrane also allows the circulation of nutrients, regulating the movement of 
fibroblasts and inflammatory elements [114, 115].

Besides the available commercial nerve conduits, other studies describe the 
utilization of pure or blended collagen devices. Nerve conduits releasing neuro-
trophic factors such as GDNF and NGF were reported to result in improved repara-
tion of nerve defects when compared with commercially available products such as 
Neurolac™ or NeuraGen® [57]. Micro-patterned tubular collagen matrices applied 
to the rat sciatic nerve model also demonstrated good pro-regenerative capacity 
[116]. In a work presented by Yang and Chen, the interaction between composite 
scaffolds obtained from blending a cross-linking chitosan with icariin and collagen 
revealed successful cell attachment, establishing the material as suitable for the sup-
port of cells in nerve regenerative therapies [117]. Cerri et al. compared the efficacy 
of collagen scaffolds with different porous microstructures in promoting sciatic 
nerve regeneration in the rat model of axonotmesis. A complete replacement of the 
conduit by normal nerve tissue was observed 60 days after injury, associated with 
a progressive regulation of genes and myelination, interaction between axons and 
Schwann cells, and angiogenesis [118].

2.1.2 Chitosan

Chitin is a biopolymer present in the shells of crustaceans and cuticle of and 
exoskeleton of arthropods [119]. Chitosan can be obtained from the chitin, by a 
process of partial deacetylation [120] commercially available by alkaline hydrolysis 
[121], and can be found in nature in some fungi [122]. Because of its characteristics, 
chitin, chitosan, and its complexes have already been explored for different medical 
and industrial applications, namely, for wound treatment, drug delivery systems, 
and space-filling implants. These biomaterials present positive features such as 
good biocompatibility and biodegradability; nontoxic character; low price; pos-
sibility of being modified chemically and enzymatically; antimicrobial properties; 
controlled release of components such as cytokines, antibiotics, and extracellular 
matrix components; promotion of cell adhesion; and maintenance of cell and tissue 
viabilities. These can also be shaped to create different forms, from films, sponges, 
or fibers to hydrogels and complex scaffolds [123, 124]. The described features 
turn these materials into adequate options for peripheral nerve reconstruction 
[125], with their potential to promote nerve regeneration demonstrated in vivo and 
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in vitro [63]. One of the main disadvantages assigned to the use of chitosan matrices 
is its reduced mechanical strength when exposed to physiological conditions, failing 
to preserve its initial shape after implantation [126].

Chitosan conduits modified with different biodegradable polymers have been 
developed and evaluated.

Cheng et al. tested chitosan-poly(l-lysine) composite films, considering that the 
hydrophilic nature of chitosan appears to be essential to prevent the development 
of glial scars and promote nerve regeneration, observing enhanced cellular affinity 
and outcomes when compared to collagen films [127]. Similarly, the use of gelatin 
mixed with chitosan composite films displayed increased elasticity of the conduits 
and greater nerve cell affinity, besides promoting cell differentiation [128]. Wang 
et al. was able to improve nerve reparation along a large gap in the sciatic nerve of 
dogs using chitosan-polyglycolic acid (PGA) grafts, noting the reestablishment of 
nerve continuity and functional recovery [129].

Chitosan NGCs modified with inorganic components were also explored. 
In a study by Gärtner et al., chitosan tubes modified with apatite were used to 
improve their mechanical strength and avoid swelling. The application in the 
rat model of axonotmesis allowed the observation of neovascularization and 
macrophages phagocytizing cell debris, thus demonstrating functional Wallerian 
degeneration [130].

Itoh et al. studied the efficacy of chitosan tubes obtained from tendons of the 
Macrocheira kaempferi crab in the rat sciatic nerve submitted to neurotmesis. Some 
tubes also had laminin and laminin peptides adsorbed, to favor the adhesion of 
Schwann cells and the growth produced by the neurites. At weeks 2–4 post implan-
tation, the tubes revealed inflammatory and macrophagic infiltration due to some 
fragmentation of the tube wall, with evidence of peripheral nerve regeneration 
after 6 weeks. In tubes enriched with laminin and laminin peptides, the regenera-
tive process occurred over the internal wall, while in the other tube formulation, 
it was observed inside the lumen. Nociceptive function recovery was smaller than 
that observed with the use of isografts [131]. Wang et al. also confirmed that the 
use of chitosan laminin-peptide-treated tubes resulted in an increased number of 
regenerated axons, many of them adhering to the inner layer of the wall, that is, 
the one where these substances had been covalently bound with a nano-/microfiber 
mesh [125].

The use of chitosan in the form of nanocomposite, in association with gold, was 
also described. These nanoparticles improved the mechanical force of chitosan and 
stimulated the proliferation of neural cells and gene expression, thus resulting in 
better and faster functional recovery in a neurotmesis model, with more myelinated 
axons than the use of the isolated composite [132].

Wang created a nonwoven nano-/microfiber mesh tube comprising on an inner 
layer of a nano-/microfiber chitosan mesh and an outer layer of chitosan film. It was 
then used in the treatment of a rat sciatic nerve undergoing neurotmesis, compar-
ing with simple chitosan nano-/microfiber mesh tubes and chitosan film tubes. The 
results showed that the chitosan nano-/microfiber mesh tubes displayed mechani-
cal properties capable of preserving the tube space, guaranteeing a good scaffold 
for migration and cell adhesion, and facilitated the humoral flow that stimulates 
regeneration [123].

The importance of the acetylation of chitosan in promoting nerve regenera-
tion was also identified by other authors. Freier et al. compared the compressive 
force of chitin gel tubes and chitosan tubes with different degrees of acetylation 
and concluded that the lesser the acetylation rate, the superior the mechanical 
strength, lower the degradation rate, and greater the adhesion and viability of the 
cells applied. The main factor in determining cell compatibility with chitosan was 
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its charge, depending on the availability of amine groups. Since for lower degrees of 
acetylation there is an increase in charge density, it results in increased cell adhesion 
[121, 122]. In the works of Haastert-Talini et al. and Gonzalez-Perez et al., it was 
determined that the optimal degree of acetylation to stimulate nerve reparation is 
about 5%. Acetylation values around 2% cannot guarantee axonal regeneration, 
whereas acetylation around 20% degrades too early and has poor mechanical stabil-
ity [133, 134].

The benefits of using chitosan may be improved by the modification of its 
properties but also by the concomitant use of other therapies such as growth factors 
or MSCs. The combined approaches aim to speed up the regenerative process and to 
decrease the secondary effects related to the degradation of chitosan. The chitosan 
polymer and its short chains do not cause an inflammatory response [135], but the 
fragments of its degradation can cause inflammation, leading to apoptosis of the 
regenerating cells and proliferation of fibrous tissue around the NGCs [119].

