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Chapter

Introductory Chapter: Data 
Streams and Online Learning in 
Social Media
Alberto Cano

1. Introduction

Since the establishment of the World Wide Web and online social media net-
works, people have changed the way they communicate, share experiences, and 
connect with each other, both in their professional and personal lives [1]. Billions of 
users exchange digital information on popular sites such as Facebook, Twitter, and 
LinkedIn but also in smaller and topic-specific networks [2, 3]. The ever-increasing 
number of users and content shared makes it challenging for information systems to 
process all the information, especially if we consider the increasing speed at which 
content is generated [4, 5]. Consequently, new open issues have risen regarding the 
effective and efficient processing of such high-speed large-scale volumes of data in 
online social media. How can we build machine learning systems that can handle 
and scale to the impressive volume of data? How can we keep a low latency in the 
response to classifying new real-time data? How can we classify users and their 
behavior? How can we early detect changes in the user’s behavior and emerging 
trends? These are open questions to the data science scientific community [6–8].

In recent years, the design of machine learning systems to detect bot networks 
[9], fake content [10], or hate speech in social media, among many others, has gained 
increasing popularity. One may think of fake reviews on Amazon, fake news on user 
forums, bots on Twitter following/retweeting certain politicians to promote political 
campaigns, or hate campaigns aimed at systematically attacking certain underprivi-
leged groups with messages full of hate [11, 12]. All of these are growing challenges in 
online social media networks which demand new machine learning solutions.

Analyzing temporal and contextual patterns in this data is important to discover 
emerging topics, trends, correlations, causations, and periodic occurrences, hap-
pening on real-time data. Data stream mining is the machine learning area devoted 
to analyzing real-time high-speed online data. This chapter will present some 
advances on research and applications of data stream mining to problems in online 
social media.

2. Data stream mining for online learning

A data stream is an ordered and potentially unbounded sequence of data 
instances arriving continuously to a machine learning system [13]. It is unknown 
when the volume and speed at which data will arrive to the system. However, it is 
required to provide a fast prediction, as a delay in the prediction or bottlenecks 
are not permitted. Moreover, machine learning models need to be continuously 
updated to make sure they reflect the most up-to-data state of the stream, following 
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up with any changes that data may experience with time. Data may evolve with time 
and experience the appearance or fading of data classes, features, and data distribu-
tions. The changes that data may experience with time are known as concept drift 
[14], and it may be analyzed from multiple perspectives.

Decision boundaries: real vs. virtual drift. Real concept drift has an impact in the 
classification boundaries, increasing the error when new instances are misclassified. 
Virtual concept drift observes a change in the distribution of data with time but 
does not affect the decision boundaries.

Scope of the changes: global vs. local. Global concept drift affects the entire 
stream, while local affects only certain regions of the feature space or a subset of 
features.

Speed of drift: incremental vs. gradual. Incremental concept drift is a steady pro-
gression from one concept to another. Therefore, it comprises multiple intermediate 
concepts in between. On the other hand, gradual concept drift reflects a change in a 
probability distribution in which there is a decreasing probability of observing the 
old concept and an increasing probability of the new concept to occur.

Concept drift may also suffer from recurrent patterns which happen periodically 
(e.g., seasonal trends) or blips (noise or random changes that should be ignored and 
not to be confused with a true drift).

Detecting concept drift is a challenging task itself. There are two types of detec-
tors: explicit and implicit. Explicit concept drift detectors explicitly monitor the 
characteristics of the stream including statistical distribution variations, density 
changes, etc. They emit an alert whenever a drift is detected, informing the classi-
fier to update the classification model. Implicit concept drift detectors assume the 
classifier inherently adapts itself to changes, e.g. by using a dynamic sliding window 
or by using online learners. How can we detect the emerging of new topics and the 
fading of others on Twitter? Detecting and anticipating to concept drift remains an 
open challenge to the machine learning community [15].

