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Chapter

Trace Elements in Volcanic 
Environments and Human Health 
Effects
Diana Paula Silva Linhares, Patrícia Ventura Garcia  

and Armindo dos Santos Rodrigues

Abstract

Trace elements play an essential role in the normal metabolism and physiological 
functions of living beings. The distribution and concentration of trace elements in 
the environment results from both anthropogenic and natural origins; this chapter 
will focus on volcanism as one of the major natural sources of trace elements. In vol-
canic areas, the emissions and deposits of volcanogenic elements are key factors for 
geochemical mobility of trace elements and their distribution in the environment 
and, their effects on animals and human health. Volcanic areas have been associated 
with increased incidence of several diseases, such as fluorosis or even some types 
of cancer, leveraging the studies on the potential of this natural phenomenon as 
a promoter of diseases. As the Azores Archipelago is a volcanic area, with several 
manifestations of active volcanism, this region presents itself as an ideal study 
scenario for a multidisciplinary approach on environmental health problems, such 
as the exposure to toxic and/or deficient levels of trace elements. This chapter will 
present an integrated approach, describing the occurrence, the monitoring of trace 
elements and their characterization, the biological role in human body, and the 
human biomonitoring and health risk assessment, using case studies as examples.

Keywords: human health, biomonitoring, risk assessment, volcanism, trace elements

1. Introduction

Quality of life is based on an intricate relationship of various factors that include 
having sufficient nutrition, adequate accommodation and environment, social 
and psychological fulfillment, and health. Not neglecting the importance of these 
factors, environment stands out as it plays a crucial role in people’s physical, mental, 
and social well-being.

Given the link between environment and health, as environmental chemicals 
affect not only the surroundings but also the quality of food and water, there 
has been a growing concern in the scientific community in the last decades, and 
consequently an increase in studies characterizing the environmental availability 
of elements, particularly in the soil. These recent studies have added substantial 
knowledge regarding elemental availability in soils, particularly for the biogeo-
chemistry of trace elements [1]. The assessment of the concentrations of trace 
elements in soil is very important not only for environmental purposes, such as 
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quantifying the contamination level, but also to help solve problems associated with 
elemental toxicity or deficiency in humans and plants.

Trace elements (TEs) are dietary minerals present in living tissues in small 
amounts; some of them are known to be nutritionally essential, playing a vital role 
in the normal metabolism and physiological functions of animals and humans [2]. 
The TEs’ essentiality for the human body has been a matter of discussion through-
out time and the term “trace elements” has never been clearly defined, being used 
both in geochemistry and biological sciences for chemical elements that occur in 
the Earth’s crust in amounts less than 0.1% (1000 mg/kg) [1]. Despite their “low” 
content in the human body, TEs are components of a complex physiological system 
involved in the regulation of vital functions at all stages of development of the living 
organism [3].

Throughout time, limited attempts have been made for classifying trace ele-
ments. In 1973, WHO [4] classified 19 trace elements into three groups: (i) essential 
elements: zinc, copper, selenium, chromium, cobalt, iodine, manganese, and 
molybdenum; (ii) probably essential elements; and (iii) potentially toxic elements. 
Shortly after, Frieden [5] considered 29 types of elements present in the human 
body and classified them into five groups:

i. Group I: basic components of macromolecules such as carbohydrates, pro-
teins, and lipids. Examples include carbon, hydrogen, oxygen, and nitrogen;

ii. Group II: nutritionally important minerals also referred to as principal or 
macroelements. The daily requirement of these macroelements for an adult 
person is above 100 mg/day. Examples include sodium, potassium, chloride, 
calcium, phosphorus, magnesium, and sulfur;

iii. Group III: essential trace elements. The trace elements are also called minor 
elements. An element is considered a trace element when its requirement per 
day is below 100 mg/day. The deficiency of these elements is rare but may 
prove fatal. Examples include copper, iron, zinc, chromium, cobalt, iodine, 
molybdenum, and selenium;

iv. Group IV: additional trace elements. Their role is yet unclear and they may 
be essential. Examples include cadmium, nickel, silica, tin, vanadium, and 
aluminum. This group may be equivalent to probably essential trace ele-
ments in the WHO classification;

v. Group V: these metals are not essential and their functions are not known. 
They may produce toxicity in excess amounts. Examples include gold, mer-
cury, and lead. This group is equivalent to potentially toxic elements defined 
in the WHO classification.

More recently, Frieden [6] proposed a biological classification of trace elements 
based on their amount in tissues: (i) essential trace elements: boron, cobalt, cop-
per, iodine, iron, manganese, molybdenum, and zinc; (ii) probably essential trace 
elements: chromium, fluorine, nickel, selenium, and vanadium; and (iii) physically 
promoter trace elements: bromine, lithium, silicon, tin, and titanium.