In the works of Patel et al., chitosan tubes enriched with laminin and GDNF 
were used [136]. GDNF is a trophic factor that promotes axonal regeneration, 
prevents atrophy of motor neurons, and relieves neuropathic pain [137]. Using this 
combination, nerves with a neurotmesis injury presented superior functional recov-
ery to those submitted to unblended chitosan tubes. These results corroborate that, 
although they can promote nerve repair alone, isolated chitosan tubes have limited 
potential for regenerative promotion. Hsu et al. tested different tubes to promote 
nerve regeneration, comparing simple silicone tubes, laminin (LN)-modified 
chitosan scaffold in silicone conduit, and laminin (LN)-modified chitosan scaffold 
with bone marrow MSCs (BMSCs) combined with silicone conduit. The laminin 
(LN)-modified chitosan scaffold in silicone tubes was surrounded by macrophagic 
and eosinophilic hyperplasia granulation tissue after the experimental period, 
which was not observed in the presence of MSCs. This indicates that MSCs not only 
prevent the death of neurons and stimulate nerve regeneration but also reduce the 
inflammation and fibrotic development that may eventually be triggered by the 
long-term implantation of chitosan [138].

Lauto et al. tested the use of chitosan in PNI cases in a distinct perspective, 
developing an adhesive formula comprising chitosan, indocyanine green, acetic 
acid, and water. Applied in promoting rat tibial nerve regeneration, this alternative 
method promoted superior nerve repair, allowing connections between nerve ends 
stronger than those achieved with the use of fibrin glue. This chitosan adhesive 
presents several advantages when compared to traditional fibrin glue, namely, its 
insolubility in physiological fluids, its hydrophilicity, and presenting adhesiveness 
before laser activation [139].

The mechanical properties of the chitosan can be improved by an adjustment 
with a silane agent such as γ-glycidoxypropyltrimethoxysilane (GPTMS), improv-
ing its mechanical strength by promoting the wettability of chitosan surfaces. Some 
works have confirmed that integrating silicates into the chitosan membrane honed 
their cytocompatibility, making the combinations good candidates to be applied 
clinically [140–143]. Following these works, Amado et al. applied porous chitosan 
GPTMS membranes with about 110 μm pores and 90% of porosity in rat sciatic 
nerve injuries to study its effect on nerve regeneration [144]. The results showed 
that using porous hybrid chitosan membranes promoted a significantly better nerve 
fiber regeneration than solid membranes. The porous membranes, with a greater 
surface-to-volume ratio, showed the capacity to maintain mechanical strength [145] 
and the ability to adapt to different shapes. Its use allows an adequate revasculariza-
tion of the regenerating tissue, reestablishment of metabolic communication with 
the surrounding microenvironment, and maintenance of nutrient and oxygen 
exchanges at adequate levels [146]. These conditions promote the proliferation of 
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Schwann cells, neurite extension, and remyelination, leading to an increased num-
ber of axons and nerve fibers and even increased thickness of myelin sheath [144].

Simões et al. also compared the use of solid and porous membranes in sciatic 
nerve axonotmesis and neurotmesis models, having observed a significant infiltra-
tion of multinucleated giant cells and some mast cells into the porous membrane 
and the development of an inflammatory reaction capsule with the solid membrane. 
These differences in the established inflammatory reactions may therefore justify 
the improved regeneration observed with the use of the porous membrane. Since 
the membranes with pores present a bigger surface-to-volume ratio, a higher con-
tact with the immune system of the host can justify the greater infiltration of cells 
[147]. Simões et al. further compared the use of lacquered-poly(lactide-co-glycolic) 
acid test tubes with acetic acid and glycolic acid in a ratio of 90:10 (PLGA 90:10) 
with the use of chitosan porous membranes in the neurotmesis model through 
different surgical methods. The results revealed that although nerve regeneration 
occurred in all groups of animals, those with tubulization with chitosan presented 
better nerve regeneration and functional recovery than those receiving PLGA tubes 
[63]. A similar study was performed by Shirosaki et al., and the results also revealed 
that, although nerve regeneration was achieved in all experimental groups, chitosan 
porous hybrid tubulization was the treatment that promoted better nerve regenera-
tion and functional recovery [141]. The ability of the porous chitosan GPTMS to 
promote nerve regeneration is probably related to its ability to promote the expres-
sion of genes related to myelin and the ions of silica that stimulate the expression of 
different glycoproteins [148]. This allows the nerve fibers to regenerate along the 
chitosan structure, establishing an extensive perineural connective architecture that 
ensures axonal fasciculation [63].

In June 2014, a commercial product was launched consisting of a chitosan-based 
nerve conduit with the name Reaxon® Nerve Guide, manufactured by Medovent 
GmbH (Mainz, Germany) and following the international standard DIN EN ISO 
13485 [119]. The Reaxon® is flexible and resistant to collapse, and transparent, 
which facilitates the insertion of the nerve ends and the application of the anchor-
ing sutures. The electrostatic interaction of the surface of Reaxon® Nerve Guide 
(positively charged) and the molecules or cells used in nerve repair (negatively 
charged) promotes the regenerative phenomena [149]. Fornasari et al. conducted 
a trial study on the mouse model using Reaxon® Nerve Guides, comparing the use 
of the commercial tube alone with a combination with muscular tissue (for the 
production of neuregulin 1, a stimulant of activity and survival of Schwann cells) 
and autografts. Both single tubes and tubes associated with skeletal muscle tissue 
positively promoted nerve regeneration and return to nerve function [150].

2.1.3 Synthetic nerve conduits

Polymers of synthetic origin have been applied in recent decades as a material 
for surgical sutures with relative success, and many of them have already been 
approved for clinical application. These materials present several advantages when 
used as scaffolds and neural tube guides. First, they can be adapted and produced 
in a wide variety of mechanical properties and degradation rates. Its well-described 
characteristics indicate a relatively low risk of immune reactions. Finally, the 
synthetic polymers can be combined to create new unique mechanical properties. 
Nevertheless, the biocompatibility of some of these materials may be reduced due to 
the difficulty of cells to adhere and survive.

Since non-biodegradable tube guides have the disadvantage of requiring a 
second surgery to remove the implant, research has focused on the development 
of biodegradable synthetic materials with an acceptable degradation time. The 



Peripheral Nerve Disorders and Treatment

16

products resulting from degradation phenomena must not have toxic effects or trig-
ger foreign body reactions. In addition, the biodegradable synthetic materials can be 
adapted towards the requirements necessary for their purpose, namely, serving as 
a support for the cellular systems used [151]. Examples of biodegradable synthetic 
materials are herein described:

2.1.4 Poly(lactic-co-glycolic acid)

Poly(lactic-co-glycolic acid), a copolymer resulting from the reaction between 
the biodegradable poly(glycolic acid) (PGA) and poly(lactic acid) (PLA), is one 
biomaterial presenting appropriate biocompatibility and biodegradability.

