
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

Some Statistical Analysis of
Poultry Feeds Data
Akinlolu Adeseye Olosunde

Abstract

In this study we presented generalized exponential power distribution as an
alternative to normal distribution commonly used in the analysis of agricultural
data. The distribution which is more robust in modeling because of the present of
shape parameters, which regulates it tails. Some of its mathematical and statistical
properties are examined. The application of the probability density function is
demonstrated in fitting poultry feeds data. The goodness-of-fit test was carried to
show that it is a better substitute to normal distribution in applications.

Keywords: exponential power distribution, normal distribution, goodness-of-fit,
poultry feeds data, Pearson’s χ2 test, Kolmogorov-Smirnov test

1. Introduction

Cholesterol is a waxy substance that comes from two main sources: the liver and
food intake. It has been noted that high level of cholesterol can block the arteries,
decrease blood flow to other tissue in the body, thereby causing heart diseases [1].
Eggs have commonly been jettisoned owing to high cholesterol contents, therefore
lowering consumption rate. But [1] further note that eggs are high quality source
protein and other nutrients. It is also well known that eggs contain lecithin and
phospholipids, necessary for the construction of brain cell membrane. In terms of
feeding intellect, their value lies mainly in the quality of their proteins, they are
actually rich in amino acids, essential in the production of the principal neurotrans-
mitters. Hence, instead of a total boycott, it is better to reduce the risk associated
with eggs consumption.

In order to alleviate the problem associated with consumption, an organic cop-
per salt combination was used instead of the inorganic combinations currently used
in preparation of poultry feeds. Ninety-six chickens were randomly selected and
randomly divided into 2 groups of 48 each. Each group was subjected to the same
general conditions and treatments, differing only in that while, the chickens in the
first group were fed with inorganic copper salt, those in the second group were fed
with inorganic copper salt. After 4 months the weight (gram) and cholesterol level
(mg/egg) of the eggs yielded by the two groups were measured. The excerpt from
the data used in this analysis is presented in the Appendix A courtesy of Federal
University of Agriculture, Abeokuta.

Carrying out analysis of the data obtained from the laboratory study, it is a
common assumption in literature to assume normal distribution in the analysis of
agricultural data. This assumption is not always true especially in the current case.
Therefore, we proposed to study a generalized form of normal distribution called
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the exponential power distribution and its multivariate extension, which contains
normal distribution and others in the literature as special cases in fitting poultry
feeds data. This unifying exponential power distribution is characterized by a
parameter β and a function h βð Þ which regulates the tail behaviour of the distribu-
tion, thus making it more flexible and suitable for modeling than the usual normal
distribution, while retaining symmetry properties. Finally we fit the generalized
exponential power distribution as well as the normal distribution to data on eggs
produced by chicken on each of two different poultry feeds (inorganic and organic
copper salt compositions) and show that the generalized exponential power distri-
bution fit is considerably better. We then use the Kolmogorov-Smirnov two sam-
ples one-tailed test to show that there is an increase in egg weights and decrease in
cholesterol level when the feed is organic.

2. Exponential power distribution

The exponential power distribution is a class of densities which includes the
normal and allows thick tails, Thus making it more suitable in modeling when
compared with the usual normal distribution. In fact, it is a natural generalization of
the normal distribution and also used in applications by [2–8]. They also presented a
multivariate version of the exponential power distribution and [5] used this distri-
bution to model repeated measurements. We present this distribution with a prop-
osition. Codes were written in R environment to estimate the parameters of both
the univariate and the multivariate version of the distribution see [7, 9, 10].

Proposition 2.1 let X be a random variable then,

f x; μ; σ; βð Þ ¼
βh βð Þ
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is a probability density function (p.d.f.) with three parameters β>0, σ >0,
μ∈ℜ. The tail region is regulated by the function h βð Þ, which is positive for all β>0.

If a random variable X has the p.d.f 1ð Þ then its mth moments can be obtained
from the relation
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In addition, its central moment estimates Agro [11–14] are:
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The results indicate that the sample meanX is the estimate of the truemean μwhile
the shape parameter can be numerically obtained from the estimate of the kurtosis.
Substituting shape parameter estimate into Var Xð Þ we estimate the scale parameter σ.

Also the log-likelihood function [14] for random samples x1, x2, ::, xn from (1) is:

LogL μ; σ; βð Þ ¼ nln
1

σΓ 1þ 1
2β

� �

21þ
1
2β

0

@

1

A�
X

i¼n

i¼1

1

2

xi � μ

σ

�

�

�

�

�

�

2β
(5)

The derivatives of 8ð Þ with respect to μ, σ, and β are.
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The expected fisher information matrix of EPD is
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[10] developed codes in R programming environment to estimate these param-
eters from any given sample from (1), this also includes the parameter β which has
no explicit solution.

3. Data analysis

Normality assumptions are common in data analysis, but a close look at the
normal and generalized exponential power Q-Q plot in Figures 1 and 2, though by
the normal distribution is a reasonable fit, the tails seem to be shorter than expected
and hence the p-values resulting from the usual tests based on normal assumptions
cannot be trusted. On the other hand, the generalized exponential power distribu-
tion proves to be a much better fit for egg weights as well as cholesterol level in both
groups. We now carry out estimation of the parameters of the distribution using the
method of moments and maximum likelihood estimate (MLE). These methods were
preferred because they have many optimal properties in estimation: sufficiency;
consistency; efficiency; and parametrization invariance which are rarely found in
other approaches (For details on MLE see [4, 9, 10] and the estimated values from
the observations namely the means, standard deviation (s.d.), the β, Akaike infor-
mation Criterion (AIC) as well as Bayesian Information criterion (BIC) are given in
Table 1 with the corresponding log-likelihood log Að Þð Þ estimates. Since the explicit
expression cannot be obtained for μ and β in the estimation of maximum likelihood
in the Section 2 we employed a numerical approach using a written code in the R
software programme. The statistical computing environment [10], was supple-
mented with the package called “normp” downloaded into R file from the site
http://cran.r-project.org/ and used to analyze the data. As earlier stated, though
the normal distribution was a good fit to the sample data, but we have a better fit
when we use the generalized exponential power distribution. This is evident when
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comparing the results form the log-likelihood functions, AIC and BIC given in
Table 1 below, as well as the plots in Figures 1 and 2.

