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Abstract

Scorpions are fascinating creatures which became residents of the planet well 
before human beings dwelled on Earth. Scorpions are always considered as a figure 
of fear, causing notable pain or mortality throughout the world. Their venoms 
are cocktails of bioactive molecules, called toxins, which are responsible for their 
toxicity. Fortunately, medical researchers have turned the life-threatening toxins 
into life-saving therapeutics. From Song Dynasty in ancient China, scorpions and 
their venoms have been applied in traditional medicine for treating neurological 
disorders, such as pain, stroke, and epilepsy. Neurotoxins purified from Chinese 
scorpion Buthus Martensii Karsch (BmK) are considered as the main active ingredi-
ents, which act on membrane ion channels. Long-chain toxins of BmK, composed 
of 58–76 amino acids, could specifically recognize voltage-gated sodium channels 
(VGSCs). Short-chain BmK toxins, containing 28–40 amino acids, are found to 
modulate the potassium or chloride channels. These components draw attention 
as useful scaffolds for drug-design in order to tackle the emerging global medical 
threats. In this chapter, we aim to summarize the most promising candidates that 
have been isolated from BmK venoms for drug development.

Keywords: scorpion toxins, BmK, neurological disorders, VGSCs, potassium 
channels, chloride channels

1. Introduction

Recent advances underlying medical studies have illuminated that several 
neurological disorders such as epilepsy, chronic pain, multiple sclerosis, stroke, 
brain tumor etc. are induced by dysfunction of membrane ion channels [1–3]. Up to 
now, multiple drugs specifically targeting ion channels have been designed to treat 
the diseases [4]. Some clinical studies and trials have also been initiated to discrimi-
nate therapeutic potentials of natural toxins and their derivatives such as scorpion 
toxins, spider toxins, snake toxins, sea anemone toxins, and toad venom, which 
could recognize relevant ion channels [5].
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BmK scorpion, used as a drug which is also known as “Quan Xie” (whole 
scorpion body), can be traced to almost 2000 years ago since the Song Dynasty 
(A.D. 960–1279) of China. Based on the traditional Chinese medicine theories of 
“Xi Feng Zhi Jing, Gong Du San Jie, Tong Luo Zhi Tong” (suppressing the epileptic 
seizure, inhibiting growth and metastasis of tumor, dredging blood vessels and 
analgesia), BmK scorpion has been widely used to treat epilepsy, apoplexy, spasm, 
migraine, tetanus etc. [24]. The venom of BmK scorpion, considered as the main 
effective component, is a rich source of bioactive toxin polypeptides that regulate 
the activity of ion channels [25, 26] (Figure 1). According to the length of these 