As TEs play a significant role in the regulation of many important adaptive 
mechanisms, including the functioning of all vital systems of the organism, the 
balance of each element in an optimum range of concentrations is fundamental. 
The chronic deficiency of essential TEs can, therefore, result in metabolic distur-
bances and distinct clinical and morphological changes; on the other hand, we must 
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not disregard that all TEs can be toxic if consumed at high levels for long periods, 
disturbing the normal function of vital systems.

2. Trace elements in soil

The main advances in trace element research have been made in soil sciences 
since soils are considered the most important environmental compartment func-
tioning as a sink for TEs [7–9]. Trace elements are usually distributed over different 
soil compartments and their retention will depend on several soil characteristics, as 
well as the parent rock material.

The main soil characteristics include pH, cation exchange capacity (CEC), par-
ticle size distribution, electrical conductivity, and organic matter content [10, 11]. 
These soil properties can promote the accumulation of TEs in soils or their deple-
tion. The most adequate pH for the maximum TE availability is within 6.0–8.0; 
however, some TEs such as manganese, iron, boron, copper, and zinc are more 
available to plants when the soil is acidic (pH between 4.5 and 6.5), which contrib-
utes to manganese and boron toxicities in plants growing on acidifying soils [12].

The CEC is also a very important soil property as it can influence the soil 
structure stability, nutrient availability, soil pH, and the soil reaction to fertilizers 
and other ameliorants [13]. For example, negatively charged sites increase the CEC, 
holding H+, Ca2+, Mg2+, Na+, and NH4+, while the positively charged sites increase 
the retention of OH−, SO4

−, NO3
−, and PO4

− [14]. All these soil properties, either 
combined or isolated, can promote the accumulation or the leakage of TEs in soils.

The parent rock material also assumes high importance in TE availability; when 
parent materials have high trace element concentrations, the resulting soils also 
have high or even higher TE concentrations, particularly when the former also 
result from anthropogenic activities, such as agriculture [15].

Considering that specific soil characteristics can affect the TE availability, the 
use of universal background concentrations is inadequate, as it may not reflect the 
“normal” values for specific regions. In this way, each country should determine 
the background levels for each region with different geological substrates and 
establish normative values for environmental legislation based on these studies, 
avoiding misinterpretation of abnormally low or high TE contents [16].

2.1 Measurement of trace element levels in soils

The soil background concentrations/levels will depend on the mineralogical 
composition of the parent rock material and on the weathering processes that have 
led to its formation, the granulometry fractions, and the organic matter content 
[17–19]. These background measurements, which represent natural concentrations 
in unpolluted pristine soils, are very difficult to assess because they require a soil 
free of contamination. Given this difficulty, the measurement usually applied is the 
geochemical baseline concentration that represents an expected range of element 
concentrations around medium normal sample mean [20]. Although the TE base-
line concentration levels in the soil may differ between countries and/or geographi-
cal regions, their assessment has been recognized as the only means to establish 
reliable worldwide elemental concentrations in natural materials [21, 22].

The measurement of TE in soils requires well-planned sampling strategies to 
achieve accurate data. There are several defined protocols for soil sampling and many 
digestion techniques to optimize the TE quantification [23]. The conventional meth-
ods are based on a regular soil sampling design, with soil sample collection at a depth 
of 0–20 cm and subsequent chemical analysis of the sampled soils in the laboratory, 
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followed by geostatistical interpolation of the data to obtain the spatial distributions of 
soil heavy metal content. For the assessment of TE in agricultural areas, the protocol 
of geochemical mapping of agricultural soils and grazing land of Europe (GEMAS) 
is the most used as the aim of the project is to provide harmonized geochemical data 
of arable land and of land under permanent grass cover at the continental European 
scale. The application of this protocol for meadows requires that all samples will 
be taken as rather large (2–2.5 kg) composite samples from one extensive field; the 
minimum size of field should be about 25 × 50 m [24]. The sampling stage is critical 
and it must take into account what we want to measure and the geological attributes 
of the site. Also, in order to avoid cross-contamination in the sampling of TEs, metal 
tools should not be used in the field or in the lab. The sample preparation and storage 
in the lab often require that the soil samples are air-dried and sieved to less than 2 mm 
[25]. Afterward, the total TE contents or the extractable fraction can be determined.

Given that the application of these methods has some disadvantages, since they 
are time-consuming and costly and cannot provide accurate estimates of soil heavy 
metal content over large areas, new approaches such as remote sensing are starting 
to be widely used as they can rapidly lead to spatially explicit estimates of soil heavy 
metal content and monitor their dynamics at a regional scale with low cost [26]. By 
capturing electromagnetic radiation reflected from the target, remote sensing can 
be used in the detection of heavy metals in soil and vegetation [27]. However, soil’s 
properties cannot be easily assessed using hyperspectral sensing so the monitoring 
heavy metal contamination in soils has not been assessed comprehensively and it 
needs further studies [28].