3.1 Hypothesis testing

We have used a numerical algorithm written in the R software environment to
find estimates of the parameters giving the best fit for the data in appendix B. These
estimates are reported in Table A1. We used the Kolmogorov-Smirnov two-sample
test [15] for large samples to decide whether there is significant difference in the
weights and cholesterol levels of the two groups. Clearly, if we find that there is a
significant difference, then feeds should be changed to organic copper salts. Note
that we have used a one sided Kolmogorov-Smirnov two-sample test [15], that is,
the test compares the cumulative frequency distributions of the two samples and
decides if the observed D indicates that they were drawn from different populations
and one of which is stochastically larger than the other. Let Fn1 Xð Þ be the cumula-
tive step function of the sample observations for the inorganic copper salt type and
let Fn2 Yð Þ be the cumulative step function of the sample observations for organic
copper salt type. We test the null hypothesis that the two samples have been drawn
from the same population against the alternative hypothesis that the values of the
population from which one the samples was drawn are stochastically larger than the
values of the population from which the other sample was drawn. In other words,
for the eggs weights the null and alternative hypotheses are of the form

Figure 1.
Top row are the Q-Q plots weight of the eggs for the inorganic copper salt, the first is the normal and the second
is the Generalized Exponential distribution. The second row is the case of organic copper salt.
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H0 : Fn1 Xð Þ ¼ Fn2 Yð Þ and HA : Fn1 Xð Þ<Fn2 Yð Þ; also for the cholesterol levels while
the null hypothesis remain the same, the alternative hypothesis is
HA : Fn2 Xð Þ<Fn1 Yð Þ. We now define

D ¼ maximum Fn1 Xð Þ � Fn2 Yð Þ½ �

The sampling distribution of D is assumed to be a generalized exponential power
distribution. It has been shown by [16] that

Figure 2.
The Q-Q plots for the egg cholesterol content. The first row is the inorganic copper salt for normal and
generalized exponential power distribution. The second row is the organic copper salt.

Density Variables Mean s.d Shape(ω) h(ω) log ℓ Þð AIC BIC

Normal Weight (inorganic) 58.350 3.559 Nil Nil �129.055 262.11 273.5948

Weight (organic) 59.10 1.822 Nil Nil �96.910 197.82 209.3048

Cholesterol (inorganic) 195.728 21.907 Nil Nil �216.282 436.564 448.0488

Cholesterol (organic) 131.457 37.232 Nil Nil �241.739 487.478 498.9628

GEP Weight (inorganic) 58.507 4.371 4.470 0.281 �126.028 258.056 275.2832

Weight (organic) 59.118 2.306 5.963 0.168 �91.850 189.700 206.9272

Cholesterol (inorganic) 194.481 28.359 6.825 0.147 �210.809 427.618 444.8452

Cholesterol (organic) 129.720 46.327 5.206 0.192 �237.448 480.896 498.1232

Table 1.
Parameters estimation for eggs weights in Appendix B.
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χ22 ¼ 4D2 n

2
(6)

(for number of observations are the same)

1.for the egg weights D ¼ 0:3125 with corresponding P χ22 > 9:21
	 


<0:01. Hence,

we reject H0 and conclude that the weight of the eggs fed with inorganic
copper salt is less than the organic type.

2.for the cholesterol level which is the most important, we have: D ¼ 0:6875
with P χ22 >45:375

	 


<0:0001. Hence we reject the null hypothesis and

conclude that, using the organic copper salt type the cholesterol level
significantly reduced.

4. Exponential power distribution table

Given a set of data, one of the statistical issues is to see how well the data fit into
postulated model. This technique necessitates the corresponding table of the proba-
bility distribution for the proposed model. The cumulative distribution for the expo-
nential power distributions is not in explicit form, but some numerical approach was
used to produce the abridge version of the table of the cumulative distribution for
quick use for those who are not familiar with code written to solve such problem with
different values of shape parameter β see Appendix C (Tables A2–A6). The table
presented makes it workable to examine whether exponential power distribution is
an appropriate model for any data set. Though we have the conventional testing
method which is also discussed, one is Pearson’s χ2 test and the other one is
Kolmogorov-Smirnov test. An example in poultry feeds data and a simulation exam-
ple are included, we compare the fitting with the normal distribution. To illustrate the
use of the table, the cumulative distribution function (cdf) for a standardized random
variable having (1) with real β can be expressed has

P X ≤ xð Þ ¼

ðt

�∞

1

2β1=p 1þ 1
β

� � exp �
xj jβ

β

( )

(7)

Thus, for each specified β, we can calculate the corresponding probability for each
value of t. In the table, we present the corresponding probabilities for t ranging from
0.00 until P X ≤ xð Þ≈ 1 to 3 decimal places, with each increase in length by 0.01. We
introduced Simpson rule in numerical computation coupled with R program devel-
oped by [9, 17]. We prefer Simpson’s method compare to other methods because its
guarantees the accuracy level of the table. The table is arranged as follows, if we wish
to compute, say x ¼ 0:15, the table in the appendix can used in the this way:

• P Y ≤0:15ð Þ ¼ 0:5910, when β ¼ 0:5

• P Y ≤0:15ð Þ ¼ 0:5695, when β ¼ 1:0

• P Y ≤0:15ð Þ ¼ 0:5583, when β ¼ 3:6

from the table we can see that the probability distribution of exponential power
distribution depends on the shape parameter, β, and as β increases the cdf changed.

For example, the P Y ≤ 3:0ð Þ ¼ 0:9998 remains the same at the accuracy of 10�4 for
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β ranging from 2.40 to 10.00. Therefore, the tables were truncated at some points,
when the resulting values of P X ≤ xð Þ repeat the previous values for increase in
shape parameter β. To check the accuracy of the table in the appendix, from our
program we allowed β ¼ 1 which of course gave the values for the cdf of Laplace
distribution otherwise known as double exponential. Also, when β ¼ 2 we have the
values for the cdf of a random variable having a standard normal probability
distribution function (not reproduce here, but available in many Statistical texts).

5. Goodness-of-fit tests for the exponential power distribution

In this section, we present two procedures for goodness-of-fit test for the expo-
nential power distribution. One is Pearson0s χ2 test and the other one is Kolmogorov-
Smirnov test. These are two well-known tests in the literature to examine how well
a set of data fits into a postulated model provided that the probability distribution of
the postulated random variable is available.

