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Chapter

Solar Thermochemical Fuel
Generation
Hongsheng Wang

Abstract

Solar energy is one of the most abundant, clean, and widespread energy in the
world, which has the potential to address the issues of environmental pollution,
global warming, and energy crisis, while the intermittent distribution of solar
energy in time and space limits its utilization. Among various approaches of solar
energy utilization, converting solar energy into chemical fuel (e.g., hydrogen) by
thermochemical approach could maintain the steady and high-efficient energy sup-
ply and can make use of the full-spectrum solar energy. The research about solar
thermochemical fuel generation lasts more than 40 years, and lots of reaction
system and reactors have been proposed. This chapter reviews the state-of-the-art
progress of solar thermochemical fuel generation, and the characteristics of differ-
ent systems have been compared and discussed, which may give systematical
insight into the development and improvement of solar fuel generation by
thermochemical approach in the future.

Keywords: solar energy, solar fuel, solar thermochemistry, thermochemical fuel,
solar membrane reactor

1. Introduction

1.1 Energy and environmental problems and solutions

Due to population growth and rapid industrial development, world energy
demand has increased significantly. Compared with the previous generation, the
world’s population has increased rapidly by 2 billion [1], and this mainly comes
from the population growth of developing countries, and rapid population growth
poses more severe challenges to increasingly scarce energy and resource supplies.
The importance of energy for social development is self-evident. In order to ensure
the supply of energy, a large amount of fossil energy is used, which at the same time
has a serious impact on the environment, leading to increasingly serious problems
of atmospheric pollution and the greenhouse effect. Therefore, improving energy
efficiency and using more clean energy and exploring a sustainable development
path compatible with energy use and the environment have become one of the
important topics in energy science research.

The efficient use of renewable energy is of great significance. Among the many
renewable energy sources, solar energy has become one of the best choices for
future energy sources with its unique advantages, which is the most abundant
renewable energy source and widely distributed.
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1.2 Advantages of solar thermochemical fuel generation

Solar energy is a huge amount of clean energy. It is of great significance to
develop and utilize solar energy reasonably and efficiently. However, the efficient
use of solar energy also faces limitations, such as the low energy density of solar
energy, the unstable energy supply, the discontinuous time and spatial distribution
of solar radiation, and the difficulty of direct storage [2, 3]. Therefore, solar energy
is converted into chemical energy stored in fuels, which is generally considered to
be an effective solution to make up for solar defects [2–6].

There are mainly four approaches for converting solar energy into chemical
energy to generate solar fuel, which is illustrated in Figure 1. The photobiological
process is limited by the low energy conversion efficiency now, and it is still at a
very early stage of the development [7]. The other three methods have their own
properties and have attracted lots of attention. Photo-electrolysis approach is most
convenient, but it is also limited by the conversion rate, and researchers are seeking
for the catalysts which have better performance. The electrolysis using photovoltaic
(PV) materials and electrolyzer is the most mature approach for producing solar
fuel. However, the PV materials can only utilize the light with a certain range of
wavelength (usually short wavelength light), and the other part of sunlight
absorbed is converted into thermal energy, which is wasted as residual heat, leading
to a limited PV cell efficiency (the commercial PV cell efficiency is about 15%; the
highest multiple-junction PV cell efficiency in lab is higher than 40% with high
cost). The total energy efficiency from solar energy to chemical energy is the
product of solar power efficiency (e.g., PV cell efficiency) and electrolysis effi-
ciency, so the total efficiency has potential to be further improved. Compared with
electrolysis, solar fuel generation by thermochemistry can utilize the sunlight with
whole solar spectrum, which has a high theoretical energy efficiency. So the solar
thermochemical fuel generation is a promising method and will be discussed in this
chapter in details.

Figure 2 is a schematic diagram of the solar thermochemical energy conversion
process. Solar energy with lower energy density is received by solar collectors and
converted into solar thermal energy. Solar thermal energy enters the absorber
through heat transfer and drives the chemical reaction, so that low-energy-density
solar energy is stored in the form of solar fuel as chemical energy with high energy
density, which is relatively easy for storage and transportation. The sustainable and
stable use of solar energy is achieved by transporting solar fuel to remote and
needed places for power generation and chemical processes, etc., and solving the

Figure 1.
Illustration of solar fuel via various approaches.
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discontinuity of solar distributed in time and space by means of chemical energy
storage.