The assessment of the total concentration of trace elements is required to:  
(i) determine the background (natural) TE levels in the soil; (ii) assess the total 
metal content; and (iii) evaluate if there has been TE accumulation over time 
[29, 30]. To assess the total concentration of TE, soils need to be digested to break 
down the primary silicate structures of the more resistant quartz and feldspar soil 
minerals and release the TE into solution. The most common types of digestion are 
carried with concentrated nitric acid and hydrogen peroxide or with a mixture of 
aqua regia concentrated nitric and hydrochloric acids.

Finally, the elemental concentrations of the digest solutions can be determined 
by spectroscopic methods, such as atomic absorption spectroscopy (AAS), induc-
tively coupled plasma optical emission spectroscopy (ICP-OES), or by plasma mass 
spectrometry (ICP-MS) [31]. ICP-OES and ICP-MS have more advantages when 
compared with the AAS, as they allow one to obtain numerous data from running 
the sample just once and have very low detection limits [32]. While ICP-OES is 
based on the measurement of excited atoms and ions at the wavelength character-
istic for the specific element being measured, ICP-MS measures an atom’s mass by 
mass spectrometry (MS). These distinct approaches result in different lower detec-
tion limits; the lower detection limit in ICP-OES is in parts per billion (ppb) while 
in ICP-MS can be extended to parts per trillion (ppt) [33]. On the study of trace 
elements in environmental samples, ICP-OES is more commonly used since it may 
be applied for samples with high total dissolved solids or suspended solids and is, 
therefore, more robust for analyzing groundwater, wastewater, soil, and solid waste. 
It is therefore, usually used to measure contaminants for environmental safety 
assessment and elements with a higher regulatory limit [31]; if the trace elements in 
study have very low regulatory limits, ICP-MS is adequate for quantification.

2.2 Sources of trace elements

Trace elements can enter the soil by natural or anthropogenic sources [34], and 
their behavior and fate in soils differ according to their source and species.
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The most important anthropogenic sources of trace elements for soils include 
mining and metallurgical activities, commercial fertilizers, biosolids, irriga-
tion water, coal combustion residues, and auto emissions [34, 35]. Mining and 
metallurgical activities are recognized as the most important producers of waste 
and environmental pollution; the metalliferous mines, processing plants, and 
smelters generate huge amounts of mine tailings that can be transported mainly 
in the form of wastewater and airborne dust particles [36–38]. Using fertilizers in 
intensive agriculture can increase the TEs in the soil given that fertilizers contain 
trace amounts of several elements [15]. Sewage sludges and effluents also contain 
variable amounts of trace elements of various nature and various anthropogenic 
origins, although they can be an interesting way to enrich the soil with organic 
matter [39]. The direct use of sewage sludge can lead to heavy metal phytotoxic-
ity problems due to the lack of stability of organic matter that could be obtained 
through an appropriate composting process. The TEs also enter the soil trough the 
water used for irrigation or even by the atmospheric deposition from industrial and 
urban combustion emissions. The TEs can travel long distances in either gaseous 
form or in particle phase before deposition; therefore, the contaminated zones can 
extend up to a great distance from the contamination site. This is easily observed 
with the automobile exhaust emissions that contaminate not only the roadside soils 
but, depending on the location, traffic intensity and predominant wind conditions 
(direction and frequency); the contamination can be observed in soils hundred 
meters apart from the road [40].

There are also several natural sources (and processes) that contribute to TEs’ 
deposition in soils. The main natural source is the soil parent material as the weath-
ering of rocks and mineral deposits produces metals in dust, sediments, ground-
waters, and surface waters [17]. Forest fires with the release of metal and mineral 
particulate matter in ash, gas, and aerosols or even sea spray with metals in the 
water droplets can also contribute to the deposition of TEs in soils, not only in the 
vicinity of their sources but also in areas far away. Another natural factor of major 
importance is geological activities; they are rather volcanic activities, earthquakes, 
landslides, debris flows, etc. all of which introduce major and trace elements into 
the environment [41]. The concentration of metallic TEs is the most affected by 
volcanic activity [42], resulting in high baseline concentrations of some metals in 
volcanic soils [15, 43].

The excess of metals in soils may affect the surrounding ecology and human 
health as these elements are non-biodegradable and therefore environmentally per-
sistent [44]. While some of these trace elements are essential for plant growth and 
development, the monitoring of TE baseline values in soils is fundamental since at 
elevated levels they can become toxic. The toxicity of TEs will depend on the dose, 
exposure pathway, and duration of exposure [45, 46]. Regarding the bioavailability 
of TE in soils, the context is much wider as it includes chemical availability to a vari-
ety of biota [47]. Even with no universal definition, it is assumed that for the study 
of the environmental risk assessment of TEs in soils, the bioavailability assessment 
should include their soluble and solid-phase-associated labile fractions. Although 
the dissolution-desorption, transport, and uptake are very complex processes, the 
Committee on Bioavailability of Contaminants in Soils and Sediments [48] consid-
ered that bioavailability is the fraction of the total concentration of contaminants 
present in soil (solid and solution phases) which is potentially available for plant 
uptake or absorption by soil-dwelling organisms.