5.1 χ 2 procedure for exponential power distribution

Given a set of data X1,…, Xn: To carry out Pearson’s χ2 test to ascertain if the data
is well fit into exponential power distribution EP p0

� �

, we proceed as follows:

• Partition the sample space into K disjoint intervals;

• Find the probability βk that an outcome falls in the Kth interval under the
assumption that the underlying population has an EP β0ð Þ distribution. βk can
be found using the table in the appendix, then Ek ¼ nβk is the expected number
of outcomes that falls in the Kth interval in n repetitions of the experiment;

• The χ2 test statistic with degree of freedoms K � 1 is then defined as

χ2 ¼
X

K

i¼1

Ni � Eið Þ2

Ei
(8)

where Ni is the number of outcomes that fall in the ith interval and Ei is the
expected number in the ith interval. The selection of K follows the general rule in
the application of Pearson’s χ2 test.

If the χ2 value calculated from (8) is too large compared with the endpoint of
χ2k�1 at certain significance level, say 0.05 (commonly used) but on some occasion
0.01, it implies that the differences between the expected and the observed values
are too large, then the assumption of exponential power with p0 must be rejected.
Other value of β or even other models may need to be considered. If the calculated
χ2 value is small, it implies that the data set fits well into the model. Therefore the
model can be accepted at the significance level specified.

From this test procedure, conspicuously it is convenient to have the tables for
practical purpose. For example, we can always compare the value of χ2 to see
whether normal distribution or exponential power is a better fit for the data.

5.2 Kolmogorov test procedure on the exponential power distribution

Suppose we have a random sample X1,…, Xn from a population with distribution
function F(x), we desire to see if a postulated exponential power distribution (with
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specified β0) can be used to fit the underlying population of the data. The null
hypothesis can be stated as follows.

H0 : F xð Þ ¼ G0 xð Þ for all x.
against the alternative.
H1 : F xð Þ 6¼ G0 xð Þ for at least one x.
where G0 xð Þ denotes the cdf of EP β0ð Þ

D Fn xð Þ;Gβ xð Þ
� �

¼ sup
z

Fn xð Þ �Gβ xð Þ
�

�

�

� (9)

where

Fn xð Þ ¼

0, x<X 1ð Þ

i

n
, X ið Þ ≤ x<X iþ1ð Þ, k ¼ 1,…, n� 1;

1, x≥X nð Þ:

8

>

>

<

>

>

:

where X 1ð Þ,…, X nð Þ in the expression of Fn xð Þ are the ordered statistics of

X1,…, Xn. Gβ xð Þ at each sample points of Xi can be found from the exponential
power distribution table. In this case, the Kolmogorov-Smirnov test statistic D(.,.) is
the maximum distance between empirical distribution function and postulated dis-
tribution function at the sample points. At significant level of α, the test endpoint dα
for test statistic D can be found from [15, 16]. The rule is that if the calculated D is
larger than dα the postulated exponential power distribution function is too far away
from the observed distribution function. Thus H0 is rejected at α level of signifi-
cance, otherwise,H0 is accepted at the same significance level. To carry out this test,
it is critical to find the Fn xð Þ’s for the postulated exponential power distribution. The
table provide in this paper makes it possible for the implementation of this test.

Example 1: (Approximation of the exponential power distribution by the nor-
mal distribution). Normal distribution has been well known to be the limiting
distribution for so many distribution in the literature. In this section with explore to
what value of the parameter p will normal give an acceptable approximation to data
having exponential power distribution with parameter pi. This will also examine the
closeness between exponential power and normal distributions, using the
Kolmogorov-Smirnov test of normality distance. Let X � N 0; 1ð Þ and F xð Þ be the
cdf, also let Y � EP βð Þ and Gβ yð Þ be the cdf. The Kolmogorov distance between F xð Þ
and Gβ yð Þ is defined as

D F;Gβ

� �

¼ z
sup

F �Gβ

�

�

�

� (10)

The values ofD F;Gp

� �

can be obtained from the tables in the appendix. The values

of D F;Gp

� �

from some selected p ¼ 1:6� 4:4. These are shown in the table below.

we observed from Table 2, that as p increases D F;Gp

� �

also increases, this
implies that approximation by normal distribution becomes poorer with large

p 1.6 1.8 2.2 2.4 2.6 2.8 3.0

D F;Gp

� �

0.0146 0.0072 0.0065 0.0180 0.0197 0.0226 0.0268

p 3.2 3.4 3.6 3.8 4.0 4.2 4.4

D F;Gp

� �

0.0311 0.0348 0.0384 0.0415 0.0447 0.0478 0.0504

Table 2.
Kolmogorov distance between F and Gp.
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estimated p from experimental samples. Large D F;Gp

� �

is noticeable in all p0s when
t ¼ 1:3. Therefore, normal assumption in such case of large p value may lead to error

in conclusion. It should be noted that the significance of D F;Gp

� �

also depends on
the sample size.

Example 2: (Simulation from exponential power distribution). Table 3 shows a
simulation of 1000 samples from exponential power distribution with p ¼ 4:4,
where n is the observed frequency in the ith interval, pi a; bð �ð Þ ¼ P EPD 4:4ð Þð ÞÞ�

P EPD 4:4ð Þ≤ að Þ: and Npi and normal are the expected frequency in the ith interval

for EPD 4:4ð Þ and normal distribution, respectively. We obtained χ2 value of 0:4207
for EP 4:20ð Þ with degree of freedom 9, thus EP 4:20ð Þ is accepted as expected.
However, the goodness-of-fit for N 0; 1ð Þ gives an observed χ2 value of 832:559,
which results in the rejection of N 0; 1ð Þmodel for the same data set. See Table 3 for
detail report.