There are many researches about the reaction and system for solar thermo-
chemical fuel generation published, and some of the significant parts have been
classified in Figure 3. The two main fuels from solar energy are hydrogen and
carbon monoxide, which both have great higher heating values and are potential to
be utilized in the future, especially hydrogen, as hydrogen has the following char-
acteristics:

1.Rich hydrogen energy reserves. On the earth, hydrogen mainly exists in the
form of hydrocarbons and water, and more than 70% of the earth’s surface is
covered by water. Therefore, the earth contains a huge amount of hydrogen
and has great potential for development.

2.The energy density of hydrogen is large. The higher heating value of hydrogen
is much higher than that of hydrocarbons and alcohol compounds, and the
consumption of hydrogen energy is increasing every year.

Figure 2.
Illustration of solar thermochemical energy conversion process.

Figure 3.
Classification of solar thermochemical fuel generation.
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3.Hydrogen is renewable. Hydrogen can be obtained from water, and the
oxidation of hydrogen produces water. Therefore, the hydrogen combustion
and energy release cycle does not consume other substances.

4.Hydrogen energy is clean energy. Whether hydrogen is consumed by direct
combustion or fuel cell power generation, the only product is water, without
any waste pollution, which is clean and environmentally friendly.

5.Hydrogen is relatively easy to be converted and stored. Compared with other
energy sources such as solar energy, wind energy, electrical energy, and
thermal energy, hydrogen is a chemical raw material and is easily to be
converted into hydrocarbons for storage, thereby expanding the scope of
hydrogen energy in time and space.

1.3 Thermodynamic of solar thermochemical process

Different chemical reaction processes require different temperatures, so it is
necessary to match the solar thermal energy temperature with the chemical reaction
temperature for efficient energy utilization. Different solar thermal temperatures
need to be achieved with different forms of solar collectors for matching various
chemical reactions.

The heat collection temperature of solar collectors depends on many factors, but
the most important factor is the concentration ratio, which is the ratio of the total
area of the opening of the collector mirror field to the spot area on the focal plane.
Concentration ratio is an important parameter for designing concentrating solar
thermal utilization. Under the same conditions, the higher the concentration ratio,
the higher the heat collection temperature. In a unit of time, the energy emitted by a
black body per unit area is proportional to the fourth power of its temperature, and
solar energy is close to a 6000 K black body, so the radiant energy it emits is:

Q s ¼ 4πr2σTs
4 (1)

Among them,Ts is the absolute surface temperature of the sun and σ is the Stefan-
Boltzmann constant. If the orbit of the earth is regarded as a circle with a radius R, as
shown in Figure 4, the energy that Qs throws on the absorber of area A is:

QS!A ¼ A �
Qs

4πR2 (2)

After the absorber absorbs energy, the temperature will rise. Assuming the
temperature rises to Ta, if the conduction and convection losses are ignored, the
absorber will radiate energy, given as:

Qa ¼ aσTa
4 (3)

According to the second law of thermodynamics, heat can only be transferred
spontaneously from a high-temperature object to a low-temperature object, so the
temperature Ta of the absorber is always less than or equal to the solar surface
temperature. In the limit, the two temperatures are equal, that is,Ta = Ts, and the
amount of heat absorbed by the device is equal to the amount of radiation:

QS!A � Qa ¼ A �
Q s

4πR2 � aσTa
4 ¼ 0 (4)

4
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According to the definition of the concentration ratio, it is:

C ¼
A

a
¼

R2

r2
¼

1

sin 2 θ
2

(5)

Among them, θ is the opening angle of the sun, and the value is 320, so the
theoretical limiting concentration ratio is 45,000. In practical applications, the light
ratio is much lower than the theoretical condenser ratio, due to manufacturing
errors (misfocus, specular errors, etc.), structural disturbances, unsatisfactory opti-
cal properties (specular reflectance, glass absorptivity, etc.), shadows and sun
tracking, etc.

In the actual application process, there are two types of common solar concen-
trating forms: linear focusing and point focusing. Among them, linear focusing solar
collectors include parabolic trough solar collectors and linear Fresnel solar collec-
tors. Because the collectors have different heat collection methods, they also have
different light collection ratios and heat collection temperatures. Because point-
focused solar collector focuses in two dimensions and line-focused solar collector
focuses in one-dimensional directions, point-focused solar collectors usually have a
larger concentration ratio, which could approach a greater temperature. However,
high temperature usually means higher requirements for materials and processing
industries, higher radiation losses, and heat costs of the collector. Table 1 lists the
typical solar thermal power generation mirror field parameters. In thermal power
plants, a higher temperature for power generation will allow the Rankine cycle to
have a higher Carnot efficiency, leading to a greater power generation efficiency.