Figure 1. 
Structures of scorpion toxin peptides. (A) The α/α-like scorpion toxins BmK I (PDB: 1SN1) [6] and BmK 
αIV [7–9] (using LQQ III, PBD: 1LQQ; BmK I, chimera Lqh αIT/AaH II, PBD: 1SEG; BmK α2, PDB: 2KBJ 
as templates) isolated and purified from Buthus martensii Karsch, AaH II [10] (PDB: 1PTX) isolated and 
purified from Androctonus mauritanicus, Lqh III [11] (PDB: 1BMR) isolated and purified from Leiurus 
quinquestriatus. The β/β-like scorpion toxins BmK IT2 [7, 12–14] (using Lqh IT2, PBD: 2I61; LQQ III, 
PBD: 1LQQ; Lqh αIT A39L, PDB: 2YEO; Kurtoxin, PDB: 1T1T as templates), BmK AEP (using the same 
templates as BmK IT2), and BmK AS/AS-1 [9, 12, 14–16] (using Kurtoxin, PDB: 1T1T; Lqh IT2, PBD: 2I61; 
CsE-V, PBD: 1NRB; Ts3, PBD: 5CY0; BmK α2, PDB: 2KBJ as templates) isolated and purified from Buthus 
martensii Karsch. Lqh IT2 [12] (β-sheet not shown) isolated and purified from Leiurus quinquestriatus. 
The short-chain scorpion toxins acting on K+ channels. The toxins MarTX [17] (PDB: 1M2S) and BmP02 [18] 
(PDB: 1DU9) isolated and purified from Buthus martensii Karsch. ChTX [9] (PDB: 2CRD) isolated and 
purified from Leiurus quinquestriatus. The short-chain scorpion toxins acting on Cl− channels. The toxin 
chlorotoxin [19] (PDB: 2CRD) isolated and purified from Leiurus quinquestriatus. Sequence homology 
comparison is obtained by using PSI-Blast, and homology modeling of scorpion toxins is acquired by using 
Discovery Studio 2017 R2. (B) Top, multiple sequence alignment of α/α-like scorpion toxins. Middle, the 
second one in figure B, multiple sequence alignment of β/β-like scorpion toxins. Below, the third one in figure 
B, multiple sequence alignment of toxins acting on K+ channels. Bottom, multiple sequence alignment of toxins 
acting on Cl− channels. Conserved residues and cysteines formatting intrachain disulfide bonds are in red 
and shadowed in yellow; residues conserved in most of the peptides are shadowed in blue; residues with same 
charge in most of the peptides are shadowed in green. The species of toxins are mentioned above, except for 
Lqh 15–1 [20] and GaTX1 [21] isolated and purified from Leiurus quinquestriatus hebraeus; BmK II, BmK 
a1, BmK a3, BmKTX, BmP01, BmP03, BmK CT, and Bm12 isolated and purified from Buthus martensii 
Karsch [22]; AaCTX [23] isolated and purified from Androctonus australis. (C) The guide tree is constructed 
by ALIGNX, a component of the VECTOR NTI 11.0 software suite. Scores in the brackets are based on the 
identity of the amino acids’ chemical properties. Top, the guide tree of α/α-like scorpion toxins. Middle, the 
guide tree of β/β-like scorpion toxins. Below, the guide tree of short-chain K+ channel toxins. Bottom, the guide 
tree of short-chain Cl− channel toxins.
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peptides, scorpion toxins are classified into long-chain toxins and short-chain 
toxins. The long-chain scorpion toxins composed of 58–76 amino acid residues 
mainly act on voltage-gated sodium channels (VGSCs), while the short-chain 
scorpion toxins containing 28–40 amino acid residues generally target K+ or Cl− 
channels [27] (Figure 1B). Based on their physiological effects on VGSC gating 
and binding properties, the long-chain toxins can be further classified into two 
categories: α-toxins, such as BmK I, a 64-residue α-like toxin isolated from BmK 
[2], and BmK αIV, a novel cloned 68-residue polypeptide, binding to neurotoxin 
receptor site 3 of the VGSC, with inhibitory effects on the fast inactivation of 
VGSCs (Figure 2). β-toxins, which bind to receptor site 4 such as BmK IT2 as well 
as BmK AEP, two 64-residue inhibitory β-toxins [28], and BmK AS, a 66-residue 
β-like toxin, could shift the threshold of VGSCs activation to more negative mem-
brane potentials [29–32] (Figure 2). By sequence alignment and phylogenetic 
trees, it could be found that the primary structure of BmK I is similar to that of the 
classical α-like toxin Lqh III, while the structural properties of BmK αIV are more 
similar to that of the classical α-toxin AaH II (Figure 1C). In addition, the structure 
of BmK IT2 and BmK AEP are similar to that of the classical β-toxin Lqh IT2, but it 
is quite different from the structure of BmK AS which is also separated from BmK 
(Figure 1C). Among short-chain toxins, martentoxin and BmP02 are considered as 
the specific blockers of BK channel (α + β4) and Kv1.3, respectively [33–35]. From 
sequence alignment and phylogenetic trees, martentoxin have low homology with 
the classical BK channel blocker charybdotoxin (ChTX), isolated and purified from 