Considering that the excess of TEs in soil due to volcanic activity cannot be 
controlled, and that TE ingestion, inhalation, or dermal contact can cause damage to 
several human systems, the monitoring and baseline determination of TEs in volca-
nic environments assume particular importance for the inhabitants of these areas.
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2.3 Trace elements in volcanic soils

There are several hazards that result from a volcanic eruption; the most immedi-
ate and threatening hazards are pyroclastic falls, pyroclastic density currents, lava 
(flows and domes), lahars and flooding, debris avalanches, and volcanic gases. 
Nevertheless, volcanic emissions also occur in the post-eruptive phase and in quies-
cent volcanoes, continuing to affect the ecosystem and consequently human health.

Volcanic regions step-up important scenarios for the study of TEs in soils 
because: (i) they are densely inhabited in some areas of the Earth and (ii) due to 
the physicochemical properties, volcanic soils retain TEs, acting as a reservoir and 
affecting agriculture [15].

2.4 Human health effects

The concern regarding the health effects of environmental exposure to TEs from 
natural sources has driven the development of tools and methods for assessing the 
impact of emissions in water, soil, and air. Biological monitoring or biomonitoring 
is the most commonly applied method to measure human exposure to xenobiotics 
[49]. There are several studies worldwide that establish the association between 
concentrations of TE in volcanic soils and its effects on human health.

One of the most well-detailed health problem associated with volcanic activ-
ity is fluorosis, which results in high fluoride (F) concentrations in groundwater. 
The problem was first recognized in Japan and was called “Aso volcano disease” 
[50], but during the course of the year, high fluoride concentrations (greater than 
the WHO guideline value of 1.5 mg/l) were also found in Africa, where the crater 
lakes of western Uganda often have high F concentrations (e.g.4.5 mg/l F in Lake 
Kikorongo) [51]. High concentrations of F were also found in eastern Turkey, near 
the Tendurek Volcano, where the natural waters contained fluoride levels between 
2.5 and 12.5 ppm [52], and in oceanic islands, such as Tenerife Island (Canary-
Spain) [53] and São Miguel Island (Azores-Portugal) [54–56].

Another health problem that has been proven to be strongly associated with the 
exposure to volcanic environments is thyroid cancer, in particular papillary thyroid 
cancer (PTC). In 2009, Pellegriti et al. [57] in a register-based epidemiologic study 
showed that the residents of Catania, a province in the vicinity of Mt. Etna, pre-
sented a higher incidence of papillary thyroid cancer than elsewhere in Sicily. More 
recently, these results were reinforced in the study conducted by Malandrino et al. 
[58]. In this study, the authors evaluated the environmental pollution and bio-
contamination in a volcanic area of Sicily and compared the data with the thyroid 
cancer epidemiology data obtained from the Sicilian Regional Registry for Thyroid 
Cancer. Their results indicated that the residents in Mt. Etna volcanic area had sig-
nificantly higher levels of several TEs in their urine when compared to the control 
area [Cd (×2.1), Hg (×2.6), Mn (×3.0), Pa (×9.0), Th (×2.0), V (×8.0)] and that 
thyroid cancer incidence was 18.5 and 9.6 per 105 inhabitants in the volcanic and the 
control areas, respectively; the observed thyroid cancer incidence was exclusively 
from the papillary histotype.

Besides these, that pose as the most studied TE and linkages to human health 
effects, there are several other health issues that have an increased risk due to 
environmental exposure. In Sicily, Italy, various soil types developed from differ-
ent parent materials were analyzed to compare heavy metal distribution under 
different geopedological conditions, evidencing that the former depended on the 
parent rocks [59]. In Turkey, an association was established between the volcanic 
soil and the high prevalence of upper gastrointestinal cancer rates in the Van region 
as the fruit and vegetable samples produced in those soils contained potentially 
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carcinogenic levels of heavy metals [60]. More recently, Rodriguez-Espinosa and 
co-authors [61] analyzed the elemental composition of 25 soils and ash samples 
after the eruptions of the Popocatépetl Volcano in México, observing that the 
concentrations of TEs such as Zn, Pb, Ni, Hg, Cr, Cd, Cu, and As were significantly 
higher than those observed in older samples from eruptions in 1997, suggesting that 
the naturally highly volatile and mobile metals leach into nearby freshwater sources. 
In the Azorean volcanic islands, there are also some studies focusing in the concen-
trations of TEs in soils [15, 62] and its effects on local organisms [39, 63, 64] and 
human health [50, 53], the latter being particularly focused on fluoride [65–67].