In the process of collecting solar energy by using a solar collector, energy is
dissipated due to radiation. The absorption efficiency is defined as the ratio of the
solar energy absorbed by the absorption cavity to the total solar energy projected by
the collector into the absorption cavity, given as [18]:

ηabs ¼
IAηAα� aεσT4

IA
(6)

ηabs is the absorption efficiency; I is the solar radiation intensity; A is the area of
the condenser; ηA is the optical efficiency; α and ε are the absorptance and emissiv-
ity of the absorption cavity; a is the area of the absorber; σ is the Stefan-Boltzmann

Figure 4.
Illustration of solar radiation trajectory.
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constant (5:67 � 10�8W= m2 � K4
� �

); and T is the set thermal temperature. If it is
assumed that the absorption cavity is black body, then ηA, α, and ε are all 1, the
above formula can be simplified as:

ηabs ¼ 1�
σT4

IC
(7)

where C is the concentration ratio. If I ¼ 1000W=m2, the relationship curve
between the ideal absorption efficiency of the collector, the concentration ratio,
and heat collection temperature can be obtained through calculation, as shown in
Figure 5. When the heat collection temperature is fixed, the heat collection effi-
ciency increases with the increase of the concentration ratio; when the concentration
ratio is determined, the heat collection efficiency is a decreasing function of the heat
collection temperature, mainly because as the heat collection temperature increases,
the temperature difference between reactor and environment rises up, leading to an
increase in radiation loss, which reduces the efficiency of heat collection.

With multiplying the obtained absorption efficiency by the Carnot cycle efficiency,
the system efficiency can be obtained, which is the maximum theoretical conversion
efficiency from the solar thermal energy obtained to work or electricity [18]:

ηs ¼
TH � T0

TH

� �

1�
σTH

4

IC

� �

(8)

Type Annual power

generation

efficiency (%)

Peak

efficiency

(%)

Operating

temperature

(°C)

Concentration

ratio

Parabolic trough

collector power plant

14 25 400 30–100

Linear Fresnel

collector power plant

13 18 300–400 30

Disc collector power

plant

20 32 550–750 1000–10,000

Tower collector power

plant

16 22 400–600 500–5000

Table 1.
Performance parameters of typical solar collector fields [8–17].

Figure 5.
The relationship among the ideal absorption efficiency of the collector, the concentration ratio, and the heat
collection temperature.
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where TH is the heat collection temperature of the solar collector and T0 is the
ambient temperature. The calculation results are shown in Figure 6.

When decomposing water to produce hydrogen without relying on fossil energy,
the temperature required for thermochemical reactions is about 1300–1800°C.
According to Figures 5 and 6, it can be seen that a tower or dish collector with a
concentration ratio of 5000 should be selected. When using fossil fuel (e.g., meth-
ane) to split water for hydrogen generation, the reaction temperature could be
decreased to 700–1000°C. A tower or dish solar concentrator with a concentration
ratio of 1000 should be used. The reaction temperature of the novel solar hydrogen
permeation membrane alternating cycle methane reforming system introduced
later in this chapter is about 350–400°C, and a trough solar concentrator with a
concentration ratio of 80–100 is enough for it, which has a much lower cost com-
pared with tower or the dish-type solar concentrating collector.

According to Eq. (8), when the concentration ratio C is given, the first-order
derivative function of can be obtained, shown as Eq. (9):

dηs
dT

¼
T0

TH
2 þ

σTH
2 3T0 � 4THð Þ

IC
(9)

By maintaining Eq. (9) equal to 0, the optimal heat collection temperature can
be obtained at a given concentration ratio, and the optimal heat collection

Figure 6.
The relationship among the maximum efficiency from solar thermal energy to work, the concentration ratio,
and the heat collection temperature.

Figure 7.
Variation of maximum theoretical efficiency from solar energy to work and optimal thermal energy collection
temperature with concentration ratio.
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temperature can be substituted into Eq. (8) to obtain the sun at the best heat
collection temperature. The maximum theoretical efficiency from solar energy to
work is shown in Figure 7.

From Figure 7, as the concentration ratio increases, the intensity of radiation
received per unit area of the collector increases, so both the optimal heat collection
temperature and the maximum theoretical efficiency increase. Because the solar
collector has a fixed concentration ratio in practical applications, Figure 7 has
guiding significance for determining the optimal heat-collecting temperature for a
solar heat collector with a specific concentration ratio. The solar thermal energy of
the system has the maximum work efficiency at the best concentration ratio.