The isolated PGA is a rigid, thermostatic, highly crystalline polyester with high 
tensile modulus and high melting point but with low solubility in organic solvents. 
Its degradation leads to the production of glycolic acid, whose detrimental effects 
on growing cells are limited. Because of its hydrophilic nature, PGA has been used 
in the past to produce the first fully synthetic absorbable sutures [101]. A crimped 
PGA tube (Neurotube® Synovis Micro Companies Alliance, Birmingham, AL, 
USA) was approved as the first synthetic, highly porous, and bioresorbable NGCs 
approved by FDA in 1999 and was used for the repair of peripheral nerve injuries 
[152]. More recently, the use of BMSCs and Schwann-like cells (that had differenti-
ated from BMSCs) in combination with Neurotube® in autografted rat facial nerves 
after neurotmesis was reported. At 6 weeks after surgery and application of the 
therapeutic combinations, it was found that facial nerve regeneration was improved 
by the cell therapy associated with PGA tubes [153]. However, PGA may also pres-
ent some drawbacks. After implantation, ester bonds of the polymer may undergo 
hydrolysis, leading to degradation and production of derived metabolic products, 
triggering pH changes in the implantation site after organic absorption [101]. To 
improve the characteristics, PGA copolymers with PLA were developed, resulting 
in a more hydrophilic material.

PLA can be produced based on lactic acid obtained from natural products such 
as wheat, corn, or sugar beet, exhibiting good biocompatibility [154]. The speed 
of degradation of the scaffolds can be modified by varying the proportion of the 
different polymers. Lactic acid is more hydrophobic because of an extra methyl 
group, which not only limits water uptake by about 2% but also decreases hydroly-
sis rate compared to PGA [101], despite PGA being less soluble in organic solvents 
than PLA [155]. This biomaterial has been used as NGC in some studies. One 
study reports the application of PLA NGCs subjected to microabrasion in injured 
peripheral nerves of rat, promoting the regeneration of the nervous gap 8 weeks 
after the surgical intervention [156]. In a different study, a PLA nerve conduit 
obtained through a process of immersion precipitation was used to connect a 
20-mm-long lesion in the sciatic nerve of the rabbit. These conduits sustained 
macropores in their external layer and micropores in their internal layer, allowing 
a better outflow rate than the inflow rate. This treatment resulted in up to 80% 
functional recovery after 18 months [157]. In another study, the authors compared 
the use of nerve conduits comprising PLA nonwoven fabric, silicone tubes filled 
with type I collagen gel, and autologous nerves in the regeneration of the buccal 
branch of the facial nerve presenting a 7 mm lesion. At 13 weeks after surgery, 
myelinization degree and axonal diameter were higher in the PLA tube-treated 
groups [158]. Still in another study, a microporous micro-patterned PLA obtained 
by photolithography was tested in the regeneration of a rat sciatic nerve with a 
15 mm defect, with observation of good regeneration capacity and functional 
recovery, particularly when used with neural stem cells on the micro-patterned 
surfaces [159].
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The copolymer of PLA and PGA (PLGA) presents increased hydration 
and degradation rates than the individual homopolymers [160] and has been 
described in multiple studies to assess for its ability to promote nerve regeneration 
[61]. Its most relevant features are its good biodegradability and biocompatibility 
and possible tuning of degradation time [161]. Its effectiveness is potentiated 
when combined with growth factors [162] and cell therapies [163, 164] or with 
the inclusion of a 3D support structure within the conduit [161]. Although these 
conduits show significantly better results than other biomaterials, they are not 
easily adaptable for different gap lengths nor for the release of different drugs. 
There are several drug delivery mechanisms described, such as microspheres, 
coatings, cross-linked polymers, or lumen filling with different solutions, but 
there is still little flexibility in the choice of active compounds and their concen-
trations in different PNI [165].

Over the years, PLGA has been one of the most frequently used biodegradable 
polymers for biomedical studies. Its degradation leads to the production of glycolic 
acid, and even if the effect of this product on the cells is reduced, PLGA degradation 
products are more acidic than other products such as collagen, which may eventu-
ally trigger changes in the underlying tissues [154]. Mechanically, its degradation 
characteristics can be controlled by changes in its molecular weight, copolymer 
ratio, and crystallinity, allowing for degradation periods varying from months to 
years, based on the proportion between the two polymers [166].

2.1.5 Poly(d,l-lactide-co-ε-caprolactone)

Poly-ε-caprolactone is an aliphatic, bioabsorbable, and biocompatible polyester 
commonly used in pharmaceuticals for wound treatment [167]. Its production is 
achieved by chemical synthesis from crude oil. Since PCL degrades by hydrolyzing 
its ester linkages under physiological conditions, it has gained prominence among 
implantable biomaterials. Poly(d,l-lactide-co-ε-caprolactone) (PCL) is a copo-
lymer between the caprolactone and lactic acid monomers, and 80/20 copolymer 
nerve conduits can be produced by ink-jet systems [168]. Its degradation rate is 
slower than PLGA (about 16 months). In addition, the PCL degradation products 
are less acidic than those of PLGA, with less damage to the surrounding tissues. 
Finally, the PCL is transparent, making it easier to position the nerve stumps. 
However, its poor flexibility may hamper the microsurgical technique during 
implantation [164].

One study demonstrated that cells with genetic modifications to release NGF 
could adhere, survive, and release NGF for extended periods (>8 weeks) when cul-
tured onto 80/20 PLA-PCL scaffolds, while 25/75 and 40/60 PLA-PCL copolymers 
were deemed unable to sustain cellular adhesion and survival [169]. Other studies 
demonstrated the in vivo biocompatibility of PCL membranes, tube guides, and 
nerve cells, facilitating cell adhesion, differentiation, and growth [144, 170].

Neurolac™ (commercially available PCL conduit) application in vivo results in 
conflicting reports. While some studies have attest the efficacy of PCL to promote 
both morphological recoveries and functional improvements in neurotmesis and 
axonotmesis lesions of rat sciatic nerves [170, 171], others report no beneficial 
effects [172]. Luís et al. compared the effectiveness of PLGA 90/10 and PCL 
NGCs in helping nerve regeneration along the 10 mm gap of the rat sciatic nerve, 
further comparing this material with conventional approaches of end-to-end 
neurorrhaphy and autologous graft. Both types of biomaterials promoted func-
tional improvements and were considered as good options for tubular NGCs, and 
their degradation characteristics did not seem to have an impact over the level of 
nerve regeneration. After the 20-week study period, PGLA presented accelerated 
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biodegradation when compared to PCL [170]. The efficacy of PCL membranes 
(Vivosorb™) in the promotion of nerve regeneration after neurotmesis was tested 
in combination with MSCs from the Wharton’s jelly (WJMSCs), demonstrating the 
differentiation of the MSCs into neuroglia-like cells, expressing specific phenotypi-
cal markers. In vivo tests performed over 20 weeks resulted in functional recovery 
and significant morphometric improvements [164].