In 2016, Linhares and co-authors [65] verified that there are areas in São Miguel 
Island-Azores that even with modern water treatment systems present fluoride 
concentrations slightly above the WHO recommendations [68]. Considering that 
the main sources of human exposure to fluoride are diet, especially through the 
ingestion of water and, that in volcanic regions fluoride is continuously released 
into the environment, these authors developed a biomonitoring study to investigate 
the feasibility of urine and nail clippings as biomarkers of exposure. Nail clippings 
revealed to be a more reliable biomarker of chronic exposure to fluoride than urine 
for populations of different age classes (children vs. adults), with a positive cor-
relation between the fluoride daily intake and fluoride content in nail clippings in 
children (rs = 0.475; p < 0.001), and in adults (rs = 0.495, p < 0.001). More recently, 
Linhares et al. [66] assessed the risk of skeletal fluorosis from environmental 
exposure to fluoride in hydrothermal areas, using wild mice (Mus musculus) as 
bioindicator species. Mus musculus were collected in Furnas village (a village located 
inside the caldera of Furnas volcano), an area where volcanic activity is marked by 
active fumarolic fields, hot and cold CO2-rich springs, and soil diffuse degassing 
phenomena [69, 70]. The results demonstrated that mice from Furnas village had 
higher concentrations of fluoride in bones when compared with mice from an area 
without volcanic activity (616.5 ± 129.3 mg F/g vs. 253.8 ± 10.5 mg F/g, respec-
tively), reinforcing that chronic exposure to fluoride may lead to the development 
of not only dental fluorosis but also of skeletal fluorosis.

3. Azores as a volcanic scenario

The Azores archipelago is located in the North Atlantic Ocean, in the triple junc-
tion of the North American, African, and Eurasian plates [71–73]. The archipelago 
is formed by nine islands of volcanic origin that represent the emerged part of the 
Azores Plateau, a thick and irregular area of the oceanic crust roughly limited by the 
2000-m bathymetric curve [74]. As a result of the Azores archipelago’s location on 
an active plate boundary, frequent seismic and volcanic activity occurs, including 
volcanic eruptions and secondary manifestations of volcanism, such as hydrother-
mal vents and soil degassing processes.

São Miguel, the largest island of the archipelago, is formed by five active vol-
canic systems, including three central active volcanoes (Sete Cidades, Fogo and 
Furnas), separated by two fissure systems (Picos and Congro), and two extinct 
volcanic systems (Povoação and Nordeste) [75, 76].

Since the volcanic activity on the island contributes to a distinct soil elemental 
profile, resulting in a higher baseline for elements, the study of the baseline levels 
of TE is fundamental. When bioavailable to plants, animals, and humans, TEs can 
cause several diseases due to their elevated concentrations in soils. In addition, the 
high concentrations of some TEs in soils can inhibit the bioavailability of other 
elements, promoting the deficiency in elements that can be essential for plants, 
animals, and human health.
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Considering that in this island, volcanic activity is usually in a quiescent phase, 
it presents itself as an ideal study scenario for an approach on environmental health 
problems, such as the exposure to toxic levels of TE and/or their deficiency.

3.1 Distribution of TEs in São Miguel island soils

In São Miguel island, with five active volcanic systems, all the soils have TE 
inputs resulting from the volcanic activity along the island. Nevertheless, in an 
island where the main income is agriculture, with the production of dairy, meat, 
and horticulture, little is known about the TE profile in these young volcanic soils.

In 2006, Amaral et al. [62] undertook a study to determine some baseline levels 
of trace elements in soils with different ages from active (Furnas; S. Miguel Island) 
and inactive volcanic sites (Santa Maria Island) of the Azores archipelago. These 
authors observed that, except for SiO2, Na2O, K2O, and Zn, the concentrations 
of major and trace elements were higher in Santa Maria soils. The authors point 
that these differences may be related to the higher capability of Santa Maria soils 
to retain the elements, given that these soils are richer in fine grain size particles, 
to retain those elements. In the study by Amaral et al. [63], using the earthworm 
Lumbricus terrestris as a model, the authors found that even though the volcanic site 
showed lower levels for most of the analyzed metals, the earthworms presented 
higher concentrations of the same TEs than those from the site without volcanic 
activity. These earthworms, with higher levels of trace metals, responded to this 
environment with higher bioavailability of TEs with a reduction of the thickness 
of the chloragogenous tissue and intestinal epithelium [63]. The higher bioavail-
ability of TEs in these soils can be explained by the lower pH and clay content, as 
the authors suggested. Later on, a higher risk for uptake of potentially toxic metals 
in the active volcanic area was observed by Amaral et al. [77] when studying the 
scalp hair of men living in Furnas and in Santa Maria Island. The authors found that 
the scalp hair of men from Furnas had higher concentrations of Cd (96.9 ppb), Cu 
(16.2 ppm), Pb (3417.6 ppb), Rb (216.3 ppb), and Zn (242.8 ppm) when compared 
with men living in Santa Maria Island.

More recently, Parelho et al. [15] collected and analyzed soil samples from the 
farms of the main producers of vegetables in São Miguel island; these farms were 
located in the Picos Fissural Volcanic System, in the western half of the island. 
Results revealed that the TE background values fitted in the average values for 
European volcanic soils. However, this work showed that in addition to agricultural 
input there are elements of volcanogenic origin and that these specific soils tend to 
accumulate some trace metals due to their physicochemical properties.