6. The Kullback-Leibler information

The Kullback-Leibler (K-L) information function [14] can be used to discriminate
between two distributions Fθ xð Þ and F xð Þ of ¼ Fθ xð Þ; θ∈Θ. It is defined as

I θ;ϕð Þ ¼ Eθ ln
f X; θð Þ

f X;ϕð Þ


 �

; θ,ϕ∈Θ (11)

The family of F is assumed to be regular.
Proposition: I θ;ϕð Þ≥0 if and only if, f X; θð Þ ¼ f X;ϕð Þ with probability one.
Proof: Recall that ln x is the concave function of x and by Jensen’s inequality

ln E Yð Þð Þ≥E lnYð Þ for every non-negative random variable Y, having a finite

expectation. Accordingly, �I θ;ϕð Þ ¼ Eθ �ln f X;θð Þ
f X;ϕð Þ

n o

=
Ð

ln f X;ϕð Þ
f X;θð Þ f x; θð Þdx

≤ ln
Ð

f x; θð Þdx ¼ 0 if both sides of the above equation is multiply by �1 we have
that I θ;ϕð Þ≥0. Also, if Pθ f X; θð Þ ¼ f x;ϕð Þ½ � ¼ 1 then I θ;ϕð Þ ¼ 0: Q:E:D:

It is worth noting that if X1,…, Xn are identical and independent random vari-
ables then the KL information function say I θ;ϕð Þ is additive, that is,

In θ;ϕð Þ ¼ Eθ ln f X;θð Þ
f X;ϕð Þ

n o

¼ Eθ

Pn
i¼1 ln

f Xi;θð Þ
f Xi;ϕð Þ

n o

¼ nI θ;ϕð Þ:

Intervals n pi EP(4.4) normal

(�∞, �1.75] 3 0.0033 3.3 40.1

(�1.75, �1.25] 55 0.0540 54.0 65.5

(�1.25, �0.75] 149 0.1524 152.4 121.0

(�0.75, �0.25] 193 0.1924 192.4 174.7

(�0.25, 0.25] 197 0.1958 195.8 197.4

(0.25, 0.75] 196 0.1924 192.4 174.7

(0.75, 1.25] 151 0.1524 152.4 121.0

(1.25, 1.75] 52 0.0540 54.0 65.5

(1.75, ∞] 4 0.0033 3.3 40.1

Table 3.
Pearson’s χ2 test.
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Example 1: let F be the class of all normal distribution N μ; σ2ð Þ; μ∈R; σ >0
� �

: let

θ1 ¼ μ1; σ1ð Þ and θ2 ¼ μ2; σ2ð Þ.
The likelihood ratio is

f x; θ1ð Þ

f x; θ2ð Þ
¼

σ1

σ2
exp �

1

2

x� μ1

σ1

� �2

�
x� μ2

σ2

� �2
" #( )

(12)

Example 3: (Applications to poultry feeds data) Now consider the data in
Appendix B, where cholesterol level xi of 48 eggs of chicken fed with organic
copper salt are measured in mg=egg, where 5.20 is the estimated p value for expo-
nential power distribution and 131.457 and 37.232 are the population mean and
standard deviation, respectively. Also for Normal we have 59.10 and 1.822 as the
estimated mean and standard deviation, respectively. The ordered data set xi are
given in Table 4, zi and ti is the standardized values for xi for EP 5:20ð Þ and normal,
respectively. Zi ¼ P EP 5:20≤ zið Þð Þ and Ti ¼ P N 0; 1ð Þ≤ tið Þ is the normal counter-
part. We define DEP as the max jZi � i=nj; jZi � i� 1ð Þ=njð Þ for EP 5:20ð Þ and DN as
max jTi � i=nj; jTi � i� 1ð Þ=njð Þ for normal distribution. From Table 4, using
Kolmogorov-Smirnov test, we find the corresponding ∣D∣ ¼ 0:061833 for EP 5:20ð Þ
and ∣D∣ ¼ 0:77742 for normal distribution. One can easily see that the fit of expo-
nential power cdf is uniformly better than that of the standard normal cdf in this
example. All these have been made possible using the table in the appendix. Details
are provided in Table 4.

xi zi ti Zi ∣DEP∣ Ti ∣DN ∣

60.73 �1.489196365 �1.899629351 0.0115 0.0115 0.5294 0.5294

66.03 �1.374792238 �1.757278685 0.0254 0.01627 0.5392 0.518367

71.33 �1.260388111 �1.614928019 0.0452 0.0173 0.5537 0.512033

76.63 �1.145983983 �1.472577353 0.0713 0.01203 0.5708 0.5083

81.86 �1.033090854 �1.33210679 0.1065 0.023167 0.5918 0.508467

81.93 �1.031579856 �1.330226687 0.1065 0.0185 0.5918 0.487633

81.93 �1.031579856 �1.330226687 0.1065 0.03933 0.5918 0.4668

87.16 �0.918686727 �1.189756124 0.1429 0.02377 0.617 0.471167

92.46 �0.8042826 �1.047405458 0.1829 0.016233 0.6469 0.480233

92.52 �0.802987459 �1.045793941 0.1864 0.02193 0.96492 0.77742

97.76 �0.689878473 �0.905054792 0.2284 0.020067 0.6814 0.473067

97.82 �0.688583332 �0.903443275 0.2284 0.0216 0.6841 0.454933

103.06 �0.575474345 �0.762704125 0.2707 0.0207 0.7236 0.4736

103.11 �0.574395061 �0.761361195 0.2747 0.01697 0.7236 0.452767

108.36 �0.461070218 �0.620353459 0.3182 0.026533 0.7676 0.475933

108.41 �0.459990934 �0.619010529 0.3182 0.01513 0.7709 0.4584

113.66 �0.346666091 �0.478002793 0.3613 0.027967 0.8156 0.482267

113.7 �0.345802664 �0.476928449 0.3613 0.0137 0.8156 0.461433

118.96 �0.232261964 �0.335652127 0.4088 0.0338 0.8669 0.4919

119 �0.231398536 �0.334577783 0.4088 0.012967 0.8707 0.474867

124.26 �0.117857837 �0.193301461 0.4563 0.039633 0.9247 0.508033
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7. Concluding remarks

We have proposed a generalized exponential power distribution, and studied
some of its mathematical and statistical properties. We fitted this distribution to
data arising from an experiment concerning the cholesterol level and weight of
eggs. The Q-Q plots clearly show that the generalized exponential power distribu-
tion fits the data better than the usual normal distribution. Finally, hypotheses tests
show that consumption of eggs from chicken fed with organic copper salt should
not be boycotted for the fear of high cholesterol level. Therefore we recommend
that the constituents of poultry feeds should change from the inorganic to organic
combinations.