Figure 2. 
Structure of VGSC and its pharmacological characterization modulated by α/α-like or β/β-like scorpion 
toxins. Schematic representation of Nav channels’ α and β subunits. The α subunit of Nav channels is 
illustrated along with not only β1 but also β2 subunits; the β subunits’ extracellular domains are exhibited to 
be an immunoglobulin-like fold that interacts with the loops in α subunits. The domains of the α subunit are 
represented by Roman numerals; segments 5 and 6 (exhibited in violet) are pore-lining segments, and S4 helices 
(green) constitute the voltage sensors. The green circle in the domains III and IV intracellular loop represents the 
inactivation-gating IFM motif. The α/α-like toxin BmK I delaying the inactivation of VGSCs by targeting the 
receptor site 3. The β toxin BmK IT2 suppressing transient currents of VGSCs by targeting the receptor site 4.
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Leiurus quinquestriatus, but have high homology with Lqh 15–1 (ChTX2), another 
BK channel blocker from Leiurus quinquestriatus (Figure 1B and C). BmK CT could 
recognize the glioma-specific chloride channels. In this chapter, we aim to describe 
the most promising candidates for drug development that have been isolated from 
BmK venoms, with categorization according to their biological activity.

2. Analgesic effects of BmK toxins against VGSCs

Pain seriously damages human health and quality of life, so it is of importance 
to find effective analgesic targets and drugs. Nav channels (VGSCs) are transmem-
brane proteins responsible for generation and conduction of APs (action potentials) 
in excitable cells [1–3]. Of the nine functional α subunits (Nav1.1–1.9), Nav1.1, 
Nav1.3, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are distributed in primary sensory 
neurons, playing a crucial role in nociception and chronic pain [4]. In detail, 
mechanical pain is mainly caused by Nav1.6 [5]. Functional acquired mutations in 
Nav1.7 cause severe thermal hyperalgesia [24], while Nav1.7 with loss-of-function 
mutations leads to pain insensitivity [25]. Nav1.8 contributes to the APs generation 
in peripheral system and Nav1.9 plays a role in persistent Na+ currents in small-
diameter dorsal root ganglia (DRG) neurons [26]. Because of the critical roles of 
VGSC subtypes in pain signal conduction [36, 37], natural products, specifically 
inhibiting VGSCs, might reveal the potential for treating chronic pain symptoms 
[38]. The neurotoxins of scorpion BmK are an excellent source of sodium channel 
modulators [22]. Among them, β/β-like scorpion toxins, binding to VGSC receptor 
site 4 such as BmK IT2 and BmK AS, show anti-nociceptive effects in in vivo experi-
ments [39, 40].

BmK AS, polypeptide composed of 66 amino acid residues purified from BmK 
venom, was a unique β-like scorpion toxin with many distinct functions [41]. In 
the peripheral nervous system (PNS), BmK AS-induced antinociceptive effect 
on inflammation-induced thermal as well as spontaneous pain and mechanical 
hyperalgesia [30, 42]. Peripheral or spinal delivery of BmK AS significantly sup-
pressed formalin-induced nociceptive behaviors and c-Fos expression in spinal cord 
[30, 43]. In order to clarify the mechanisms underlying antinociceptive effects of 
receptor site 4 toxins on VGSCs, the primary sensory neurons (dorsal root ganglion, 
DRG) isolated from the L4-L6 of adult rats are usually chosen for investigation. 
Patch clamp recording showed that BmK AS could significantly decrease excitabil-
ity of small DRG neurons, by depressing the peak tetrodotoxin-resistant (TTX-R) 
and tetrodotoxin-sensitive (TTX-S) Na+ currents of DRG neurons, and causing a 
negative shift of voltage-dependent activation [30]. Furthermore, BmK AS reduces 
the peak currents, facilitates steady-state activation, and inhibits slow inactivation 
of the Nav1.3 channels [44]. Through testing the VGSCs endogenously expressed in 
the DRG neuroblastoma ND7–23 cells as well as heterologously expressed Nav1.2 in 
Xenopus oocytes, it exhibited a U-shaped modulation of gating kinetics by BmK 
AS over a wide range of concentrations. BmK AS could suppress the peak currents, 
facilitate steady-state activation of VGSCs endogenously expressed in ND7–23 cells, 
while it did not affect the voltage-dependent activation and persistent currents of 
Nav1.2 [45]. These results provide a better understanding of the peripheral anti-
injury sensation of BmK, which selectively inhibited the activity of Nav1.3 and DRG 
subtypes of VGSCs.