Although these studies gather some information regarding the TE profile in the 
island volcanic soils, they were limited to areas of island without active volcanism 
and, therefore, TE contents may be even higher in the soils from where active mani-
festations of volcanism occur. Lately, there have been some studies that focused on 
the distribution of several TEs in all the volcanic complexes of São Miguel Island, 
evidencing a depletion of some TEs in the soils, such as iodine [55] and cobalt [78] 
and elevated concentrations of others, such as manganese [78].

3.2 Iodine

Iodine is a vital micronutrient required at all stages of life, with the fetal stage 
and early childhood being the most critical phases of requirement [79]. The connec-
tion between geological materials and TE deficiency is well documented for iodine 
since an inadequate intake of iodine results in disease conditions collectively known 
as Iodine Deficiency Disorders (IDD) [80]. The iodine overload is less common, 
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but can cause thyrotoxicosis as hyperthyroidism, chronic thyroiditis, Hashimoto’s 
thyroiditis, and even may increase the risk of thyroid gland cancer [81–83].

Since the 1980s, the existence of health problems associated with iodine 
deficiency has been acknowledged. In 1986, Oliveira et al. [84] made a survey for 
endemic goiter on the island of São Miguel-Azores and observed that the median 
iodine intake ranged from 10 to 49 mg iodine/g creatinine, with a goiter prevalence 
usually greater than 20%. Later on, the studies by Limbert et al. [85, 86] estab-
lished that urinary iodine deficiency was not only observed in children, but also in 
pregnant women. The most noteworthy fact of these studies was that the deficient 
iodine intake was not the same in all the islands of the Azores, with a positive 
highlight for the population of the island of Santa Maria, with mild deficiencies 
in iodine intake and, a negative one for the population of São Miguel, with severe 
deficiencies in iodine intake.

Since it is recognized that the ocean is the main reservoir of iodine and that the 
Azorean islands have geographical and climatic features that are clearly oceanic, 
Linhares et al. [55] investigated the environmental availability of iodine and bio-
availability to human populations, especially in children at school age. This study 
reinforced the observations obtained in the previous studies [84, 86], revealing 
a deficient intake of iodine in the resident population of São Miguel Island, but it 
went further in the establishment of the causes. In this study, Linhares and the co-
authors observed that the environmental availability of iodine was different in the 
soils from both islands, being significantly higher in the soils of Santa Maria than 
in São Miguel (58.12 ppm ± 40.94 vs. 14.53 ppm ± 11.79, respectively). The volca-
nic activity of São Miguel island; the islands’ geomorphology; and consequently 
climate characteristics, such as orography and rainfall, are the main causes for 
the lower content of iodine in its soils. It must also be taken into account that the 
iodine soil content results from the complex dynamic balance of three processes: 
incorporation from the atmosphere, fixation, and volatilization. Soil character-
istics, such as soil organic and inorganic components and the clay fraction, can 
affect iodine fixation. Higher concentrations of the organic and inorganic com-
ponents and a higher clay content, as observed in Santa Maria island, provide a 
strong fixation of iodine in the soil, reducing the volatilization; therefore, in more 
mature volcanic soils (like those from Santa Maria) higher deposits of iodine are 
expected.

The outcome of this last study reinforces the risk of iodine deficiency in São 
Miguel Island, emphasizing the necessity of introducing an iodine supplementa-
tion program in the population of this island, to overcome the low environmental 
availability of this halogen and its continued vigilance by periodic urinary iodine 
surveys.

3.3 Cobalt

Cobalt is usually found in the environment combined with other elements 
such as oxygen, sulfur, and arsenic. Small amounts of these chemical compounds 
can be found in rocks, soil, plants, and animals. The concentrations of cobalt in 
soil range from about 1 to 40 ppm and the amount of cobalt in the air is less than 
2 ng/m3. This specific TE has some notorious differences when compared with the 
remaining TEs; whereas the other elements are required in ionic form and are then 
converted into their metabolically active species, the body requires Co in a pre-
formed compound, vitamin B12. The ability to synthesize vitamin B12 is only found 
in some bacteria, algae, and in some ruminants. Grazing cattle can synthesize 
vitamin B12 in the rumen, but in humans the main source of vitamin B12 is animal-
related foods.
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There are reports of health problems related to B12 deficiency, such as per-
nicious anemia and nerve damage [87, 88], and even psychical disorders, like 
impaired memory, irritability, depression, dementia, and psychosis [89].

Like iodine, cobalt deficiency has been long ago identified in São Miguel Island, 
particularly in grazing ruminants [90, 91]. However, it has been a subject of more 
interest only a few years ago, when Pinto [92] verified that approximately 40% of 
the dairy cattle in his study had deficient Co intake. These findings are extremely 
important for volcanic regions like the Azores, where livestock industries, such as 
dairy cattle farms, rely mostly on pasture grazing, where cattle are raised outdoors 
with an almost 100% natural diet of grass available in pastures.