xi zi ti Zi ∣DEP∣ Ti ∣DN ∣

124.3 �0.116994409 �0.192227116 0.4524 0.0149 0.9247 0.4872

129.56 �0.003453709 �0.050950795 0.4998 0.041467 0.9801 0.521767

129.6 �0.002590282 �0.04987645 0.4996 0.020433 0.9801 0.500933

134.86 0.110950418 0.091399871 0.5437 0.0437 0.0359 0.48493

134.89 0.111597988 0.09220563 0.5437 0.022867 0.0359 0.50577

140.16 0.225354545 0.233750537 0.5912 0.049533 0.091 0.4715

140.19 0.226002115 0.234556296 0.5912 0.0287 0.091 0.49233

145.46 0.339758672 0.376101203 0.6347 0.051367 0.148 0.45617

145.48 0.340190386 0.376638376 0.6347 0.030533 0.148 0.477

150.76 0.454162799 0.518451869 0.6778 0.0528 0.1985 0.44733

150.78 0.454594513 0.518989042 0.6778 0.031967 0.1985 0.46817

161.06 0.568566926 0.660802535 0.7253 0.058633 0.2454 0.4421

161.08 0.56899864 0.661339708 0.7253 0.0378 0.2454 0.46293

166.36 0.682971054 0.803153202 0.7681 0.059767 0.2881 0.44107

161.37 0.68318691 0.803421788 0.7681 0.038933 0.2881 0.4619

166.66 0.797375181 0.945503868 0.8136 0.0636 0.3289 0.44193

166.67 0.797591038 0.945772454 0.8136 0.042767 0.3289 0.46277

171.96 0.911779308 1.087854534 0.8535 0.061833 0.3621 0.4504

171.97 0.911995165 1.08812312 0.8535 0.041 0.3621 0.47123

177.26 1.026183435 1.2302052 0.8935 0.060167 0.3907 0.46347

177.26 1.026183435 1.2302052 0.8935 0.039333 0.3907 0.4843

182.56 1.140587562 1.372555866 0.9259 0.0509 0.4147 0.48113

182.56 1.140587562 1.372555866 0.9259 0.030067 0.4147 0.50197

182.56 1.140587562 1.372555866 0.9259 0.0116 0.4147 0.5228

187.86 1.25499169 1.514906532 0.9528 0.0153 0.4345 0.52383

187.86 1.25499169 1.514906532 0.9528 0.02637 0.4345 0.54467

193.16 1.369395817 1.657257198 0.9746 0.0254 0.4515 0.5485

Table 4.
Kolmogorov goodness-of-fit test.
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Appendix A

See Figures 1 and 2.

Appendix B

See Table A1.

Inorganic copper salt Organic copper salt

Weight Cholesterol Weight Cholesterol

52.67 164.23 56.08 56.08

53.17 167.42 56.34 56.34

53.67 170.6 56.61 56.61

54.17 173.78 56.87 56.87

54.67 176.96 57.13 57.13

55.17 180.14 57.39 57.39

55.67 183.32 57.65 57.65

56.17 186.51 57.92 57.92

56.67 189.69 58.18 58.18

57.17 192.87 58.44 58.44

57.67 196.05 58.7 58.7

58.17 199.24 58.96 58.96

58.67 202.42 59.23 59.23

59.17 205.6 59.45 59.45

59.67 208.78 59.75 59.75

60.17 211.96 60.01 60.01

60.67 215.14 60.27 60.27

61.17 218.33 60.54 60.54

61.67 221.52 60.8 60.8

62.17 224.69 61.06 61.06

62.67 224.85 61.32 61.32

63.17 227.88 61.58 61.58

63.43 228.03 61.85 61.85

65.67 231.06 62.34 62.34

65.15 228.01 62.11 62.11

63.43 224.83 61.85 61.85

62.93 221.65 61.58 61.58

62.43 218.46 61.32 61.32

61.93 215.28 61.06 61.06

61.43 212.1 60.8 60.8

60.93 208.92 60.54 60.54

60.43 205.74 60.27 60.27
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Appendix C

See Tables A2–A6.

Inorganic copper salt Organic copper salt

Weight Cholesterol Weight Cholesterol

59.93 202.56 60.01 60.01

59.43 199.37 59.75 59.75

58.93 196.19 59.49 59.49

58.43 193.01 59.23 59.23

57.93 189.83 59 59

57.43 186.65 58.7 58.7

56.93 183.46 58.44 58.44

56.43 180.28 58.18 58.18

55.93 177.1 57.92 57.92

55.43 173.72 57.65 57.65

54.93 170.74 57.39 57.39

54.43 167.55 57.13 57.13

53.93 164.37 56.87 56.87

Table A1.
Observed data from inorganic and organic copper salt.

t 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5087 0.5166 0.5239 0.5308 0.5373 0.5436 0.5495 0.5554 0.5609