BmK IT2, consisting of 61 amino acid residues, contains 4 disulfide bonds, 
and could induce strong insect toxicity [28]. Like other depressant toxins, such as 
LqhIT2 [46, 47], BmK IT2 possesses two non-interacting binding sites (the high/
low-affinity binding sites) on insect nerve membranes [48, 49]. But a previous 
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study also found that formalin-induced spontaneous pain behavior and spinal c-Fos 
expression could be effectively suppressed by either pre- or post-treatment with 
intrathecal BmK IT2 [50], which strongly implied that BmK IT2 could not only bind 
to insect VGSCs, but also recognize mammal VGSC subtypes. In fact, the inhibi-
tion of BmK IT2 on total Na+ currents was observed in small DRG neurons [31]. By 
testing VGSC subtypes in Xenopus oocytes expression system, Nav1.2, Nav1.3, and 
Nav1.6 display insensitive property to BmK IT2, suggesting that other isoforms, 
especially Nav1.7–1.9, might be involved in the suppressive activity of BmK IT2 in 
rat pathological models [51]. The results illuminated that BmK IT2 can be developed 
as a novel analgesic peptide with therapeutic potential.

3. Antiepileptic activity of BmK toxins

3.1 Antiepileptic activity of BmK Na+ channel toxins

VGSCs play a critical role in the generation and propagation of neuroexcitibilty. 
Genetic alterations in VGSC genes are considered to be associated with epilepto-
genesis. The SCN1A (Nav1.1 gene) is the most relevant VGSC gene for epilepsy in 
clinical tests. More than 1200 Nav1.1 mutants have been characterized to be associ-
ated with epilepsy, most of variants mutations lead to febrile seizures [52]. Nav1.2 
subunits are mainly distributed in the Ranvier node and axon-initiating segment 
(AIS). The mutation of Nav1.2 (SCN2A) is relevant to various epilepsies, such as 
Dravet’s syndrome (DS), benign familial neonatal seizures (BFNIS), hereditary 
epilepsy with febrile seizures plus (GEFS+), and other stubborn childhood epileptic 
encephalopathies [53]. Another VGSC subtype widely distributed in CNS is Nav1.6, 
which is mainly distributed to the soma and synaptic origins. Mutations of Nav1.6 
could induce severe epileptic encephalopathy exhibiting autistic features, early 
onset seizures, intellectual disability, ataxia, or sudden unexpected death in epi-
lepsy (SUDEP) [54]. Therefore, this evidence strongly implies that natural products 
inhibiting VGSCs could also have the potential for suppressing the epileptic seizure.

BmK AEP, composed of 61 residues with 4 disulfide bonds, is the first anti-
epilepsy peptide purified from scorpion venom. BmK AEP was less toxic to mice 
and insects, while it had forceful anticonvulsant effects on epileptic rats, and is thus 
named as BmK anti-epilepsy peptide (BmK AEP) [55]. BmK AEP has been reported 
to display anti-epileptic activity in a coriaria lactone-induced epileptic model in the 
rat with comparable efficacy to diazepam [56]. Recent studies demonstrated that 
BmK AEP concentration-dependently suppresses the Na+ currents of Nav1.3 and 
Nav1.6, heterologously expressed in HEK293 cells, and shifts the voltage-dependent 
activation to the hyperpolarized direction, with minimal effects on steady-state 
inactivation [32].