2. Thermochemical cycle

The existing thermochemical cycle for hydrogen production mainly includes
metal oxide system thermochemical cycle, sulfur-containing system, sulfuric acid
decomposition method, metal-halide system, and reformed methane hydrogen
production. All of the thermochemical cycles could be classified as multi-step ther-
mochemical cycles and two-step thermochemical cycles.

2.1 Multi-step thermochemical cycles

2.1.1 Hydrogen generation system containing sulfur

There are four main types of hydrogen production in sulfur-containing systems:
iodine-sulfur cycle, H2SO4-H2S cycle, sulfuric acid-methanol cycle, and sulfate
cycle. Among them, the iodine-sulfur cycle is the most famous. It was invented by
the United States GA company in the 1970s, so it is also called the GA cycle. The
process is shown in Figure 8. The main reaction process is as follows:

SO2 þ I2 þ 2H2O ! 2HIþH2SO4 (10)

H2SO4 ! H2Oþ SO2 þ
1

2
O2 (11)

2HI ! H2 þ I2 (12)

H2O ! H2 þ
1

2
O2 (13)

GA company found [19] that the excess I2 exists, and HI and H2SO4 can be
separated into two liquid phases, which is the basis for the development of the IS
cycle. The advantages of the IS cycle are using of thermal energy below 1000°C for
hydrogen generation, closed circuit, only water being needed to be added in the
circulation process, and the expected efficiency which can reach 52%. The disad-
vantages are concentrated sulfuric acid being highly corrosive when heated at high
temperature; the equilibrium decomposition ratio of HI being low (20%); and the
reaction intermediate products sulfur dioxide and iodine being easy to cause pollu-
tion and liable to have side reactions.

2.1.2 Sulfuric acid decomposition method

This type of method is best known as the Westinghouse cycle [20], and its main
process is shown in Figure 9. The highest temperature in the process needs to be
above 800°C, and the efficiency of the cycle can reach 40%. If multi-stage electrol-
ysis is used, it can reach 46%. However, the disadvantage is that concentrated
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sulfuric acid is highly corrosive at high temperatures and has high requirements for
material selection.

2.1.3 Metal-halide system

The most famous in this system is the UT-3 cycle proposed by the University of
Tokyo. The main process is as follows:

CaBr2 þH2O ��!
1033K

CaOþ 2HBr (14)

CaOþ Br2 ��!
845K

CaBr2 þ
1

2
O2 (15)

Fe3O4 þ 8HBr ��!
493K

3FeBr2 þ 4H2Oþ Br2 (16)

3FeBr2 þ 4H2O ��!
833K

Fe3O4 þ 6HBrþH2 (17)

Sakurai [21] found that the hydrolysis of calcium bromide was the slowest
during this cycle, because the calcium oxide agglomerated, reducing the reaction
interface area. The addition of lauric acid as a foaming agent for dispersing
the calcium oxide aggregates can improve the performance of the reaction.
The Argonne National Laboratory in the United States has also researched and
developed this process [22]. Its main feature is the decomposition or formation of

Figure 9.
Westinghouse cycle diagram.

Figure 8.
Illustration of iodine-sulfur cycle.
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HBr by electrolytic method or “cold” plasma method. This reaction has the follow-
ing advantages: its expected thermal efficiency is 35–40%, and if the power is
generated at the same time, the overall efficiency can be improved by 10%; the
two-step key reaction is a gas-solid reaction, which significantly simplifies the
separation of products and reactants; the elements used are cheap and readily
available; the process involves only solid and gaseous reactants and products.
However, the separation of intermediate products in the reaction process is also a
problem and challenge in the process.

2.2 Two-step thermochemical cycles

The common two-step thermochemical cycle hydrogen production process is
mainly metal oxide thermochemical cycle, which has the following three forms:

Oxide:

XO ! Xþ 0:5O2 (18a)

XþH2O ! XOþH2 (19a)

or

1

δ
XO2 !

1

δ
XO2�δ þ

1

2
O2 (18b)

1

δ
XO2�δ þH2O !

1

δ
XO2 þH2 (19b)

Hydride:

XH2 ! XþH2 (20)

XþH2O ! XH2 þ 0:5O2 (21)

Hydroxide:

2XOH ! 2XþH2Oþ 0:5O2 (22)

2Xþ 2H2O ! 2XOHþH2 (23)

Among them, metal oxide thermochemical hydrogen production is the most
common. The process is shown in Figure 10.