0.10 0.5663 0.5716 0.5767 0.5816 0.5864 0.5910 0.5956 0.6000 0.6044 0.6086

0.20 0.6127 0.6168 0.6207 0.6246 0.6284 0.6321 0.6358 0.6393 0.6428 0.6463

0.30 0.6497 0.6530 0.6564 0.6594 0.6626 0.6656 0.6687 0.6717 0.6746 0.6775

0.40 0.6804 0.6831 0.6859 0.6886 0.6913 0.6939 0.6965 0.6991 0.7016 0.7041

0.50 0.7065 0.7089 0.7113 0.7137 0.7160 0.7183 0.7205 0.7227 0.7249 0.7273

0.60 0.7293 0.7315 0.7334 0.7355 0.7375 0.7395 0.7415 0.7435 0.7454 0.7473

0.70 0.7492 0.7511 0.7529 0.7547 0.7565 0.7583 0.7601 0.7618 0.7635 0.7652

0.80 0.7669 0.7686 0.7702 0.7719 0.7735 0.7750 0.7766 0.7782 0.7797 0.7812

0.90 0.7827 0.7841 0.7857 0.7876 0.7886 0.7901 0.7915 0.7929 0.7941 0.7955

1.0 0.7970 0.7982 0.7997 0.8010 0.8023 0.8036 0.8049 0.8061 0.8074 0.8087

1.1 0.8099 0.8111 0.8115 0.8135 0.8147 0.8159 0.8170 0.8182 0.8193 0.8204

1.2 0.8216 0.8227 0.8238 0.8249 0.8260 0.8271 0.8281 0.8292 0.8302 0.8313

1.3 0.8323 0.8334 0.8343 0.8353 0.8363 0.8373 0.8383 0.8392 0.8402 0.8411

1.4 0.8421 0.8430 0.8439 0.8449 0.8458 0.8467 0.8476 0.8485 0.8493 0.8502

1.5 0.8511 0.8519 0.8528 0.8536 0.8545 0.8553 0.8561 0.8570 0.8578 0.8586

1.6 0.8594 0.8602 0.8610 0.8617 0.8625 0.8633 0.8641 0.8648 0.8657 0.8663

1.7 0.8670 0.8678 0.8685 0.8692 0.8700 0.8706 0.8714 0.8721 0.8728 0.8735

1.8 0.8741 0.8748 0.8755 0.8762 0.8768 0.8775 0.8781 0.8788 0.8794 0.8801
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t 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.9 0.8809 0.8814 0.8819 0.8826 0.8832 0.8839 0.8844 0.8850 0.8857 0.8863

2.0 0.8869 0.8875 0.8880 0.8886 0.8892 0.8898 0.8902 0.8909 0.8915 0.8920

2.1 0.8926 0.8931 0.8937 0.8942 0.8948 0.8953 0.8958 0.8963 0.8973 0.8974

Table A2.
Cumulative distribution table for exponential power at p ¼ 0:5.

t 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.2 0.8979 0.8984 0.8993 0.8994 0.8999 0.9004 0.9009 0.9014 0.9019 0.9021

2.3 0.9029 0.9034 0.9038 0.9043 0.9048 0.9052 0.9057 0.9062 0.9066 0.9071

2.4 0.9075 0.9080 0.9084 0.9089 0.9093 0.9097 0.9102 0.9106 0.9111 0.9115

2.5 0.9119 0.9123 0.9127 0.9132 0.9135 0.9140 0.9144 0.9149 0.9152 0.9156

2.6 0.9160 0.9163 0.9168 0.9172 0.9176 0.9180 0.9183 0.9188 0.9191 0.9195

2.7 0.9199 0.9202 0.9206 0.9210 0.9214 0.9217 0.9221 0.9224 0.9228 0.9231

2.8 0.9235 0.9238 0.9242 0.9245 0.9249 0.9252 0.9256 0.9259 0.9262 0.9260

2.9 0.9269 0.9272 0.9276 0.9279 0.9282 0.9285 0.9289 0.9292 0.9292 0.9297

3.0 0.9301 0.9303 0.9304 0.9311 0.9314 0.9317 0.9320 0.9323 0.9326 0.9329

3.1 0.9332 0.9335 0.9338 0.9340 0.9343 0.9346 0.9349 0.9352 0.9355 0.9358

3.2 0.9360 0.9363 0.9366 0.9369 0.9351 0.9374 0.9377 0.9380 0.9382 0.9384

3.3 0.9388 0.9390 0.9393 0.9396 0.9398 0.9401 0.9403 0.9405 0.9407 0.9411

3.4 0.9413 0.9416 0.9418 0.9421 0.9423 0.9426 0.9428 0.9430 0.9433 0.9435

3.5 0.9438 0.9440 0.9442 0.9445 0.9447 0.9449 0.9452 0.9454 0.9457 0.9458

3.6 0.9461 0.9463 0.9465 0.9467 0.9470 0.9472 0.9473 0.9476 0.9479 0.9481

3.7 0.9483 0.9485 0.9487 0.9488 0.9491 0.9494 0.9495 0.9497 0.9499 0.9501

3.8 0.9504 0.9506 0.9507 0.9510 0.9511 0.9514 0.9516 0.9517 0.9519 0.9521

3.9 0.9523 0.9527 0.9528 0.9529 0.9531 0.9533 0.9535 0.9537 0.9538 0.9540

4.0 0.9542 0.9544 0.9546 0.9541 0.9549 0.9551 0.9553 0.9555 0.9557 0.9559

4.1 0.9560 0.9562 0.9563 0.9566 0.9567 0.9569 0.9570 0.9572 0.9574 0.9575

4.2 0.9577 0.9579 0.9580 0.9582 0.9583 0.9585 0.9587 0.9588 0.9590 0.9592

4.3 0.9593 0.9595 0.9596 0.9598 0.9599 0.9601 0.9606 0.9603 0.9606 0.9607

4.4 0.9609 0.9610 0.9612 0.9613 0.9615 0.9616 0.9617 0.9619 0.9620 0.9622

4.5 0.9623 0.9625 0.9626 0.9627 0.9629 0.9630 0.9632 0.9633 0.9635 0.9636

4.6 0.9637 0.9640 0.9640 0.9641 0.9643 0.9644 0.9645 0.9647 0.9648 0.9649

4.7 0.9651 0.9652 0.9654 0.9655 0.9656 0.9657 0.9658 0.9660 0.9661 0.9662

4.8 0.9664 0.9664 0.9666 0.9667 0.9668 0.9670 0.9671 0.9672 0.9673 0.9675

4.9 0.9676 0.9677 0.9678 0.9679 0.9681 0.9681 0.9683 0.9684 0.9685 0.9686

5. 0.9687 0.9689 0.9690 0.9690 0.9692 0.9693 0.9695 0.9695 0.9696 0.9698

5.1 0.9699 0.9700 0.9698 0.9702 0.9703 0.9704 0.9705 0.9706 0.9708 0.9708

5.2 0.9709 0.9709 0.9711 0.9710 0.9713 0.9714 0.9716 0.9716 0.9718 0.9719

5.3 0.9719 0.9721 0.9721 0.9721 0.9723 0.9724 0.9725 0.9726 0.9727 0.9728

5.4 0.9729 0.9730 0.9731 0.9732 0.9743 0.9734 0.9735 0.9736 0.9737 0.9738
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t 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