Through intrahippocampal injection, β scorpion toxin BmK AS produced 
obviously anticonvulsant activity on the pentylenetetrazol (PTZ)-induced epileptic 
rodents. It could not only suppress the duration and number of high-amplitude, 
high-frequency discharges (HAFDs) in electroencephalography (EEG), but also 
obviously reduce the peak Na+ currents of hippocampal pyramidal cells [57, 58]. By 
contrast, BmK AS did not regulate the epileptiform EEG of pilocarpine model over 
the same dose range [57]. Intrahippocampal injection of BmK AS obviously reduced 
the increase of c-Fos expression evoked by pilocarpine, implying that neuronal 
hyperactivity is decreased during the epileptic state [43].

Injection of BmK IT2 at hippocampal CA1 region could dose-dependently inhibit 
PTZ-induced epilepsy-like behavior as well as reduce the number and duration of 
HAFD on PTZ-induced epileptic EEG components. Similarly, BmK IT2 significantly 
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prolonged the incubation period of status epilepticus (SE) onset, reduced the 
severity of SE, and inhibited the expression of c-fos in the hippocampus during SE 
of pilocarpine-induced epileptic rodents [59]. BmK IT2, which relieves epileptic 
symptoms, is thought to inhibit the activity of VGSC subtypes. Binding experiments 
showed that BmK IT2 could recognize neuronal synaptosome membranes. The 
patch-clamp experiment also proved that BmK IT2 can inhibit the persistent sodium 
current of hippocampal pyramidal neurons [59]. However, previous studies have 
found that BmK IT2 had no significant inhibitory effect on the peak Na+ currents of 
Nav1.2, 1.3, and 1.6 heterologous-expressed in oocytes [51]. It is suggested that BmK 
IT2 might act on Nav1.1 or Nav1.7 in the central nervous system (CNS).

3.2 Antiepileptic activity of BmK K+ channel toxins

BK channels, widely expressed in CNS, are voltage- and Ca2+-activated K+ chan-
nels with large conductance [60–62] (Figure 3). They have been shown to modulate 
fast afterhyperpolarization (fAHPs) and rapid spike repolarization in a number of 
types of neurons [63–65]. Under pathological state, it interacted the inactivation of 
Nav channels, with inducing neuronal spike shortening and increasing in firing rate as 
well as excitatory transmitter release, which could exacerbate seizure bursts [66–68].

Pentylenetetrazol (PTZ)-induced generalized tonic-clonic seizures give rise 
to a BK channel gain-of-function, characterized by increased BK currents as well 
as neuronal firing in the somatosensory cortex [69]. Interestingly, the BK channel 
blocker, paxilline, suppressed generalized tonic-clonic seizures in picrotoxin or 

Figure 3. 
Structure of BK channel and its auxiliary subunits. BK channel topology predicted by the hydrophilicity 
profiles (left). The α helices are represented by a cylindrical shape and S0 to S4 segments (gray column) make 
up the voltage sensor domain. The turret (T) is the loop joining S5 with the pore helix (P) (green column). 
The selective filter (SF) and S6 form the pore internal entryway. N terminal is located at the extracellular, and 
C terminal is located at cytosolic. Intracellular domain forms a pair of RCK domains including a Ca2+ bowl 
(light blue ellipse), one of the intracellular calcium-binding regions. Topology of auxiliary β subunits (right). 
NH2 and COOH terminus facing intracellular side, two transmembrane domains linked by an extensive 
extracellular loop. At the NH2 terminus, β2 and β3 subunits contain additional amino acids that constitute the 
particle of inactivation. The topological structure shared by all subtypes of γ subunits: after selective cleavage, 
the γ subunits only have one transmembrane segment, with LRRC domains and the NH2 terminus facing 
the extracellular side. The homology model of LRRC domain was established by using the crystal structure 
underlying the LRR domain from lymphocyte receptor B59 of hagfish variable (PDB ID: 2O6S) [70]. The 
homology modeling of LRRC domain is acquired by using Discovery Studio 2017 R2.
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PTZ-induced epileptic animal models, and reversed the elevated neuronal firing 
which follows tonic-clonic seizures [69, 71].