As shown in Figure 10, metal oxides are reduced by releasing oxygen at high
temperatures, and oxidized with water at low temperatures, taking away oxygen

Figure 10.
Metal oxide thermochemical cycle for hydrogen production.
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atoms from water molecules to generate hydrogen. During the thermochemical
cycle, metal oxides can be reduced to simple metals, such as:

ZnO ! Znþ
1

2
O2 (24)

ZnþH2O ! ZnOþH2 (25)

Metal oxides may also be reduced from higher valence to lower valence oxides,
such as:

Fe3O4 ! 3FeOþ
1

2
O2 (26)

H2Oþ 3FeO ! Fe3O4 þH2 (27)

Among them, metal Zn is easy to form a dense oxide film, which is wrapped on
the metal surface to prevent the reaction from proceeding. Wegner et al. [23]
designed a spray reactor for solving this problem. By increasing the specific surface
area of metal Zn to increase the contact area in the reaction, the experiment proves
that the chemical conversion of Zn can reach 83%. The disadvantage of this method
is that the metal Zn needs to be gasified and atomized, which requires large energy
consumption; Zn, Sn, and other metals are also easily oxidized again during the
decomposition process, affecting the reaction efficiency. The oxidation rate of iron
oxide is easily reduced due to sintering, and ferrite has strong reducing ability. It
can reduce CO2 to C solid element and cover the surface of ferrite to prevent the
reaction from proceeding. One of the materials currently considered to be the most
suitable for the thermochemical cycle of metal oxides is cerium oxide (CeO2),
because cerium oxide can efficiently reduce water or carbon dioxide to hydrogen or
carbon monoxide [24], and cerium oxide also has good anti-coking properties. The
specific reaction equations are:

High temperature (reduction step):

1

δred � δox
CeO2�δox !

1

δred � δox
CeO2�δred þ

1

2
O2 (28)

Low temperature (oxidation step):

H2Oþ
1

δred � δox
CeO2�δred !

1

δred � δox
CeO2�δox þH2 (29)

In the two-step thermochemical cycle hydrogen production process, because
there is a large heat transfer temperature difference between the “oxidation step” and
“reduction step” (e.g., the temperature difference between cerium oxide heat trans-
fer is about 700°C), the thermal energy recovery of solid materials has always been a
very difficult problem. Hao et al. [25] proposed an “isothermal” thermochemical
cycle, that is, the “oxidation step” and “reduction step” reactions are performed at the
same temperature. The “isothermal” thermochemical cycle effectively overcomes the
defect that a large amount of solid sensible heat in the “dual-temperature” thermo-
chemical cycle cannot be efficiently recovered and does not generate thermal stress,
which can maintain high energy utilization efficiency at high temperatures. How-
ever, the isothermal thermochemical cycle also has certain limitations that need to be
resolved, such as the requirement of maintaining a quite low oxygen partial pressure,
less hydrogen production in a single cycle, etc. The thermochemical cycle with metal
oxide can also be utilized for CO generation from CO2, and the thermodynamics is
similar to that of H2 generation from H2O, which will not be discussed here.
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3. Carbon feed-based solar thermochemistry

3.1 Methane reforming and decomposition

Nowadays, more than 95% of the hydrogen for refinery use is produced via
hydrocarbon steam reforming [26]. Industrial hydrogen production through meth-
ane steam reforming exceeds 50 million tons annually and accounts for 2–5% of
global energy consumption [27]. Methane steam reforming process for hydrogen
production is usually described by the following reactions:

CH4 gð Þ þH2O gð Þ⇌CO gð Þ þ 3H2 gð Þ,ΔH°25°C ¼ 205:9 kJ=mol (30)

CO gð Þ þH2O gð Þ⇌CO2 gð Þ þH2 gð Þ,ΔH°25°C ¼ �41:1 kJ=mol (31)

where the reversible water-gas shift reaction Eq. (11) is sometimes considered as
superimposed onto the methane reforming reaction Eq. (10) for conveniences of
analysis on methane conversion:

CH4 gð Þ þ 2H2O gð Þ⇌CO2 gð Þ þ 4H2 gð Þ,ΔH°25°C ¼ 164:8 kJ=mol (32)

The methane dry reforming is the reaction between methane and carbon dioxide
for syngas generation, given as:

CH4 gð Þ þ CO2 gð Þ⇌ 2CO gð Þ þ 2H2 gð Þ,ΔH°25°C ¼ 247:0 kJ=mol (33)

The reforming reactions, Eqs. (10), (12), and (13), are highly endothermic, and
a large amount of heat is often provided by burning a supplemental amount of
methane [28], which will decrease the heat value of fuel gas generated by 22% for
the same amount of methane consumed and release large amounts of greenhouse
gas CO2 [29]. In recent years, as the technologies of concentrated solar energy
(CSE) and solar thermal utilization improve rapidly, methane reforming driven by
CSE emerged as a promising method for hydrogen production [30], which derives
heat from solar energy instead of fossil fuels. Besides, solar thermal energy with
relatively low temperatures (compared with methane combustion) is absorbed by
methane reforming reaction and upgraded to the chemical energy with higher
energy level (ratio of exergy change ΔE to enthalpy change ΔH of a process [31]) in
such process. Solar energy thus stored in hydrogen as chemical energy, and it could
be converted into power with significantly greater efficiencies than that of solar-
thermal-only power generation in the same temperature range [32].