5.5 0.9739 0.9740 0.9741 0.9741 0.9743 0.9743 0.9744 0.9746 0.9746 0.9747

5.6 0.9748 0.9749 0.9749 0.9750 0.9751 0.9740 0.9753 0.9754 0.9755 0.9755

5.7 0.9756 0.9757 0.9758 0.9759 0.9760 0.9760 0.9761 0.9762 0.9763 0.9764

5.8 0.9765 0.9765 0.9766 0.9767 0.9768 0.9767 0.9769 0.9770 0.9770 0.9772

5.9 0.9773 0.9773 0.9774 0.9774 0.9776 0.9776 0.9777 0.9778 0.9779 0.9778

6.0 0.9780 0.9780 0.9782 0.9782 0.9783 0.9783 0.9785 0.9785 0.9786 0.9787

6.1 0.9787 0.9788 0.9789 0.9790 0.9792 0.9791 0.9792 0.9792 0.9793 0.9794

6.2 0.9794 0.9795 0.9792 0.9797 0.9797 0.9798 0.9799 0.9799 0.9800 0.9800

6.3 0.9801 0.9802 0.9802 0.9803 0.9804 0.9804 0.9805 0.9806 0.9806 0.9807

6.4 0.9808 0.9809 0.9809 0.9810 0.9810 0.9811 0.9812 0.9812 0.9813 0.9813

6.5 0.9814 0.9815 0.9815 0.9816 0.9816 0.9817 0.9817 0.9777 0.9818 0.9818

6.6 0.9820 0.9820 0.9821 0.9822 0.9822 0.9823 0.9823 0.9824 0.9825 0.9825

6.7 0.9826 0.9826 0.9827 0.9827 0.9828 0.9830 0.9829 0.9830 0.9814 0.9830

6.8 0.9831 0.9832 0.9832 0.9833 0.9833 0.9834 0.9835 0.9835 0.9836 0.9830

6.9 0.9837 0.9837 0.9837 0.9838 0.9839 0.9839 0.9831 0.9840 0.9838 0.9840

7.0 0.9842 0.9841 0.9839 0.9820 0.9835 0.9848 0.9844 0.9845 0.9846 0.9846

7.1 0.9847 0.9847 0.9848 0.9848 0.9849 0.9849 0.9849 0.9850 0.9850 0.9851

7.2 0.9851 0.9852 0.9852 0.9853 0.9853 0.9854 0.9854 0.9855 0.9855 0.9855

7.3 0.9856 0.9856 0.9857 0.9857 0.9858 0.9858 0.9859 0.9859 0.9859 0.9860

7.4 0.9860 0.9861 0.9861 0.9862 0.9862 0.9862 0.9863 0.9863 0.9863 0.9864

Table A3.
Cumulative distribution table for exponential power at p ¼ 1:0.

t 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

7.5 0.9865 0.9865 0.9865 0.9866 0.9866 0.9866 0.9867 0.9868 0.9868 0.9868

7.6 0.9869 0.9869 0.9869 0.9868 0.9870 0.9871 0.9871 0.9872 0.9872 0.9872

7.7 0.9873 0.9873 0.9873 0.9874 0.9873 0.9875 0.9871 0.9875 0.9876 0.9873

7.8 0.9876 0.9877 0.9877 0.9878 0.9878 0.9878 0.9879 0.9878 0.9879 0.9880

7.9 0.9880 0.9881 0.9881 0.9881 0.9882 0.9882 0.9883 0.9883 0.9883 0.9884

8.0 0.9884 0.9884 0.9884 0.9885 0.9885 0.9885 0.9886 0.9884 0.9887 0.9887

8.1 0.9887 0.9887 0.9888 0.9887 0.9888 0.9888 0.9889 0.9889 0.9888 0.9892

8.2 0.9890 0.9891 0.9891 0.9891 0.9892 0.9892 0.9892 0.9892 0.9893 0.9893

8.3 0.9895 0.9894 0.9894 0.9895 0.9895 0.9895 0.9896 0.9896 0.9896 0.9896

8.4 0.9897 0.9897 0.9897 0.9898 0.9898 0.9898 0.9899 0.9900 0.9899 0.9900

8.5 0.9900 0.9899 0.9900 0.9901 0.9901 0.9901 0.9901 0.9902 0.9902 0.9902

8.6 0.9903 0.9903 0.9903 0.9903 0.9904 0.9904 0.9904 0.9905 0.9905 0.9905

8.7 0.9905 0.9906 0.9906 0.9906 0.9906 0.9907 0.9907 0.9907 0.9908 0.9908

8.8 0.9908 0.9908 0.9909 0.9909 0.9910 0.9909 0.9910 0.9910 0.9912 0.9910

8.9 0.9911 0.9911 0.9911 0.9911 0.9912 0.9909 0.9912 0.9912 0.9913 0.9913
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t 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

9.0 0.9913 0.9914 0.9914 0.9914 0.9914 0.9914 0.9915 0.9915 0.9915 0.9915

9.1 0.9916 0.9916 0.9916 0.9916 0.9917 0.9917 0.9917 0.9911 0.9918 0.9918

9.2 0.9918 0.9918 0.9918 0.9919 0.9919 0.9920 0.9919 0.9921 0.9920 0.9920

9.3 0.9920 0.9920 0.9921 0.9921 0.9922 0.9921 0.9922 0.9922 0.9922 0.9922

9.4 0.9922 0.9924 0.9923 0.9923 0.9923 0.9924 0.9924 0.9924 0.9924 0.9924

9.5 0.9925 0.9925 0.9925 0.9925 0.9925 0.9926 0.9926 0.9926 0.9926 0.9926

9.6 0.9927 0.9927 0.9927 0.9922 0.9908 0.9931 0.9928 0.9928 0.9928 0.9928

9.7 0.9929 0.9929 0.9929 0.9929 0.9930 0.9930 0.9930 0.9930 0.9930 0.9930

9.8 0.9930 0.9931 0.9931 0.9931 0.9931 0.9931 0.9932 0.9932 0.9932 0.9932

9.9 0.9932 0.9933 0.9933 0.9933 0.9933 0.9934 0.9934 0.9934 0.9934 0.9934

Table A4.
Cumulative distribution table for exponential power at p ¼ 1:0.

t 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5050 0.5100 0.5150 0.5195 0.5245 0.5290 0.5340 0.5385 0.5430