2.1.6 Polyvinyl alcohol

Polyvinyl alcohol (PVA) is a nondegradable and water-soluble polymer whose 
potentialities to be used as NGC have recently been explored [173–175]. Currently 
there is a non-absorbable PVA hydrogel (SaluBridge, SaluTunnel, SaluMedica LCC, 
Atlanta, GA, USA). Its 3D nanofibrillation structure confers exceptional biocom-
patibility, water intake capacity, elasticity, mobility and saturability, and high 
resistance to mechanical deformation [176]. In one study, a tubular PVA conduit 
was tested for its effects over axonal growth using rat dorsal root ganglia, consider-
ing its wall thickness, its level of porosity, and the Schwann cell seeding density. It 
was identified that lower porosity and higher wall thickness delayed the regenera-
tion of the axons, with the best results observed with 75% porosity, associated with 
Schwann cell-seeded conduits [177].

More recent studies address the combination of PVA with other materials. 
Ribeiro et al. studied the effect of PVA loaded with electrically conductive materials 
(polypyrrole and carbon nanotubes) on axonotmesis injuries. The combination of 
PVA and carbon nanotubes displayed improved biocompatibility, electrical con-
ductivity, and better histomorphometric results [178]. After neurotmesis injury, the 
association of MSCs with the PVA, carbon nanotubes promoted better nerve fiber 
regeneration, suggesting a positive synergistic effect [179].

3. Cellular systems

Historically, neural-derived cellular systems were the first to be proposed for 
neural tissue regeneration (as the N1E-115) and are briefly addressed herein. Later, 
MSCs isolated form a variety of niches that have been proposed for the purpose, and 
some populations are gaining prominence due to technical and ethical minutiae, 
such as perinatal, dental, and olfactory mucosa-derived MSCs (Table 2).

Table 2. 
Summary of characteristics of the cellular systems used by our research group in cell-based therapies for PNI 
research.
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3.1 N1E-115 cells

Neurotrophic factors may stimulate several important components of neural 
regeneration process, involving the survival and regrowth of sensory and motor 
nerve fibers. Thus, in vivo Schwann cell differentiation and axon remyelination 
[180] may vary depending on the method of releasing these factors. The delivery 
devices must be highly complex to allow controlled release. In this context, N1E-
115, a cell line obtained from mouse neuroblastoma C-1300 [181] and able to 
follow a neurodifferentiation when exposed to dimethylsulfoxide [182], adenosine 
3′;5′-cyclic monophosphate [183] or serum removal started to be studied.

These cells were already used in both axonotmesis and neurotmesis lesions 
because of its capacity to produce and deliver different neurotrophic factors capable 
to promote axonal regeneration [184]. The advantage in using N1E-115 cells to 
increase the local concentration of neurotrophic factors is thought to be related to 
the fact that the concentration of these factors is similar to those observed in endog-
enous cell production and they are released directly in the proximity of the region 
under regeneration. The measurement of [Ca2+]i allowed to establish 48h under 
differentiation as the appropriated period, presenting N1E-115 cells in this moment 
characteristics of neurons without entering the process of cell death associated with 
[Ca2+] modifications [184, 185].

Different studies were performed to infer on the pro-regenerative capacity of the 
N1E-115 cell line in the peripheral nerve injury, associating these cells with bioma-
terials such as collagen [104, 111], hybrid chitosan [144], and PLGA 90/10 [186]. 
Despite all the expected advantages of using biomaterials in association with these 
cells, the results obtained did not show a special efficacy of N1E-115 cells in pro-
moting nerve regeneration regardless of the type of lesion [144]. Only slight motor 
improvements were observed with the combination of collagen and N1E-115 in 
axonotmesis lesions, while no improvements were noted in neurotmesis lesions 
previously submitted to end-to-end suture. No functional improvements and poor 
morphometric regeneration was obtained from the use with PLGA [186]. It was 
hypothesized that the physical presence of N1E-115 cells at nerve scaffolds may have 
generated a consumption of local blood supplied nutrients and oxygen, arresting 
the positive effect of local neurotrophic factor release.

3.2 Perinatal mesenchymal stem cells

Perinatal tissues represent the most primitive MSC niches after the embryonic 
stage and those that have suffered the least genetic alterations because of envi-
ronmental exposure, aging, or occurrence of pathological changes [187]. Among 
these tissues, MSCs can be obtained from different sites, namely, umbilical cord 
blood and stroma (Wharton’s jelly), amniotic fluid, and membrane (Figure 4a). 

Figure 4. 
(a) Equine UC-MSCs in culture (P1). (b) Human dental pulp MSCs in culture (P2). (c) Rat olfactory mucosa 
MSCs in culture (P4). Magnification: 100×.
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Since perinatal tissues are traditionally discarded after birth, MSCs can be isolated 
through noninvasive procedures. Once isolated, it is easy to establish cultures with 
these cells and promote their neural differentiation [188, 189]. The list of advan-
tages associated with the use of MSCs with perinatal origin includes the fact that 
they allow an autologous cell source, are easily processed and cryopreserved, and 
present low immunogenicity. Besides that, they have a low tumorigenic potential 
when compared to other types of MSCs [190] and have excellent cell growth capaci-
ties. The quality of these cells can vary between patients, depending on the specific 
characteristics of the tissues of each donor, the transport time, the conditions to 
which the cells were subjected during the same, and the processing and cryopreser-
vation techniques applied [191].

The umbilical cord stroma (Wharton’s jelly) is a singular primitive proteoglycan 
connective tissue that protects the blood vessels of the umbilical cord and the cells 
within [192]. The amount of cells that can be isolated from the Wharton’s jelly 
(WJMSCs) is comparatively superior than those that can be isolated from other 
niches. These cells lack the expression of hematopoietic markers [99, 193], express 
low levels of histocompatibility complex (MHC) class I, are negative to MHC II, are 
also easily expanded in culture and plastic adherent, exhibit a normal fibroblastic-
like shape [190], and have excellent population doubling times [194]. The in vitro 
differentiation capacity of these cells is also ample towards several mesodermal 
cell types such as osteocytes, chondrocytes, adipocytes, skeletal myocytes, car-
diomyocytes, hepatocytes, insulin-producing cells, and, of particular importance, 
neuron-like cells which differentiate when exposed to a neurogenic culture medium 
for a period of 96 h [190]. WJMSCs have the capacity not only to differentiate into 
Schwann-like cells but also to produce and release varied neurotrophic factors such 
as BDNF, NGF, and neurotrophin-3, stimulating axonal growth in vitro [195]. In 
addition, transformed MSCs still present viability during 4 months after transplan-
tation without any need to institute immune suppression [188].