Martentoxin, a polypeptide consisting of 37 residues isolated from the venom 
of BmK, could selectively block iberiotoxin-insensitive BK channel subtye (α + β4) 
[33, 72], with no obvious effects on BK channels with α subunit alone. In animal 
model experiments, martentoxin could prolong the latency and decrease the 
duration, as well as seizure numbers, especially the high stage seizure, of seizures 
induced by PTZ. The attitude and the duration of epileptic discharge are both 
decreased by intra-hippocampal injection with martentoxin [73] (Figure 4).

4. Anti-multiple sclerosis and stroke via Kv1.3

4.1 Anti-multiple sclerosis effects of BmK Kv1.3 blockers

Multiple sclerosis (MS), a neuroinflammatory demyelinating disease, is the 
second most common neurological disease. The occurrence of multiple sclerosis 
is often accompanied by the destruction of the blood-brain barrier (BBB) and the 
infiltration of the central nervous system by reactive T cell [74]. These cells rapidly 
produce large amounts of pro-inflammatory cytokines, such as IFN-γ and IL-4, 
inducing sebaceous lesions or damage by targeting myelin basic proteins, thereby 
promoting shedding.

The potassium channel Kv1.3 was first discovered in human T-cells in 1984 [75]. 
Accumulated data display Kv1.3 in myelin-reactive T cells from the peripheral blood 
(PB) underlying MS patients is more highly expressed compared with healthy 
people [76]. In animal model of experimental autoimmune encephalitis (EAE), it 
has also been confirmed that the expression of Kv1.3 is significantly elevated [77]. 
Kv1.3 blocks membrane depolarization and maintains the driving force for Ca2+ 
entry by effluxing K+, which in turn participates in T cell activation, Ca2+ activation 

Figure 4. 
Antiepilepsy effects of BmK venom toxins by targeting Na+/K+ channels. Long-chain β toxins BmK IT2/BmK 
AS/BmK AEP could reduce the epileptic seizure by inhibiting the activities of VGSCs. The specific BK channel 
blocker MarTX, a short-chain BmK toxin, suppressed the epilepsy by acting on the fAHPs and rapid spike 
repolarization of neurons, which might affect the activation of microglia through BK channels. BmP02, a Kv1.3 
inhibitor, has potential antiepileptic effects also by regulating the activation of microglia.
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signaling cascade, leading to T cell proliferation and cytokine production [78, 79]. 
These findings make Kv1.3 a valuable potential therapeutic target for immunosup-
pression in MS and EAE [80]. The therapeutic efficacy of Kv1.3 channel blockers 
has been evidenced by not only in in vitro assays on suppressing cytokine secretion 
and the proliferation of T cells, but also by in vivo experiments on diverse animal 
models of autoimmune diseases [81–85].

A variety of animal toxin peptides have been found to have the same channel 
target. The venoms of different species such as scorpions, anemones, snakes, and 
cone snails constitute a peptide damper for Kv1.3 [86–88]. Studies have shown 
that different toxin peptides have different affinities for the Kv1.3 channel and can 
inhibit Kv1.3 in the picomolar to nanomolar range [89].

BmKTX is an α-KTx toxin purified from the venom of BmK with 37 amino 
acids, which has an amidated C-terminal, and blocks Kv1.3 current with nanomolar 
concentration [90, 91]. However, in addition to being selective for Kv1.3, BmKTX 
also has affinity for other K+ channels, which promotes the design as well as 
appearance of highly selective BmKTX structural analogs [92]. The BmKTX D33H 
variant was produced by replacing the Asp33 residue with His in BmKTX. The 
selectivity of this novel BmKTX analog is 10,000-fold higher than wild-type 
BmKTX for targeting Kv1.3 [92, 93]. ADWX-1, a novel peptide based on the scor-
pion toxin BmKTX, replaces three residues of BmKTX (Gly 11, Ile 28, and Asp 33) 
with Arg 11, Thr 28, and His 33. The ADWX-1 peptide not only has a picomolar 
affinity (IC 50, 1.89 pm) for blocking Kv1.3, but its activity is increased 100-fold 
compared to the native BmKTX toxin [94]. More importantly, ADWX-1 also 
showed good selectivity on Kv1.3 compared to the related Kv1.1 and Kv1.2 channels. 
The data show that both BmKTX-D33H and ADWX-1 can effectively inhibit the 
activation and subsequent proliferation of human and rat CD4 + CCR7-TEM cells 
and the secretion of cytokines [93, 94]. It is similar to the pharmacological proper-
ties of ShK-186, an anemone toxin analog that has been used in clinical research as 
a novel drug for the treatment of autoimmune diseases [95]. In addition, ADWX-1 
can selectively inhibit the activation of effector memory T cells by inhibiting 
Kv1.3, thereby significantly improving the symptoms of experimental autoimmune 
encephalomyelitis (EAE) in a rat model [84, 93]. The results above illuminated 
that BmKTX-D33H as well as ADWX-1 have the potential for clinical treatments of 
Kv1.3-related channel diseases.