Ensemble learning combines multiple classifiers to jointly provide an improved 
performance compared to single classifiers [16–18]. Ensembles must be composed 
of mutually complementary and individually competent classifiers, advocating 
for diversity in its components. Ensembles are natural solvers for stream mining 
problems with concept drift, as new concepts may be modeled by new components 
added to the ensemble, whereas older concepts no longer present in the stream may 
be simply seen their classifiers deleted from the ensemble. Moreover, in the case of 
recurrent drifts, components may just be disabled (not deleted) so that by the time 
we anticipate the concept will reoccur, then we may preemptively reenable, avoid-
ing the cost of relearning the classifier, both in terms of lost time and accuracy. One 
may think about the recommendation systems on Amazon to show the most likely 
purchased product to users in recurrent seasons (Mother’s Day, Christmas, etc.).

Class imbalance is another recurrent problem in data stream mining. Data class 
distributions may not be evenly represented, plus their proportions may change 
with time. The majority class may become the minority or reversely. In such a 
situation, ensembles also help to balance the representativeness of the data and the 
classification metrics performance as one may want not to bias the algorithms to 
learn the majority class only. To resolve these issues, several authors have proposed 
ensembles for drifting, imbalanced streams.

The Kappa Updated Ensemble [16] for drifting data stream mining proposes 
a hybrid online and batch-based architecture that uses the Kappa statistic for 
dynamic weighting and selection of classifier components. To achieve ensemble 
diversity, it proposes to employ different subsets of features on each classifier, along 
with online bagging. Thanks to the Kappa statistic, it abstains predictions from 
models that negatively impact the performance of the classifier, increasing the 
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robustness of the ensemble. Abstaining components has also shown to improve the 
classification in other non-imbalanced streaming problems.

Some real-world problems are characterized for having instances simultaneously 
categorized into multiple labels. This problem is known as multi-label learning 
[19–20]. The complexity of correctly classifying the instance increases with the size 
of the output space. Moreover, concept drift may simultaneously happen to some 
or many of the labels. Therefore, it is more difficult to detect and adapt to concept 
drift. Authors have proposed solutions for multi-label data streams, including 
self-adjusting windows to identify the more accurate and most recent subset of 
instances in a sliding window [19]. Moreover, punitive systems have shown that 
penalizing instances leading to erroneous label predictions and early removing 
them from the window increase the overall accuracy of the classifier [21].

Algorithmic solutions to these open issues in data stream mining come at the 
expense of an increased computational cost. It would not be possible to provide 
both an accurate and fast classification and fast update of the classification model if 
one wants to adapt to concept drift quickly. Therefore, high-performance comput-
ing architectures are needed to speed up algorithms in order to meet the real-time 
constraints of stream learning.

GPUs and MapReduce distributed computing frameworks have become increas-
ingly popular to speed up large-scale data mining problems. They offer higher 
scalability to big data problems for a fraction of the cost of a traditional mainframe 
solution. GPUs are particularly efficient for streaming environments and provide 
a very fast decision with minimum label latency [22–27]. However, they are often 
associated with a more difficult code implementation and limited memory, which 
makes it difficult to scale to true big data problems. Distributed GPU solutions may 
partially alleviate but not solve this problem.

While Apache Hadoop was one of the first and most popular frameworks for 
MapReduce publicly available, it does not provide the tools nor the speed to work 
for real-time streams. In such a scenario, there are other solutions much more 
efficient for real-time streams. Apache Spark Streaming, Apache Flink, and Apache 
Storm are MapReduce-based frameworks for streaming data [28–32]. However, 
they lack efficient implementations of effective machine learning algorithms. 
Therefore, there is a need to implement publicly available methods for stream 
learning in such frameworks. There are some works on distributed nearest neighbor 
search and feature selection. However, there is a whole area of asynchronous deep 
learning models for data streams on MapReduce that is yet to be addressed. While 
deep learning-based methods may provide the best accuracy, there is also a need to 
provide interpretable models and demand explanations of the prediction system, 
particularly for domains requiring accountability, such as medical diagnosis.

3. Conclusions

The popularity of online social media demands new transformative solutions to 
the emerging problems in social media content and networks, including community 
detection, bot detection, fake reviews, user behavior prediction, etc. Machine learning 
provides solutions to these problems, but there are many unresolved open issues. Data 
stream mining focuses on the analysis of the real-time high-speed streams of data that 
continuously arrive to a classifier. Data stream mining can detect changes in the prop-
erty of the stream data and adapt the classification model accordingly. However, there 
are still too may open issues both from the basic research and application perspectives 
[32–36] which call for the scientific community to propose new efficient and effective 
solutions, particularly using high-performance computing architectures.
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