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Role of Glucocorticoid Receptor 
in the Relation between Stress and 
Opiate Addiction
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Abstract

Stressful situations can result in relapse in dependent or abstinent causing 
reinstatement of drug-seeking. In fact, it has been suggested that activation of the 
brain stress system results in glucocorticoid release that affects the dopaminergic 
pathways. Also, the noradrenergic system innervates the extrahypothalamic BSS 
from the nucleus of tractus solitarius (NTS), resulting in a feedforward loop 
between the corticotropin-releasing factor (CRF) and noradrenaline (NA) crucial 
in drug addiction and relapses. Glucocorticoids interact with two receptors: min-
eralocorticoid receptor (MR) and glucocorticoid receptor (GR) which bind to a 
GRE site located in tyrosine hydroxylase (TH), resulting in the upregulation of TH 
synthesis and, finally, increasing dopamine (DA) release in the nucleus accumbens. 
TH upregulation depends on the phosphorylation of serine 31 and/or serine 40. 
Previous research has shown that protein kinase C (PKC) activates extracellular 
signal-regulated kinase (ERK) pathway and in turn phosphorylates serine 31 in the 
NTS. Besides, cAMP response element binding protein (CREB) is regulated by PKA 
and PKC. The results shown after pretreating morphine-withdrawn rats with mife-
pristone and spironolactone (GR and MR antagonists, respectively) suggest that 
glucocorticoids have a prominent role in addiction because GR would activate ERK 
and CREB in the NTS, phosphorylating serine 31 and activating TH and indeed 
noradrenergic release in the paraventricular nucleus (PVN).

Keywords: glucocorticoids, stress, addiction, brain stress system, 
noradrenergic system, TH, ERK, CREB

1. Introduction

Drug addiction is a chronic disease characterized by recurrence of its signs: 
drug-seeking and drug-taking behavior, loss of control and impulsivity in 
consumption, and emergence of a negative state when the access to the drug is 
not possible [1]. Besides, drug relapse is very often even months and years after 
withdrawal [2].

Drug addiction has been described as a three-phase disease: During phase 1, 
drug- seeking behavior is exacerbated and it courses with sensibilization of dopami-
nergic system, altogether with an associative learning from environment [3]. Phase 
2 consists of positive reinforcement pathway downregulation [4]. Finally, phase 3 
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is characterized by a negative emotional state and by an enhanced craving, which 
facilitates relapse to drug addiction [5]. Summarizing, individuals experience posi-
tive reinforcement in early stages of addiction when they consume drugs of abuse, 
but after several intakes, they continue that consumption only to avoid the negative 
state that appears during withdrawal [2, 6].

Previous research has described the importance of different neurotransmit-
ters and neuronal systems in the distinct phases of addiction, being dopaminergic 
system the main responsible of positive reinforcement [7–10]. Differently, nor-
adrenergic system and brain stress system activities are increased during drug 
dependence [11].

It is well known that dopaminergic system innervates the prefrontal cortex 
(PFC) and the nucleus accumbens (NAc), where consumption of major drugs of 
abuse produces dopamine (DA) release, what is attributed to be behind the develop-
ment of drug addiction due to its positive reinforcement properties. In contrast, 
noradrenergic system is mainly related with the negative state that emerges when 
there is drug withdrawal. It has been shown that noradrenergic innervation from 
nucleus of tractus solitarius (NTS) to the paraventricular nucleus (PVN) is involved 
in drug-seeking and in the negative reinforcement produced by morphine with-
drawal [12, 13]. Moreover, the existence of a loop between noradrenaline (NA) and 
corticotropin-releasing factor (CRF) has been described where the enhancement of 
NA system would result in the enhancement of CRF release (feedforward) and vice 
versa [14].

On the other hand, many pathways are involved in drug addiction resulting in 
intracellular responses once extracellular stimuli are processed. One of the more 
critical is the extracellular signal-regulated kinases (ERK) pathway which plays 
a main role in neuronal changes, being implicated, i.e., in reward after cocaine 
consumption [15]. Also, cAMP response element binding protein (CREB) is crucial 
being its activation through phosphorylation (pCREB). Previous studies from our 
laboratory have suggested an enhancement of pCREB during morphine withdrawal 
in the NTS [16]. Besides, CREB regulates TH phosphorylation, limiting enzyme for 
DA synthesis.

2. Brain stress system and addiction

Brain stress system is composed of two different linked structures: hypotha-
lamic-pituitary-adrenal (HPA) axis and the extended amygdala [17]. Both struc-
tures are activated during drug intake and during withdrawal, resulting in CRF and 
glucocorticoid release [18].