In order to achieve the high-efficient progress of the solar methane reforming
reaction, research on solar methane reforming reactors has also continued. Klein
et al. [33] proposed a schematic diagram of a fluidized bed reactor. This experiment
is a methane dry reforming experiment, where gas reactants and carbon particles
are mixed and passed into the reactor together. The reactor can achieve a concen-
tration ratio of 3000 through primary and secondary light concentration, and the
reaction temperature is between 950 and 1450°C with the ratio of carbon dioxide to
methane changes from 1: 1 to 6: 1, which has a maximum methane conversion of
90%. Edwards et al. [34] studied methane steam reforming in a solar tubular
reactor, which is condensed by a 107 m2 dish condenser. The condensing tempera-
ture can reach 850°C, and the pressure can reach 20 bars. The reactor can stably
produce hydrogen, but there is no detailed introduction on the conversion rate in
the literature. The device for hydrogen production by metal oxide thermochemical
cycling was proposed by Steinfeld et al. [35]. The system contains a 51.8 m2 heliostat
to focus the sunlight at first, and then the sunlight passed through a parabolic
surface with an opening area of 2.7 m2 to focus it again. The final focusing ratio was
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3500. During the reaction, ZnO particles with an average particle diameter of
0.4 μm were sent into a cylindrical reaction chamber for reaction by methane. The
products were Zn simple substance and synthesis gas (H2, CO). The reactor can
reach 50% methane conversion at 1030°C.

Methane decomposition is also an endothermic reaction at 600–1200°C,
given as:

CH4 gð Þ⇌Cþ 2H2 gð Þ,ΔH°25°C ¼ 74:6 kJ=mol (34)

Solar methane decomposition has been researched in both indirectly and directly
heated reactors from solar thermal energy. A summary of experimental study has
been listed in Table 2.

3.2 Methanol reforming and decomposition

Methanol reforming and decomposition also attracts lots of attention in the field
of solar thermochemical fuel generation [44], as the reaction temperature is about
150–300°C, which is quite low and easy to be maintained by line-focusing solar
collector (parabolic trough collector or linear Fresnel lens) with low cost. The
reaction equations of methanol reforming and decomposition are given as:

CH3OH gð Þ þH2O gð Þ ! CO2 gð Þ þ 3H2 gð Þ,ΔH°25°C ¼ 49:321 kJ=mol (35)

CH3OH gð Þ ! CO gð Þ þ 2H2 gð Þ,ΔH°25°C ¼ 90:459 kJ=mol (36)

Both of the two reactions are endothermic, which can convert the low-level solar
thermal energy (low temperature) into high-level chemical energy, and have been
researched with combining with other systems, like PV cell module, and combined
cooling heating and power in downstream.

3.3 Biomass gasification

Biomass is widespread and is often perceived as a carbon-neutral source of
energy. Solar biomass gasification is a clean route to obtain fuels, which may also
reach liquid fuel for vehicle or jet utilization. Detailed reviews on solar biomass

Participant Qsolar

(kW)

Pressure

(bar)

T

(K)

Reactor

type

Reactant conversion

(%)

Efficiency

(%)

Ref.

PSI 5 >1 1600 Vortex

flow

64 15.1a, 16.2b [37]

PSI 5 >1 1600 Particle

flow

99 16.1b [38]

PROMES-

CNRS

10 0.4 1773 Tubular 98 4.8b [39, 40]

PROMES-

CNRS

50 0.45 1928 Tubular 100 13.5a, 15.2b [41]

NREL 6 1 2133 Aerosol

flow

90 2b [42]

PROMES-

CNRS

0.8 0.61 1700 Nozzle

type

95 5.9a [43]

a
ηchemical ¼

ΔHreact@Treactor

Q solar
� accounts for the energy required to drive the reaction.

b
ηthermal ¼ Xreaction � _mCH4 �

ΔHreact@Treactor

Q solar
� accounts for the energy required to heat the reactants and effect the reaction.