To better understand the distribution of Co and its baseline levels on the island 
of São Miguel, Linhares et al. [78] collected soil samples from grazing sites through 
the island and observed a distinct pattern in the distribution. The highest concen-
trations of Co in soils were observed in the volcanic regions of Nordeste and Picos. 
These differences are related to the volcanic bedrock characteristics of the island; 
the Co content in the parental volcanic rocks is higher (20–58 mg/kg Co) in the 
low-silica rocks of Nordeste and Picos when compared to the high-silica rocks of 
the other volcanic regions. The differences within the volcanic regions of the island 
lie in the pedogenesis of parental volcanic materials; distinct geochemical composi-
tions related to different degrees of magmatic evolution at depth result in different 
types of magma: (i) low-silica magmas (basalts and trachybasalts) as in Nordeste 
and Picos volcanic regions, that have high concentrations of iron, magnesium, chro-
mium, nickel, and cobalt and; (ii) high-silica magmas (trachytes and rhyolites), 
such as Sete Cidades, Fogo/ Congro, and Povoação, that have low concentrations 
of these elements [93–95]. Linked to this, the existence of other TEs in the soils can 
also restrict the Co availability, as it happens with manganese (Mn) when present in 
high concentrations in the soils of São Miguel Island.

The study by Linhares et al. [78] revealed that the soils’ volcanic origin (related 
to the parent rocks) and soil-forming processes affect the Co availability and, there-
fore, it is expected that severe Co deficiency can occur in most animals, especially 
the ones grazing in areas such as Furnas/Congro and Povoação.

The human dietary cobalt deficiency is unusual in individuals that consume 
animal-related food, fish, nuts, leafy green vegetables, such as broccoli and spinach, 
and cereals, including oats, since these are good food sources of cobalt [96].

In São Miguel Island, the lack of Co in soil assumes particular importance as the 
basis of the population feeding relies on locally produced agricultural products, 
and on meat and dairy products from grazing ruminants that are mainly fed with 
the available pasture grass in the grazing sites. Therefore, it is expected that, as 
observed in the ruminants, there might be some defined populated areas where the 
residents will have a deficient intake of Co and consequently may be more prone to 
develop several health problems associated with the lack of Co availability.

3.4 Manganese

Manganese (Mn) is a bioelement that has a cofactor function in the enzymatic 
processes [97]. It takes part in the functioning of antioxidant, musculoskeletal, 
immune, and reproductive systems and in detoxification processes [98]; neverthe-
less, excessive quantities of Mn cause toxic effects, especially in the central nervous 
system resulting in neurological diseases [99]. Manganese is ubiquitous in the 
environment, and human exposure arises from both natural and anthropogenic 
activities.

The Mn concentrations in soils strongly depend on the parent rock composition; 
the Mn contents in rocks can go from 174 mg/kg in sandstones to 1300 mg/kg in 
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basalts, with an overall mean of 733 mg/kg Mn in the upper continental crust [100]. 
The Mn oxides in soils have very high sorption ability and they can accumulate ions 
from the soil solution; these oxides have a strong affinity for Co ions, which can 
reduce Co availability to plants.

The human exposure to Mn occurs mainly by ingestion; this TE is naturally pres-
ent in a wide variety of foods, including whole grains, clams, oysters, mussels, nuts, 
soybeans and other legumes, rice, leafy vegetables, coffee, tea, and many spices 
[101, 102]. Manganese is absorbed in the small intestine and, after absorption, some 
Mn remains free, but most of it is bound to transferrin, albumin, and plasma alpha-
2-macroglobulin. Mn deficiency is very rarely observed in humans but cases of Mn 
toxicity have been reported. Mn toxicity can be related to the dietary Mn intake and 
to chronic environmental exposure in welding and mining sites, as the inhalation of 
Mn dust can be toxic [103]. Mn toxicity affects the central nervous system and can 
cause tremors, muscle spasms, tinnitus, and hearing loss [101, 102]. Mn toxicity can 
also cause “manganism,” a neurodegenerative disease with symptoms that resemble 
Parkinson’s disease [104] and “Machado Joseph Disease (MJD),” a progressive 
spinocerebellar ataxic disorder [105].

In the Azores, there are few studies focusing on Mn availability and its effects. 
The existing studies focus on the assessment of Mn concentration in hydrothermal 
vents, as tracer of hydrothermal activity intimately related to mid-ocean ridge 
processes [106] and the Mn bioaccumulation in marine species, such as Cystoseira 
abies-marina [107]. Regarding the assessment of Mn in soils, the most recent studies 
are orientated to vineyard soils in the islands of Terceira, Graciosa, and Pico. Lima 
et al. [108] revealed that the Mn concentration in the soils of cultivated vines was 
692.5 mg/kg in Pico, 1023.8 mg/Kg in Terceira, and 2041.6 mg/kg in Graciosa, 
evidencing significant differences between these islands.