WJMSCs have already been used to promote the regeneration of different tissues 
in combination with biomaterials with relative success. Using WJMSCs associ-
ated with a PVA membrane to treat chronic cutaneous lesions showed good levels 
of skin regeneration and reduction in number and extension of ulcers [196]; the 
use of WJMSCs and their conditioned medium (CM) in association with gelatin 
matrix scaffolds (commercially available haemostatic sealant, Floseal®) in promot-
ing regeneration of myectomy lesions revealed good functional and histological 
improvements, although some long-term negative effects were detected and not 
observed in the treatment with CM. The CM obtained from the culture of WJMSCs 
can be, therefore, a suitable alternative to the in vivo application of these cells [197].

Regarding the efficacy of WJMSCs in peripheral nerve regeneration after injury, 
several studies have already been performed. The addition of WJMSCs to NGCs 
seems to bring advantages related to the production and secretion of neurotrophic 
and angiogenic factors that improve the local regenerative environment. Animals 
submitted to neurotmesis present greater functional and sensory improvements 
when treated with WJMSCS in combination with biodegradable NGCs than when 
treated with single NGCs [99]. The combined use of WJMSCs with PVA guide tubes 
loaded with electrically conductive materials (carbon nanotubes and polypyrrole) 
was able to prevent the occurrence of neurogenic muscular atrophy and reestablish 
the neuromuscular junction, with the use of MSCs with PVA loaded with carbon 
nanotubes being effective in inducing a bigger amount of regenerated fibers and 
thicker myelin sheets. Similarly, the use of PCL and MSCs in neurotmesis lesions 
immediately submitted to end-to-end sutures also seemed to bring special advan-
tages in terms of motor function recovery, probably because of local secretion of 
growth factors and cytokines [193].
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Still within the use of MSCs from perinatal tissues in peripheral nerve regen-
eration, treatment of the rat sciatic nerve after neurotmesis with Floseal® as cell 
vehicle for WJMSCs mediated the Wallerian degeneration stage, improving the 
subsequent regeneration and the morphology of the nerve fibers. It promoted a 
lesser extent of fibrosis in the acute phase of the lesion, besides a chronic phase 
where a greater thickness of the myelin sheets and a larger number of regenerated 
fibers have been observed. Positive functional and morphological effects in both 
acute and chronic phases revealed a positive synergistic effect [198].

3.3 Dental pulp mesenchymal stem cells

The dental pulp is the most internal layer of the tooth and is composed of 
loose connective tissue that includes blood vessels, nerves, and mesenchymal 
tissue, having an important function in the primary and secondary development 
of teeth and in resolving pathological processes such as caries [199]. The forma-
tion of odontoblasts and the production of dentin in response to severe lesions in 
the teeth were precisely the first suggestive signs of the presence of MSCs in the 
dental pulp. Dental pulp mesenchymal stem cells (DPSCs) were isolated for the 
first time at the beginning of the last decade from a third molar and demonstrated 
to be able to differentiate into odontoblast-like cells [200]. Over time DPSCs have 
been isolated from exfoliated deciduous teeth, human permanent and primary 
teeth, supernumerary teeth [199], and teeth of various nonhuman species [201]. 
They exhibit all the characteristics of MSCs that make them appropriate options 
for clinical application, being capable of following multi-lineage differentiation, 
(including neural differentiation [202]) when under suitable culture conditions; 
presenting self-renewal capacity [203]; expressing MSC phenotypic markers [204], 
stemness-related markers, cytoskeleton-related markers [205]; and, as expected, 
not expressing hematopoietic markers (Figure 4b) [203]. Specifically, DPSCs 
express neural markers [206, 207]; produce neurotrophic factors; stimulate the 
differentiation, growth, and orientation of growing axons; and differentiate into 
active and functional neurons [208, 209]. Compared to other types of MSCs, DPSCs 
have higher clonogenic capacity, high proliferation, and a larger stem/progenitor 
cell population. DPSC source tissues are, like perinatal tissues, readily collectible 
without additional harm to the donor or invasive surgical procedures [210], and 
isolated cells can be used autologously as long as their characteristics are maintained 
through good isolation and cryopreservation protocols.

DPSCs secrete different trophic factors that stimulate nerve regeneration and 
showed ability to chemo-attract trigeminal ganglion axons [211], guiding myelin 
repair and stimulating dorsal root ganglion neurite outgrowth [212, 213]. Besides 
its efficacy to stimulate regeneration of other tissues [214], some work has been 
performed to attest the ability of DPSCs to stimulate peripheral nerve regeneration 
after PNI. The use of silicone tubes filled with DPSCs embedded in collagen gel 
proved to be effective in promoting regeneration of the rat facial nerve after injury 
[215]. The same authors further assessed degradable PLGA tubes filled with DPSCs 
embedded in collagen gel, which were able to stimulate regeneration and functional 
recovery of the rat sciatic nerve after neurotmesis [216]. The use of collagen devices 
filled with Schwann-like cells induced from DPSCs also resulted in nerve repair and 
regeneration in sciatic nerves of rats with 15 mm gap [217]. Martens et al. proved 
not only the ability of DPSCs to differentiate into Schwann cells with increased 
glial marker expression and secretion of neurotrophic factors but also the ability 
of these differentiated cells to promote axonal outgrowth and myelination in 2D or 
3D culture conditions in an in vitro model [212]. In addition, the synergistic use of 
DPSCs and Schwann cells with nerve conduits in solving 15 mm gap lesions in the 
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rat sciatic nerve was demonstrated to be more effective in restoring nerve conduc-
tion velocity than the use of DPSCs and nervous conduits alone [218]. Knowing the 
importance of oligodendrocyte lineage transcription factor 2 in the oligodendro-
genic pathway, Askari et al. were capable to induce the differentiation of DPSCs into 
oligodendrocytes by transfection of a tetracycline (Tet)-inducible system express-
ing oligodendrocyte lineage transcription factor 2 gene. These differentiated cells 
were then used in the treatment of a local demyelinating lesion of the mouse sciatic 
nerve by lysolecithin, with observation of repair and regeneration of the injured 
nerve [209]. The comparative use of DPSCs and neuronal cells originating from the 
differentiation of DPSCs in the treatment of a 5 mm lesion in the rat sciatic nerve 
proved that both cell types promoted functional and muscle contraction improve-
ments, associated with the identification of specific markers for angiogenesis, 
even though no specific differences between the two cell types in promoting nerve 
regeneration were identified [219]. Furthermore, in a model of diabetic polyneu-
ropathy, DPSC transplantation promoted the secretion of several cytokines that 
were capable of modulating the M1/M2 macrophage proportions and promoting 
anti-inflammatory effects, besides increasing the velocity of nerve conduction and 
local nerve blood flow [220].

In summary, DPSCs have the remarkable capacity to not only produce and 
release neurotrophic factors with protective immune modulative functions at 
the site of nerve damage but also to differentiate into oligodendrocyte-like and 
Schwann-like cells.