2.1 HPA axis

Also known as hypothalamic brain stress system, as its name suggests, it is 
divided in three components: the PVN, the pituitary, and the suprarenal glands 
[1, 12, 19]. In the PVN, CRF is released from the medial parvocellular subdivision 
to the median eminence reaching the pituitary (Figure 1) where it stimulates the 
synthesis and release of adrenocorticotropic hormone (ACTH) through CRF1R 
and CRF2R activation [20, 21]. Consequently, ACTH stimulates the synthesis and 
release of glucocorticoids from the adrenal glands. These glucocorticoids regulate 
the HPA axis through a negative feedback system once they interact with gluco-
corticoid (GR) and mineralocorticoid receptors (MR). Changes in this system are 
proposed to mediate transition from acute consumption to chronic consumption in 
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addicted [12, 22]. Previous research has shown that different antagonists can block 
the negative state that come across during morphine withdrawal [23]. Besides, 
chronic exposure to opiates results in physic dependence and tolerance, and it is 
accompanied by enhanced ACTH and corticosterone release during morphine 
withdrawal [24]. Stressful situations can result in relapse in dependent or abstinent 
humans [25] and cause reinstatement of drug-seeking in different animal relapsing 
models [26].

2.2 Extended amygdala

The extrahypothalamic brain stress system or the extended amygdala (Figure 2) 
is composed of different nuclei as bed nucleus of the stria terminalis (BNST), 
central nucleus of the amygdala (CeA), and the shell of the NAc [27, 28]. These 
nuclei have similar functions and are responsible of connecting the limbic struc-
tures as hippocampus, basolateral amygdala, or the midbrain [12, 29]. Also, limbic 
structures mediate responses and behavior guiding the individuals according to 
memories [30]. Here, CRF receptors and CRF neuron cell bodies have been seen in 
BNST and CeA innervating each other and others as the NAc [28, 31, 32]. Therefore, 
CRF has a prominent role in this structure. Moreover, the extended amygdala is a 
key component in the acquisition and development of different negative symptoms 
through the release of CRF together with other neurotransmitters or peptides like 
NA or dynorphin [17, 33, 34]. In addition, extended amygdala is linked to the NTS 
(a noradrenergic nucleus) through innervations from there to the BNST, CeA, or 
the NAc [35, 36]. Thereupon, the extended amygdala, a part of the brain stress 
system, connects with the noradrenergic system and the dopaminergic pathways 
[37]. In fact, it has been suggested that activation of the brain stress system would 
result in sensibilization of the dopaminergic pathways [38, 39].

Figure 1. 
Representation of the HPA axis. The hypothalamic brain stress system or HPA axis is composed by the PVN, 
the pituitary, and the suprarenal glands. CRF binds to CRF1R and CRF2R resulting in the activation of the 
pituitary which consequently, through ACTH, produces release of glucocorticoids (corticosterone, CORT) by the 
adrenal glands resulting in negative feedback over the previous steps.
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3. Role of glucocorticoids in addiction

Glucocorticoids are the final step of HPA axis, and their release takes place in 
response to stressful situations, becoming this activation one of the main mecha-
nisms of adaption to stress [40]. Glucocorticoids make their function by interacting 
with two classes of receptors: MR or type I and GR or type II [41].

Whereas MR are located in limbic areas of the brain such as amygdala and 
also in the PVN or the locus coeruleus (LC) [42], GR have a more heterogeneous 
localization, with deep presence in the PVN, amygdala, or the hippocampus. MR 
have higher affinity for corticosterone than GR, but GR are activated when there are 
stressful facts differently to MR, which are important at basal levels. Both receptors 
have presence in the NTS, making this nucleus to be important in glucocorticoid 
effects [43]. Previous research has shown that MR blockade decreases self-adminis-
tration of cocaine, suggesting a role for these receptors in addiction [44].

Moreover, stress affects GR, which are located through the dopaminergic path-
ways enhancing HPA axis and dopaminergic activity. In fact, glucocorticoids have 
been suggested to interact with a GRE site located in TH, resulting in the upregula-
tion of TH synthesis and, finally, increasing DA release in the NAc [45]. Therefore, 
individuals with higher HPA axis activity would be more vulnerable to develop drug 
addiction [5].

4.  Involvement of GR and MR in TH activity and phosphorylation  
in the NTS

The regulation in the biosynthesis of catecholamines by TH depends on its 
phosphorylation at serine 31 and serine 40. This has been proposed to be triggered 
by stressful situations considering that increased release of glucocorticoids results 
in uprising TH activity [46]. Moreover, morphine withdrawal induced by naloxone 
injection increased TH mRNA expression in the NTS and TH activity in the PVN [47]. 
Therefore, it was critical to elucidate if blocking GR and MR with mifepristone and 