More recently, in a survey to access cobalt concentration in volcanic soils to pre-
dict the risk of cobalt deficiency [78], the concentration of Mn was also determined 
as it can affect Co bioavailability. These authors verified an uneven distribution of 
Mn in the defined volcanic regions of the island; the highest Mn concentrations 
were observed in Nordeste and Picos (1782.50 mg/kg ± 108.98 and 1461.11 mg/
kg ± 63.93, respectively), while the lowest concentrations were observed in the soils 
of Povoação and Furnas/ Congro (874.88 mg/kg ± 78.52 and 746.25 mg/kg ± 209.07, 
respectively). As observed for Co, the Mn concentration in soil is strongly associ-
ated with their content in the parental volcanic rocks. Therefore, low-silica magmas 
(basalts) of Nordeste and Picos have higher contents of Mn when compared to 
Furnas/ Congro and Povoação parent volcanic rocks formed by high-silica magmas 
(trachytes).

The most noteworthy aspect of the Mn concentration in the volcanic soils of 
São Miguel island is that all the volcanic regions have concentrations above the 
estimated background mean of the European soils (524 mg/kg) [24] and that 
in most grazing sites the measured concentrations were higher than 900 mg/kg 
(upper limit threshold) [Linhares et al. (unpublished data)]. Considering that 
high concentrations of Mn can be associated with the Machado Joseph disease 
[105, 108], this scenario undertakes a singular meaning in the Azorean context. 
There are two major ancestral origins: (1) a worldwide-spread haplotype, TTACAC 
or the Joseph lineage, and (2) a more recent one, GTGGCA or the Machado 
lineage, seen mostly in Portuguese people [109, 110], being associated with 
families with MJD from the Portuguese Azorean islands of Flores and São Miguel 
(respectively, the birthplace of the Joseph and the Machado kindreds). Nowadays, 
the Azorean group remains the most important cluster of this disease, with 32 
extended MJD families with origins in Flores, S. Miguel, Terceira, and Graciosa 
islands [111]. In Flores Island, the prevalence of the disease has been decreasing 
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through the years but MJD still reaches its highest worldwide value (1:239), consti-
tuting a public health problem [112].

In 2004, Purdey [105] established a common abnormal hallmark of high man-
ganese (Mn)/low magnesium (Mg) status and suggested that this aberrant mineral 
ratio inactivates the Mn/Mg catalyzed endonuclease-1 enzyme. The high Mn/low 
Mg rate observed in all volcanic regions of São Miguel Island reinforces the need for 
further studies in these elements as they are intimately related to MJD.

These studies evidence that the Azores archipelago presents itself as an ideal sce-
nario for the study of TE availability and possible health effects. However, the total 
TE concentration in soil is a relatively weak measure of their bioavailability. Given 
that the bioavailability depends on specific soil characteristics, such as organic 
matter content and pH, similar concentrations of TEs in different soils may not have 
the same bioavailability.

The assessment of TE bioavailability is fundamental, as the bioavailable frac-
tion of trace elements is the fraction most likely to harm plants and animals. 
Consequently, the impact of TEs on soil and the surrounding environment cannot 
be predicted by measuring the total concentration of elements per se, since only the 
soluble and mobile fraction has the potential to leach or to be taken up by plants 
and enter the food chain [113]. Future studies should consider the assessment of the 
bioavailable part of the TEs in volcanic environments, to define remediation strate-
gies in order to prevent health problems associated with TE depletion or excessive 
intake.

4. Conclusions

The assessment of the concentrations of TE in the soil is very important, not 
only for environmental purposes but also to help solve problems associated with 
human health and plant toxicity. Trace elements’ profiles in soil result essentially 
from the weathering of geologic parent materials since their concentrations are 
directly linked to the parent material based on their immobile nature.

Given the volcanic origin of the Azorean soils, the natural enrichment of some 
elements, such as manganese, and an uneven and reduced distribution of others, 
such as cobalt and iodine, can contribute to the development of health problems 
in plants, animals, and humans. Due to the natural enrichment of some chemical 
elements in volcanic soils, resulting from the volcanic activity, which cannot be con-
trolled, a very tight control of the possible sources of anthropogenic contamination 
is crucial to prevent the occurrence of toxic levels that prejudice plants, animals, 
and human’s health. Regardless of substantial progress in the study of soil TEs, the 
application of critical exposure concentrations and the associated health risks are 
yet scarce and not fully clarified. Although the data obtained for the Azorean soils 
pinpoints to possible toxicity of manganese and deficiency of cobalt in some areas, 
more thorough studies, such as the ones developed for iodine, are required. Only 
with further information, focusing primarily on the bioavailability and bioacces-
sibility of the trace elements, it will be possible to adequately predict the health 
risks of exposure to soil TEs, which is particularly relevant in the areas where the 
environmental risk is greater, such as the volcanic environments.
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