Table 2.
Summary of experimental research on solar methane decomposition [36].
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gasification have been conducted by Epstein et al. [45], Lédé [46], Nzihou et al.
[47], and Puig-Arnavat et al. [48], which will not be discussed here. A summary of
experimental work published in gasification of solid hydrocarbon feed has been
listed in Table 3.

4. Solar thermochemical fuel generation by membrane reactor

Solar thermochemistry usually requires high temperature (e.g., above 4000°C
for H2O splitting; 3000°C for CO2 splitting; 700–1000°C for methane reforming),

Feed Qsolar

(kW)

T

(K)

Gasifying

agent

Reactor

type

Reactant

conversion

(%)

Product

yield

(%)

Efficiency

(%)

Ref.

Bituminous

coal

1.2 1600 CO2 Fluidized

bed quartz

tubular

reactor

65 — 8a [49]

Pet coke 5 1818 Steam Vortex flow 87 35 (H2),

15 (CO)

9a, 20b [50]

Pet coke—

water slurry

5 1500 Steam Vortex flow 87 65 (H2),

25 (CO)

4.7a, 17.4b [51]

Petroleum

VR

5 1573 Steam Vortex flow 50 68 (H2),

15 (CO)

2c, 19a [52]

Coal coke 0.94 1123 CO2 Internally

circulating

fluidized bed

— — 12a [53]

IS, SS, STP,

fluff, SAC,

beech

charcoal

5 1490 Steam Packed bed 100 H2/

CO = 1.5,

CO2/

CO = 0.2

29d,

U = 1.3e
[54]

Beech

charcoal

3 1523 Steam Particle flow

reactor

30 — 1.53b [55]

Coal coke 1.1 1573 CO2 Fluidized

bed

42 — 14a [56]

Coal coke 3 1773 CO2 Internally

circulating

fluidized bed

73 — 12f [57]

LRK, tire

chips, Fluff,

DSS, IS, SB

150 1350–

1453

Steam Packed bed 36–100 H2/

CO = 2–

5.2

25-35d,

U = 1.03–

1.30e

[58]

a
ηchemical ¼

_Qchem
_Q solar

.

b
ηthermal ¼

_Qchemþ _Q sensible
_Q solarþ _Q steam

.

c
ηprocess ¼

_nH2
LHVH2

þ _nCOLHVCOþ
Pspecies

i

Ð Treactor

473K
_niCp,i Tð ÞdT

_Q solarþ _Q steamþ _mVRLHVVR
.

dηsolar‐to‐chemical ¼
msyngasLHVsyngas

mfsLHVfsþQ solar
.

eU ¼
msyngasLHVsyngas

mfsLHVfs
.

fηenergy ¼ ΔH298KRCO

Q inputþ
Qgas

ηreceiver

.

Table 3.
Summary of experimental research published in gasification of solid hydrocarbon feed [36].

14

Wind Solar Hybrid Renewable Energy System



which requires high concentration ratio and large mirror area, and the system will
be more complex and expensive. In situ separation by a permeable membrane for a
target product shifts thermodynamic equilibrium of chemical reactions in favor of
reactants conversion, which equivalently lowers solar collection temperature.
Combination of membrane reactor and solar thermal collection offers unique
advantages in many respects, such as the increment of conversion rate, decrease of
reaction temperature, and emission reduction, which are otherwise unattainable by
either alone. Besides, the all-solid-state feature and isothermal operation enable
compact design of solar fuel reactors with minimized thermal stress. Now, the
selective permeation membrane for gas species in high temperature is mainly oxy-
gen permeation membrane, hydrogen permeation membrane, and carbon dioxide
permeation membrane, which have been researched for solar thermochemical fuel
generation.

4.1 Oxygen permeation membrane for H2O/CO2 splitting

Perovskites, ZrO2 and CeO2 (or doped ZrO2 and CeO2), usually constitute the
selective oxygen permeation membrane utilized in high temperature (>600°C).
Wang et al. [59] proposed a theoretical framework for the thermodynamic analysis
of solar oxygen permeation membrane reactor, and the solar-to-fuel efficiency
(ratio of the higher heating value of products to the total energy input) can reach as
high as 89% in methane-assisted membrane reactor. Zhu et al. [60] brought up a
thermodynamic model of ceria dense membrane for CO2 splitting, and the energy
efficiency is above 10% at 1800 K without heat recovery. Steinfeld et al. [61, 62]
have done a lot of experimental researches about solar CO2 splitting for CO gener-
ation by oxygen permeation membrane with 100% selectivity (e.g., La0.6Sr0.4Co0.2
Fe0.8O3-δ at 1030°C [61], CeO2 at 1600°C [62]), and Ozin [63] said the research of
Steinfeld is an elegant demonstration and an exciting breakthrough for continuous
CO2 splitting in a single step, at a single temperature, in a single reactor.