BmP02, also referred to α-KTx9.1, is a short peptide toxin from the BmK scor-
pion. It is comprised of 28 amino acids, whose tertiary structure is stabilized by 3 
disulfide bonds [21, 96]. It was found that it has nanomolar affinity for Kv1.3 [35, 97]. 
Functional characterization of BmP02 as a highly selective and potent Kv1.3-targeted 
peptide will help develop novel therapeutic agents for human autoimmune diseases.

4.2 Anti-stroke potential of BmK Kv1.3 blockers

Stroke is an acute cerebrovascular disorder that causes brain tissue damage, 
which is the second leading disease causing sudden death after ischemic heart 
disease and accounts for 9% of deaths worldwide [83]. Ischemic stroke is the most 
common type of stroke, usually occurring when the blood vessels in the neck or 
brain are blocked [98]. In the early stages of stroke, activated macrophages or 
microglial cells (M1 type) release a variety of inflammatory factors (TNF-α, IL-1-β, 
IL-23), trigger neuronal damage, and induce TEM cell-mediated further inflam-
matory responses [99]. A few days later, macrophages could change to M2-like 
functions, begin to clear various inflammatory factors, cell debris, and secrete 
anti-inflammatory as well as neurotrophic factors (IL-10, TGF-β, IGF-1) to promote 
injury recovery [99].
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Kv1.3 plays important roles in microglia as well as macrophage activation by 
modulating Ca2+ signaling, oxidative burst, cytokine production, and neuronal 
killing [100–102], which is required for microglia or macrophage M1-like pro- 
inflammatory activation in vivo [103]. Activated microglia in the pathology of 
ischemic stroke significantly contributes to secondary expansion of the infarct, 
and Kv1.3 blockers are thought to be useful in ameliorating this condition [104, 
105]. Studies have shown that while Kv1.3 inhibitors preferentially inhibit “M1-like” 
inflammatory microglia/macrophage functions they can preserve beneficial 
“M2-like” functions [106, 107].

BmP02 and BmKTX act as BmK K+ channel toxins that can effectively inhibit 
Kv1.3. We speculate that they and their derivatives may also reduce pro-inflam-
matory factors and improve brain damage by inhibiting the M1-like function of 
microglia or macrophages.

5. Anti-glioma activity

Glioma shows the general characteristics of tumor cells, with the difference 
being that the specific chloride channel current (CCC) is a unique electrophysi-
ological feature of glioma cells. The current intensity always increases with the 
increase of malignant degree of glioma [108]. The specific type of chloride channel 
on glioma cells can regulate the morphology and volume of cells, which are involved 
in the process of tumor cell proliferation and metastasis. Abnormal expression of 
chloride channel currents in glioma could be regarded as a kind of chloride channel 
disease, especially in glioma with high malignancy [109]. Therefore, it may provide 
a novel idea for the diagnosis and treatment of glioma by blocking its specific 
chloride channel current, from the perspective of ion channel disease.