3.4 Olfactory mucosa mesenchymal stem cells

In the lamina propria of mammal olfactory mucosa, a different MSC popula-
tion can be found: the olfactory mucosa mesenchymal stem cells (OM-MSCs). 
This lineage has also been called ectomesenchymal stem cells because of their 
ectodermal origin and the fact that they express neural cell-related genes [221]. 
The OM-MSCs have been identified and studied in different extents in diverse 
species such as humans [221], mouse [222], rabbit [223], dog [224], sheep, horse, 
macaque, and lemur [225], although they were initially found and identified at the 
rat olfactory mucosa [226]. Some studies were carried out and allowed an initial 
characterization of these cells, namely, the identification of their MSCs character-
istics when in culture (plastic adhesion and capacity to form fibroblastic-like low 
density colonies) and the expression of classic MSC markers and of those related 
to differentiations (Figure 4c) [221]. In fact, OM-MSCs not only are capable of 
performing classical tri-differentiation but also have the ability to myogenic and 
neurogenic differentiation [227]. Additionally, its CM can promote the proliferation 
of ensheathing cells and oligodendrocyte precursor cells and also activate myelina-
tion in vitro [228]. OM-MSCs present features that put them in the list of cells to 
be used in regenerative medicine, namely, its high versatility, wide distribution in 
nasal cavity with easy access, few ethical issues, good location for both antemortem 
and postmortem collection (particularly in larger donors), neural crest origin, and 
little tendency for development of chromosomal or tumorigenic alterations [229, 
230]. Finally, OM-MSCs maintain self-renewal ability in culture for long periods of 
time by conserving telomeric activity and inhibiting apoptotic activity, without the 
age seeming to affect this characteristic [231].

The study of OM-MSCs secretome led to the identification of several molecules 
with the capacity to promote effects on neural differentiation and production and 
maturation of glial cells [81]. From a clinical application point of view, besides the 
studies carried out to test its potential in the control of autoimmune diseases [232, 
233] and in the regeneration of myocardial tissue after infarct [234], OM-MSCs 
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have already shown regenerative efficacy when used as therapy in degenerative 
diseases of the CNS [235], hippocampal lesions [236, 237], lesions associated with 
hearing loss [238–240], and in cases of spinal cord trauma [241, 242]. Regarding 
its effectiveness in promoting peripheral nerve regeneration after PNI, the stud-
ies and data obtained are still reduced to allow definitive conclusions. Roche et al. 
carried out a work in which they studied the efficacy of OM-MSCs delivered in an 
NGC comprising of a biphasic laminin and collagen-functionalized hyaluronic 
acid, testing its efficacy on the regeneration of a rat sciatic nerve with a 10 mm gap, 
with and without NGF supplementation. It was identified that animals treated with 
OM-MSCs and implantation of NGCs showed clinical and electrophysiological 
improvements and a nociceptive recovery superior to those identified in the animals 
that only received NGCs [243].

4. Microsurgical procedures

As in most biomedical works, mouse and rat are the most frequently used 
models in the studies of peripheral nerve regeneration. Our research group works 
mainly with the rat model, Sasco Sprague-Dawley breed. The anatomy of the rat 
is well characterized, presenting many similarities with men’s peripheral nerves. 
Being a small model, the rat still presents nerves with significant dimensions, 
facilitating the performance of the microsurgical interventions and allowing 
standardization and comparison of the functional tests performed. In terms of 
dimensions and density of connective tissue, there are differences in comparison 
to human nerves, and the biggest disadvantage of using small rodents is their high 
intrinsic neural regeneration capacity, which can sometimes make it difficult to 
determine the translational value of the therapeutic methods applied [244, 245]. 
Regarding the nerve model, most studies explore the sciatic nerve and its terminal 
branches, particularly because of the dimensions of this nerve [246] and the high 
number of functional and behavioral tests available, mostly in the rat model [247]. 
Obviously, the high number of data accessible in the literature allows an effective 
comparison with the results observed in previous work. The most common types of 
experimental lesion paradigms include the induction of crush injuries that lead to 
axonal functional interruption with maintenance of connective sheaths (axonotme-
sis), disruption of the nerve trunk through a complete transection, or removal of a 
segment with creation of a gap with specific dimensions (neurotmesis) [248].

In our works, animals are operated under anesthesia and with adequate analge-
sia. With the animal in lateral decubitus, the trichotomy and asepsis of the area to 
intervene is performed, and the access to the sciatic nerve is made through a skin 
incision that extends from the greater trochanter to the distal mid-half of the hind 
limb and a dissection of the gluteal muscles. Once the sciatic nerve and its main 
branches are exposed with the aid of soft tissue retractors, the pretended lesion can 
be induced with a straight microsurgical scissors for neurotmesis lesions or crushing 
clamps for axonotmesis lesions. The lesion should be induced as distally as possible, 
preferably directly above the terminal nerve ramification. In neurotmesis lesions, 
both nerve ends are introduced about 3 mm inside the NGCs with or without associ-
ated cells, with the application of 7/0 monofilament nylon epineural sutures to keep 
nerve tops aligned, secure, and with a gap of desired dimensions. For neurotmesis 
lesions where there is no intention to maintain a gap, the nerve can be subjected 
to an end-to-end suture using 7/0 monofilament nylon, with or without posterior 
application of an NGC. For axonotmesis lesions, the biomaterial can be placed 
wrapping the crushing site and sutured. The cellular systems can be combined to 
the biomaterial conduit before (cultured and expanded on the biomaterial surface), 
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during (infiltrated into the conduit in suspension or in a soft biomaterial vehicle, at 
the time of implantation), or after reconstruction (through direct injection within 
the nerve gap). Once this phase is concluded, the gluteal muscles can be sutured, 
isolated, or simultaneously with the skin, applying a simple-interrupted suture with 
a non-absorbable material. The contralateral limb is not intervened and used as a 
control. Animals submitted to surgery should be daily monitored to accompany the 
healing process and the recovery of nerve function [3].

5. Functional evaluation

In the studies involving sciatic nerve regeneration, the animal is followed 
postoperatively during 12 weeks for axonotmesis lesions [111] and 20 weeks for 
neurotmesis lesions [104], assuming that after this period functional and mor-
phologic recovery is complete and can be determined. To determine the level of 
nerve regeneration, both morphological and functional results are considered in 
both types of lesions, although the correlation between the two types of data is not 
always strong [249]. The more classic and modern methods for determining nerve 
recovery, such as retrograde labeling [250] histomorphometry and histology [251], 
electrophysiological assessment [252], and in vivo imaging [253], rarely succeed 
in adequately revealing the reestablishment of motor and sensory functions, being 
more effective in the study of the regenerative process from the physiologic/struc-
tural point of view than in the assessment of effective functional recovery [254]. 
Thus, PNI research studies need to combine both functional and morphological 
assessment. Our works generally involves conducting a behavioral analysis, com-
bined with histology, histomorphometry, and kinematic analysis (Figure 5).