4.2 Hydrogen permeation membrane for hydrogen generation

The materials of the hydrogen permeation membrane are various, such as metal
(e.g., palladium, nickel), perovskites, pyrochlores, fluorites, polymers, which are
usually used in the reaction of reforming, splitting, partial oxidation of hydrocar-
bon, splitting of other hydrogen carriers (e.g., NH3), and water-gas shift reaction. Li
et al. [30] first presented an innovative solar-assisted hybrid power system inte-
grated with methane steam reforming in membrane reactor, and the simulation
results showed that capture ratio of CO2 is 91% and exergy efficiency and thermal
efficiency are 58 and 51.6% (10.2 and 2.2% points higher than the CO2 capture from
exhaust cycle), respectively. Said et al. [64] simulated a CFD model about solar
molten salt-heated H2-selective membrane reformer for methane upgrading and
hydrogen generation, and the results showed the fuel heating value upgrade of 40%
with methane conversion rate of 99% and hydrogen recovery of 87% at 600°C.
Wang et al. [65] put forward a novel reactor, which realized direct methane steam
reforming in parabolic trough collector integrated with hydrogen permeation
membrane reactor, and the system can perform high and stable efficiency (above
80%) at 400°C. Mallapragada et al. [66] proposed a novel system that consists of
oxygen permeation membrane and hydrogen permeation membrane for solar water
splitting, and the solar-to-H2 efficiency (ratio of the lower heating value of hydro-
gen to the reversible work input for Gibbs free energy change of water splitting) is
72.4–80.1% at the concentration ratios of 2000–10,000. Sui et al. [67] reported an
exploration on an efficient solar thermochemical water-splitting system enhanced
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by hydrogen permeation membrane, which has showed a sharply enhanced con-
version rate of 87.8% at 1500°C and 10�5 bar at permeated side (versus 1.26% with
oxygen permeation membrane or isothermal thermochemical cycle). Recently, a
promising method for hydrogen generation without carbon emitting by ammonia
decomposition in a catalytic palladium membrane reactor for hydrogen separation
driven by solar energy has been theoretically proposed, and the first-law thermo-
dynamic efficiency, net solar-to-hydrogen efficiency, and exergy efficiency can
reach as high as 86.86, 40.08, and 72.07%, respectively [68].

4.3 Carbon dioxide permeation membrane for hydrocarbon reforming

Carbon dioxide permeation membrane includes mixed e�/CO3
2� conducting

membrane, O2�/CO3
2� conducting membrane, OH�/CO3

2� conducting membrane
(hydroxide/ceramic dual-phase membrane), etc. [69, 70]. The combination
between carbon dioxide permeation membrane and solar energy is very limited
now. The combination of hydrogen permeation membrane and carbon dioxide
permeation membrane has been proposed for methane steam reforming by way of
an alternate H2 and CO2 separation driven by solar energy [71]. The carbon dioxide
permeation membrane has great potential to be utilized for the hydrocarbon
reforming or decomposition for CO2 separation and capture in the future.

4.4 Challenges and perspectives

Though the solar membrane reactor has lots of advantages and immense poten-
tial for application mentioned above, the efficient approach to lower the partial
pressure of gas product (or avoid the relatively low pressure) is the main challenge
to maintain a high energy conversion rate, and the improvement of stability and
permeability of membrane material at corresponding reaction temperature is also
significant. These issues have potential areas for big breakthroughs and require
further studies to address. The multiple product separation with membrane reactor
may be a promising method to increase the energy efficiency, due to a relatively
high partial pressure and less separation energy required [71].

5. Conclusions

This chapter has reviewed the state-of-the-art researches about solar thermo-
chemical fuel generation, and the highlighted conclusions are listed:

a. The thermodynamics in solar thermochemical fuel generation has been
analyzed, and the maximum theoretical efficiency from solar energy to work
has been obtained.

b. The most representative solar thermochemical reactions (e.g., H2O/CO2

splitting, hydrocarbon reforming, and decomposition) have been reviewed,
and the advantages and drawbacks have been analyzed and discussed.

c. Thermochemical cycle and membrane reactor driven by solar energy have
been systematically introduced, which could decrease the reaction
temperature and have the potential to be widely utilized in the future,
especially the membrane reactor, which could purify the product with a
continuous operation.
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