Figure 2. 
Representation of the extended amygdala. The extrahypothalamic brain stress system or extended amygdala 
is shown here in a scheme with its main nuclei: BNST, CeA, and NAc. Noradrenergic innervations establish 
a feedforward loop between CRF and NA, which remains crucial for the development of drug addiction 
and relapses. Besides, there is dopaminergic innervation from ventral tegmental area to different nuclei 
establishing a relationship between NA system, DA system, and the brain stress system (hypothalamic and 
extrahypothalamic).
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spironolactone would affect TH phosphorylation during morphine withdrawal in the 
NTS. Results from our laboratory showed that TH phosphorylation at serine 31 and 
serine 40 was increased during naloxone-induced morphine withdrawal in rats, a fact 
that, together with the existence of enhanced NA turnover in the NTS during mor-
phine withdrawal, suggests that TH regulates noradrenergic activity [24, 31, 48–50]. 
Besides, the blockade of GR with mifepristone, selective antagonist of GR, signifi-
cantly attenuated the phosphorylation at serine 31, but not at serine 40 in the NTS 
during morphine withdrawal [48, 50], different to the results after blockade of MR 
with spironolactone. Pretreatment with this antagonist decreased phosphorylation of 
serine 31 in the NTS but not significantly [49, 50] (Figure 3). These results would sug-
gest that enhanced glucocorticoid release during morphine withdrawal results in TH 
phosphorylation at serine 31, consequently, also in enhanced TH activity, and finally 
in higher catecholamine levels in the PVN, innervated by noradrenergic system.

Figure 3. 
Antagonization of TH phosphorylation at serine 31 by mifepristone (GR antagonist). Mifepristone (C) but 
not spironolactone (A) antagonized naloxone-induced morphine-withdrawal phosphorylation of TH at 
serine 31 in the NTS. Representative immunoblots of THpSer31 (A, C) and THpSer40 (B, D) in the NTS 
tissues isolated from placebo and morphine-dependent rats 60 min after administration of naloxone and the 
respective antagonist [mifepristone (C, D) or spironolactone (A, B)] or saline. Data represent the optical 
density of immunoreactive bands expressed as a percentage (%) of the mean ± SEM of placebo control band 
*P < 0.05 versus placebo + vehicle + naloxone; **P < 0.01 versus placebo + vehicle + naloxone; #P < 0.05 versus 
morphine + vehicle + naloxone; ++P < 0.01 versus placebo + spironolactone+ naloxone; +++P < 0.001 versus 
placebo + spironolactone + naloxone.
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5.  Role of GR and MR in the activation of ERK pathway and CREB  
(via phosphorylation) in the NTS

Different studies have proposed the importance of ERK pathway in drug addic-
tion, particularly, during morphine withdrawal [51, 52]. Protein Kinase C (PKC) 
regulates this pathway activated by the phosphorylation of ERKs [50, 52]. It is 
important to highlight that previous research has shown that ERK has a main role 
in the phosphorylation of TH at serine 31 in the NTS [53], supporting a synergic 
cooperation between the brain stress system, the noradrenergic system, and this 
pathway. GR but not MR blockade significantly decreased the enhanced activity 
(via phosphorylation) seen in pERK1 and pERK2 during morphine withdrawal in 
rats, supporting a role for glucocorticoids in activation of ERK pathway (Figure 4).

On the other hand, it is known that CREB has a main role in addiction to drugs 
of abuse as a transcription factor [54]. Nevertheless, CREB is the final step of 
protein kinase A (PKA) signaling pathway, although PKC pathway has been also 
proposed to be mediating its activation in the NTS [16]. As it happens with ERK, 

Figure 4. 
Antagonization of ERK 1 and ERK 2 phosphorylation by mifepristone (GR antagonist). Mifepristone (A, 
C) but not spironolactone (B, D) antagonized naloxone-induced morphine-withdrawal phosphorylation of 
ERK 1 and ERK 2 in the NTS. Representative immunoblots of ERK 1 (A, B) and ERK 2 (C, D) in the NTS 
tissues isolated from placebo and morphine-dependent rats 60 min after administration of naloxone and the 
respective antagonist [mifepristone (A, C) or spironolactone (B, D)] or saline. Data represent the optical 
density of immunoreactive bands expressed as a percentage (%) of the mean ± SEM of placebo control band. 
*P < 0.05 versus placebo + vehicle+ naloxone; **P < 0.01 versus placebo + vehicle + naloxone; *P < 0.05 versus 
placebo + vehicle + naloxone ##P < 0.01 versus morphine + vehicle + naloxone; ###P < 0.001 versus morphine + 
vehicle + naloxone.
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CREB is activated via phosphorylation, and it has been shown to be enhanced in 
the NTS during morphine withdrawal [16, 50]. Once again, GR but not MR block-
ade significantly decreased the phosphorylation of CREB seen during morphine 
withdrawal [50] (Figure 5). Therefore, GR would be implicated in CREB activation 
during morphine withdrawal in the NTS.

6. Conclusion

Previous research has shown that CRE (binding site for CREB) and GRE 
(binding site for GR) are present in the gene promoters that regulate activity of 
TH [55], setting a relationship between NA system, the HPA axis and the extended 
amygdala, and finally, CREB. In contrast, little was known about the mechanisms 
underlying this regulation. This review suggests that stressful situations as nalox-
one-induced morphine withdrawal would result in glucocorticoid release which 
would activate GR. Immediately, GR would produce an activation of PKC signaling 
pathway that would regulate ERK pathway and CREB activation (via phosphoryla-
tion) in the NTS. Finally, TH activity would be enhanced in the NTS through the 
activation of different sites as CRE or GRE resulting in catecholamine release in the 
PVN, supporting a main role for glucocorticoids and the GR in drug addiction.
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