5.1 Behavioral and functional analysis

Regarding motor function of the sciatic nerve, the test used to determine its 
recovery is the evaluation of SFI through the use of a walking track. First described 
in 1982 [255], the SFI is a quantitative and noninvasive method that allows to 
determine the recovery of the hind limb using methods of observation and record-
ing of the rat’s footprints, considering for this the spatial relation between the 
toes, the foot, and the hind limb as a whole [256]. Although it is a very popular test 
among PNI researchers, its validity is still questioned [257]. The major limitation 

Figure 5. 
Schematic representation of evaluation components used in works of our research group.
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of the method is that animals frequently develop contractile flexions and autotomy, 
which consequently leads to defective and blurred paw records because of changes 
in limb placement or tail dragging during the footprint record, making it difficult 
to analyze [258]. To perform the test, the animals are confined within a 42-cm-long 
and 8.2-cm-wide walkway that ends in a dark shelter without exit. A white paper 
is placed on the floor of the walking corridor for registration. The hind paws of the 
rats are gently pressed onto the finger paint-soaked sponge to be impregnated with 
ink, and the animals are then placed at the beginning of the walkway to advance 
along the corridor and leave their hind paw records over the paper. Animals are 
always trained to walk in the corridor prior to surgery to stablish an individual 
baseline. Walking tracks are recorded preoperatively (week 0), after surgery at 
weeks 1 and 2, and from there every 2 weeks until week 12 or 20. In each record it is 
possible to make several measurements: print length (PL), distance from the heel to 
the third toe; toe spread (TS), distance from the first to the fifth toe; and intermedi-
ate toe spread (ITS), distance from the second to the fourth toe. Associated with the 
SFI, SSI is also determined, in which only the TS and ITS parameters are considered. 
SSI and SFI measurements are made on both the control and injured limbs. The 
average of three measurements are used in the following formulas: Toe spread factor 
(TSF) = (ETS – NTS)/NTS; Intermediate toe spread factor (ITSF) = (EITS – NITS)/
NITS; Print length factor (PLF) = (EPL – NPL)/NPL, with E and N representing 
the injured and non-injured limbs, respectively. Finally, the SFI is calculated using 
the formula of Bian et al. [259]: SFI = −38.3 (EPL – NPL)/NPL + 109.5 (ETS – NTS)/
NTS + 13.3 (EIT – NIT)/NIT – 8.8 = (−38.3 × PLF) + (109.5 × TSF) + (13.3 × ITSF) 
– 8.8. Alternatively, or complementarily, SSI is a fast index that is calculated with-
out considering the PL value, using the equation: SSI = [(108.44 × TSF) + (31.85 
× ITSF)] − 5.49. For both cases, a value of 0 is normal, and the closer the value is 
to −100, the worse the functional recovery. In situations where footprints cannot 
be measured, the value of −100 is automatically assigned. The footprints of each 
animal must be observed and analyzed by a single operator.

The method to test the motor performance is the EPT test [260], which consists 
in determining the force, measured in grams, that the animal is capable to exert 
with the injured and healthy limbs over a digital scale. This is an important test 
because for its correct accomplishment the animal needs to activate the muscles of 
the plantar flexor group (gastrocnemius and soleus), and the obtained values are 
correlated with those observed in the SFI and SSI [257]. To perform this test, the 
animal’s body is wrapped in a surgical towel, leaving the hind limbs exposed. The 
animal must be supported by the thorax as it is lowered towards the digital balance. 
As hind limbs approach the balance, the EPT is elicited by the anticipation of the 
contact of the distal metatarsus with the balance, and the hind limbs are extended. 
The force, in grams, exerted over the balance is then registered. The method should 
be performed on both the affected and the healthy limb, being repeated three times 
to consider the average result. To determine the functional deficit percentage, 
normal limb (NEPT) and injured limb (EEPT) EPT values are then included in the 
following equation [261]: Percentage motor deficit = [(NEPT – EEPT) /NEPT] × 
100. Animals are tested before surgery (week 0), week 1 and 2 after surgery, and 
from there every 2 weeks to week 12 or 20. EPT values are originally determined in 
grams of weight applied by each limb but are subsequently expressed as percentage 
deficit of the injured limb relatively to the weight applied by the healthy limb. The 
main limitations of the test relate to the operator’s experience and comfort in han-
dling animals. The operator also needs to have enough experience to recognize when 
the animal is applying as much force as possible with the limb to be tested. Since the 
operator is comfortable performing the test, it is highly reproducible [261].
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Regarding the sensorial recovery of the sciatic nerve, the most used test is the 
WRL, also used in works of our research group. The WRL test, with the aim of estab-
lishing the maintenance or recovery of the nociceptive function, can be performed 
using a mechanical stimulation and electrical stimulation, by puncturing with a 
needle or, more commonly, with a heating plate [262]. Using a hot plate is not only 
the most common but also the most practical method. The nociceptive stimulation is 
applied on the hindpaw’s plantar surface, determining the withdrawal reflex, that is, 
the time, in seconds, that the animal takes to retract the paw. Animals with sensory 
integrity retract the limbs more quickly from the nociceptive stimulus source [263]. 
To perform the test, the animal is covered with a surgical towel, and the limb to be 
tested is placed over the hotplate at 56°C, the time it takes to retract the limb being 
then recorded. In a healthy animal, the limb is retracted in around 4.3 s or less [264]. 
Limbs are tested three times, with a 2-min interval between each test to avoid sensi-
tizations, and the result of three measurements is considered, on average, to get the 
final result. If the animal does not retract the limb within 12 s, it is removed from the 
heat stimulus to prevent tissue damage. The animals are tested before surgery (week 
0), at week 1 and 2 after surgery, and from there every 2 weeks until week 12 or 20.

5.2 Kinematic analysis

The evaluation of locomotion quality is of utmost importance since this func-
tion integrates the sensory and motor systems and their constituents, including the 
nervous fibers of afferent and efferent nature, the sensory nerve terminations, the 
skeletal muscles, and the respective central integration centers. With the conve-
nience of advanced image record devices, it is now possible to use digital technolo-
gies to more accurately evaluate gait analysis [265]. The kinematic evaluation is the 
set of analyses directed to the articular movements without considering the force 
that is being applied. Considering that branches of the sciatic nerve are responsible 
for the innervation of dorsiflexor and plantarflexor muscles, the set of kinematic 
evaluations used in this nerve, with video capture and later observation, include the 
determination of ankle kinematic, the measurement of gait stance duration, and 
evaluation of toe out angle during the gait [257]. The main disadvantage of kine-
matic evaluation is its technical complexity and the need for specific digital material.