0.10 0.5475 0.5520 0.5565 0.5610 0.5655 0.5695 0.5740 0.5780 0.5825 0.5865

0.20 0.5905 0.5945 0.5985 0.6025 0.6065 0.6105 0.6145 0.6185 0.6220 0.6260

0.30 0.6295 0.6335 0.6370 0.6405 0.6440 0.6475 0.6510 0.6545 0.6580 0.6615

0.40 0.6650 0.6680 0.6715 0.6745 0.6780 0.6810 0.6845 0.6875 0.6905 0.6935

0.50 0.6965 0.7000 0.7025 0.7055 0.7085 0.7115 0.7145 0.7170 0.7200 0.7230

0.60 0.7255 0.7285 0.7310 0.7335 0.7365 0.7390 0.7415 0.7440 0.7465 0.7490

0.70 0.7515 0.7540 0.7565 0.7590 0.7615 0.7640 0.7660 0.7685 0.7710 0.7730

0.80 0.7755 0.7775 0.7800 0.7820 0.7840 0.7860 0.7885 0.7905 0.7925 0.7945

0.90 0.7965 0.7985 0.8005 0.8025 0.8045 0.8065 0.8085 0.8105 0.8125 0.8140

1.0 0.8160 0.8180 0.8195 0.8215 0.8235 0.8250 0.8270 0.8285 0.8300 0.8320

1.1 0.8335 0.8350 0.8370 0.8385 0.8400 0.8415 0.8435 0.8450 0.8465 0.8480

1.2 0.8495 0.8510 0.8525 0.8540 0.8555 0.8565 0.8580 0.8595 0.8610 0.8625

1.3 0.8635 0.8650 0.8665 0.8680 0.8690 0.8705 0.8715 0.8730 0.8740 0.8755

1.4 0.8765 0.8780 0.8790 0.8805 0.8815 0.8825 0.8840 0.8850 0.8860 0.8875

1.5 0.8885 0.8895 0.8905 0.8915 0.8930 0.8940 0.8950 0.8960 0.8970 0.8980

1.6 0.8990 0.9000 0.9010 0.9020 0.9030 0.9040 0.9050 0.9060 0.9070 0.9075

1.7 0.9085 0.9095 0.9105 0.9115 0.9120 0.9130 0.9140 0.9150 0.9155 0.9165

1.8 0.9175 0.9180 0.9190 0.9200 0.9205 0.9215 0.9220 0.9230 0.9235 0.9245

1.9 0.9250 0.9260 0.9265 0.9275 0.9280 0.9290 0.9295 0.9305 0.9310 0.9315

2.0 0.9325 0.9330 0.9335 0.9345 0.9350 0.9355 0.9365 0.9370 0.9375 0.9380

2.1 0.9385 0.9395 0.9400 0.9405 0.9410 0.9420 0.9425 0.9430 0.9435 0.9440

2.2 0.9445 0.9450 0.9455 0.9460 0.9470 0.9475 0.9480 0.9485 0.9490 0.9495

Table A5.
Cumulative distribution table for exponential power at p ¼ 1:0.
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t 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.3 0.9500 0.9505 0.9510 0.9515 0.9520 0.9525 0.9530 0.9535 0.9535 0.9540

2.4 0.9545 0.9550 0.9555 0.9560 0.9565 0.9570 0.9575 0.9575 0.9580 0.9585

2.5 0.9590 0.9595 0.9595 0.9600 0.9605 0.9610 0.9615 0.9615 0.9620 0.9625

2.6 0.9630 0.9630 0.9635 0.9640 0.9645 0.9645 0.9650 0.9655 0.9655 0.9660

2.7 0.9665 0.9665 0.9670 0.9675 0.9675 0.9680 0.9685 0.9685 0.9690 0.9695

2.8 0.9695 0.9700 0.9700 0.9705 0.9705 0.9710 0.9715 0.9715 0.9720 0.9720

2.9 0.9725 0.9730 0.9730 0.9735 0.9735 0.9740 0.9740 0.9745 0.9745 0.9750

3.0 0.9750 0.9755 0.9755 0.9760 0.9760 0.9765 0.9770 0.9770 0.9770 0.9770

3.1 0.9775 0.9775 0.9780 0.9785 0.9785 0.9785 0.9790 0.9790 0.9790 0.9795

3.2 0.9795 0.9800 0.9800 0.9800 0.9805 0.9805 0.9810 0.9810 0.9810 0.9815

3.3 0.9815 0.9815 0.9820 0.9820 0.9825 0.9825 0.9825 0.9830 0.9830 0.9830

3.4 0.9835 0.9835 0.9835 0.9840 0.9840 0.9840 0.9845 0.9845 0.9845 0.9850

3.5 0.9840 0.9850 0.9850 0.9855 0.9855 0.9855 0.9860 0.9860 0.9860 0.9860

3.6 0.9865 0.9865 0.9865 0.9865 0.9870 0.9870 0.9870 0.9875 0.9875 0.9875

3.7 0.9875 0.9880 0.9880 0.9880 0.9880 0.9880 0.9885 0.9885 0.9885 0.9885

3.8 0.9890 0.9890 0.9890 0.9890 0.9890 0.9895 0.9895 0.9895 0.9895 0.9900

3.9 0.9900 0.9900 0.9900 0.9900 0.9905 0.9905 0.9905 0.9905 0.9905 0.9910

4.0 0.9910 0.9910 0.9910 0.9910 0.9910 0.9915 0.9905 0.9915 0.9915 0.9915

4.1 0.9915 0.9920 0.9920 0.9920 0.9920 0.9920 0.9920 0.9925 0.9925 0.9925

4.2 0.9925 0.9925 0.9925 0.9925 0.9930 0.9930 0.9930 0.9930 0.9930 0.9930

4.3 0.9930 0.9935 0.9935 0.9935 0.9935 0.9935 0.9935 0.9935 0.9935 0.9940

4.4 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9945 0.9945 0.9945

4.5 0.9945 0.9945 0.9945 0.9945 0.9945 0.9945 0.9950 0.9950 0.9950 0.9950

4.6 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9955 0.9955 0.9955 0.9955

4.7 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955 0.9960 0.9960 0.9960

4.8 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960

4.9 0.9965 0.9965 0.9965 0.9965 0.9965 0.9965 0.9965 0.9965 0.9965 0.9965

5.0 0.9965 0.9965 0.9965 0.9965 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970

5.1 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970

Table A6.
Cumulative distribution table for exponential power at p ¼ 1:0.
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