BmK chloride channel toxins, BmK CT, are short-chain neurotoxin proteins 
composed of 36 amino acids and contain 4 pairs of disulfide bonds, which have 68% 
homology with chlorotoxin (CTX), a chloride channel toxin isolated from scor-
pion Leiurus quinquestriatus. BmK CT could not only specifically block the glioma 
chloride channels, but also recognize the matrix metalloproteinases-2 (MMP-2) 
for inhibiting glioma migration [110, 111]. The recombinant protein GST-BmK CT 
significantly suppresses on tumor growth in nude mice, with an inhibition rate of 
86% in vivo. The tumor metastasis in the lung lesion area was only 38% in the BmK 
CT-treated group compared to 75% in the control group [112]. In addition, BmK CT 
could promote the sensitivity of chemotherapeutic drug temozolomide-induced cell 
apoptosis of glioma U251 cells in vitro, which is through inhibiting the AKT signal-
ing pathway [113]. On the one hand, the specific inhibition of the proliferation and 
metastasis of glioma cells suggests BmK CT as an ideal candidate to treat glioma. On 
the other hand, due to the abundant expression of chloride channels in glioma cells, 
BmK CT is also used for imaging and treating glioma by conjugating it with Cy5.5, 
FND, or 131I/125I [114].

6. Proposal

Up to now, there are 15 venom-derived drugs used to treat a variety of diseases, 
including hypertension, pain, and diabetes, in clinic. As a result, many lives have 
been saved. In addition, 13 animal-derived toxins are considered to be drug candi-
dates, and have entered clinical trials [115]. Among them, scorpion toxin chloro-
toxin, isolated from Leiurus quinquestriatus, is under phase II clinical trial. It was 
reported that Iodine-131-chlorotoxin (TM-601) is a targeted drug candidate for the 
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treatment of gliomas because it could cross the blood-brain as well as some tissue 
barriers and specifically bind to malignant brain tumor cells without influencing 
the function of normal cells [116]. ShK derivatives, ShK-186 and ShK-192, are 
mainly used to treat autoimmune diseases, including neuroinflammatory multiple 
sclerosis by targeting Kv1.3 channels. In this review, we discuss the possibility of 
BmK scorpion toxins for clinical treatment on ion channel-relevant neurological 
disorders. It is shown that long-chain scorpion toxins, such as BmK IT2 and BmK 
AS, could effectively suppress neuroexcitability in nociception and epileptic seizure 
via VGSCs. In vivo study demonstrated that inhibition of Kv1.3 is favorable for the 
reversion of neuroinflammatory diseases by BmKTX and BmP02. It is also found 
that BmK CT could specifically suppress proliferation as well as metastasis of glioma 
cells. This brings the dawn to the effective control of neurological diseases sus-
pected of overcoming, such as chronic pain, MS, intractable epilepsy, and giloma.

However, it is still a challenge for BmK toxins used to the treatment of neurology 
disorders. The first problem underlying the application of these peptides is that they 
could not be taken orally, mainly because they are difficult to penetrate the intesti-
nal mucosa. Due to their molecular size, polarity, hydrophilicity, and chargeability, 
the cell membrane penetration of BmK toxins is hampered. The second obstacle 
is that BmK toxins cannot cross the blood-brain barrier. Different from multiple 
sclerosis, the myelin and blood-brain barrier are not destroyed in other neurological 
diseases [117]. Clinical application of BmK toxins for treating these diseases will 
encounter difficulties. Fortunately, the situation is not unsolvable, we still have 
a glimmer of light. A few years ago, scientists at the Sunnybrook Health Science 
Center in Canada used focused ultrasound technology to successfully pass chemo-
therapy drugs across the blood-brain barrier in a non-invasive manner [118] and 
reach the location of the tumor, which is of great significance in the field of neuro-
pharmacology. In addition, the cell penetrating peptide (CPP) [119] with a strong 
cell membrane penetration, could be used as a drug carrier to assist the passage of 
polypeptide drugs across the cell membrane [117]. The fusion protein consists of 
CPP and BmK toxin might be developed as an oral drug for treating neurological 
disorders. In short, finding suitable, safe, and efficient ways to promote the clinical 
use of BmK toxins are most valuable points to be solved.
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