In the studies conducted by our group (Figure 6), the kinematic evaluation of 
the ankle is performed considering the sagittal plane during the stance phase of 
walking after the induction of different injuries [104, 111]. Animals are encouraged 
to walk voluntarily throughout a corridor with two dark shelters at both ends to serve 
as a refuge, thus allowing the two-dimensional ankle motion analysis. The side walls 
of the corridors are transparent, and a high-speed video camera is positioned in an 
orthogonal position relatively to the corridor to record the ankle motion during the 
walk. Sagittal records are also considered, using a rate of 100 frames per second. The 
recorded images are scanned in a semiautomatic process resorting to marks placed at 
reference points over the rat hind limb and paw. By this procedure it is possible to get 
the trajectories of the leg and hindfoot segments, and the ankle joint angle is derived 
by using appropriate computation systems. The parameters for ankle kinematics 
proposed by Varejão et al. [266] are then applied to determine the sciatic functional 
recovery after injury and repair, so that therapeutic efficacies can be compared.

It is important, however, to realize that ankle kinematics should only be regarded 
as an indirect sign of muscle function. Animal locomotion requires the use of fine 
coordination of limbs, and quadruped animals can develop mobility strategies to 
compensate deficits in hind limbs. Through the plastic activation of integrative 
structures, the animal can develop patterns of adaptive movement that are observed 
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even in the presence of severe denervation. In addition, a direct relationship 
between the results of simpler motor and sensory function tests and those got in the 
evaluation of the complex walking action is rarely observed [266, 267]. To achieve a 
precise assessment of functional recovery, walking analysis after PNI should evolve 
both the ankle kinematics analysis to a detailed description of the biomechanical 
and the mobility function of the hind limb, including a complete assessment of hip, 
knee, and ankle joints.

6. Morphological analysis

The morphological and histological evaluation of the injured nerve after the 
experimental period is a commonly used method to identify the size, organization, 
and number of regenerated nerve fibers and the thickness of the myelin sheath 
formed after PNI. Although morphological and histological evaluation was only 
descriptive in its earlier applications, it is now possible to perform morphometric and 
quantitative analysis of the histological sections to be studied, ideally in combination 
with other alternative methods of functional, electrophysiological, and molecular 
evaluation [251]. Quantitative analysis is important to identify both intact and regen-
erated axons, inflammation, and fibrotic reactions inside the nerve or in the form of 
perineural adhesions, besides the development of neuromas. The histomorphometric 
assessment also allows to identify the amount, type, and diameter of the cells that 
occupy a certain space within the nerve and the proportion of regenerated and 
healthy tissue [268]. When the efficacy of biomaterials is assessed, histological evalu-
ation is essential to determine the level of material degradation, the development of 
granulomas and adherences, and the establishment of foreign body reactions [39].

The toluidine blue staining of semithin sections is the method more commonly 
applied for the histological characterization of the nerve after PNI. This technique 
allows the observation of the myelinated axons and to delimitate the myelin 

Figure 6. 
Corridor and data capture chamber setup for kinematic evaluation in works of our research group.
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sheaths. Likewise, this method is adequate to perform a morphometric examina-
tion that leads to the determination of the density and number of nerve fibers, the 
cross-section dimensions, the perimeter of fibers and axons, the diameter of the 
fibers and axons, the different proportions between the axon diameters, fibers and 
myelin sheaths, and also the thickness of myelin sheaths [269]. In addition, this 
method also enables the evaluation of the ultrastructural changes caused by the 
regenerative phenomena in axons and in the myelin through transmission electron 
microscopy [270].

Regardless of the protocol considered, the histological and morphological 
evaluation of the nerve requires consolidated experience from the operator. It is 
necessary that the operator has a thorough knowledge about the anatomy of the 
nerve, about the histology of its segments, and about the differences between 
the same nerve sites in different animals. These knowledges are essential during 
the determination of the dimensions and number of myelinated fibers. The use 
of randomized protocols, biased measurements, and biased counting method-
ologies allows to prevent the occurrence of bias in the histological and morpho-
metric evaluations. The morphological methods used to test axonal regeneration 
do not always allow to directly correlate the functional recovery and the level of 
axonal regeneration, and appropriate axonal regeneration and low functional 
outcomes are common occurrences. Moreover, because of the occurrence of 
protruding, separation, divergence, kinking, or straddling observed between 
the two portions of axons, histological evaluation can hinder the assessment of 
the nerve reparation. Finally, even with the high-resolution optical microscopy, 
myelinated fibers with a diameter infersior to 2 μm are hard to detect, potentially 
misjudging the counting [271].

7. Conclusions

PNI continue to bear enormous impact on the patient’s quality of life, leading to 
significant functional deficits, disabilities, and substantial social and professional 
constraints. Significant advances in neural reparation and translational neurophysi-
ology have been achieved through the refinement of microsurgery techniques, the 
comprehension of anatomy and topography of the nerve, and the understanding 
of pathophysiologic and molecular mechanisms related to PNI. Nerve reparation 
by epineural neurorrhaphy is still the preferred yet invasive approach in situa-
tions where tension-free alignment in a well-vascularized environment can be 
guaranteed. For larger gaps between the two nerve segments, this technique is not 
always adequate, and nerve grafting presents as the treatment of choice. In severe 
avulsion injuries, such as in the brachial plexus, nerve transfer techniques are also 
an option. The current most promising research lines in nerve regeneration are 
based on attempted strategies to accelerate reparation using sophisticated nerve 
conduits in combination with cell-based therapies. Several types of biomaterials 
with different physical presentations have been explored, demonstrating attractive 
pro-regenerative properties. This therapeutic potential is further boosted through 
its combination with cells, CM, and growth factors, indicating that combinatory 
therapies are the most promising strategy in regenerative medicine and PNI.

This chapter summarizes the principles of peripheral nerve injury and the 
observations gathered by our research group in this field over the years. This 
gathered knowledge results from the exploitation of diverse hypothesized thera-
peutic combination based on the use of biomaterials and cellular systems, achieving 
promising results. Nonetheless, there is still a long road ahead in this research area 
towards the achievement of optimal PNI recovery, and conclusions presented in 



29

Biomaterials and Cellular Systems at the Forefront of Peripheral Nerve Regeneration
DOI: http://dx.doi.org/10.5772/intechopen.87043

currently available literature provide basis for further studies necessary for the 
consolidation of the proposed therapies.
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Acronyms and abbreviations

AFMSCs amniotic fluid mesenchymal stem cells
ALP alkaline phosphatase
BDNF brain-derived neurotrophic factor
BMSCs bone marrow MSCs
CM conditioned medium
DPSCs dental pulp mesenchymal stem cells
EPT extensor postural thrust
GDNF glial cell-derived neurotrophic factor
GPTMS glycidoxypropyltrimethoxysilane
ITS intermediate toe spread
ITSF intermediate toe spread factor
MHC histocompatibility complex
MSC’s mesenchymal stem cells
NGCs nerve guidance conduits
NGF nerve growth factor
OM-MSCs olfactory mucosa mesenchymal stem cell
PCL poly(D,L-lactide-co-ε-caprolactone)
PGA poly(glycolic acid)
PGA polyglycolic acid
PL print length
PLA poly(lactic acid)
PLF print length factor
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