
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter

Nonlinear Oxygen Transport with
Poiseuille Hemodynamic Flow
in a Micro-Channel
Terry E. Moschandreou and Keith C. Afas

Abstract

In a recent paper by the authors, a well-known governing nonlinear PDE used to
model oxygen transport was formulated in a generalized coordinate system where
the Laplacian was expressed in metric tensor form. A reduction of the PDE to a
simpler problem, subject to specific integrability conditions, was shown, and in the
present work, a novel approximate analytical solution is obtained in terms of the
degenerate Weierstrass P function using a compatibility relation through the fac-
torization of the reduced almost linear ode and subject to similar boundary condi-
tions for a microfluidic channel used in recent work by the authors. A specific form
of the initial equation which was reduced has been used by Nair and coworkers
describing the intraluminal problem of oxygen transport in large capillaries or
arterioles and more recent work by the corresponding author describing the release
of adenosine triphosphate (ATP) in micro-channels. In the present problem, a
channel with a central core, rich in red blood cells, and with a thin plasma region
near the boundary wall, free of RBCs is considered.

Keywords: almost linear ODE, Poiseuille flow, oxygen transport, Painlevé analysis

1. Introduction

Various biophysical phenomena are modeled using nonlinear differential equa-
tions. Such is the case of a model used by Nair et al. [1–3] to describe oxygen
transport in large capillaries [1–3]. This model incorporates two regions of blood
flow. One is a core region of the blood with RBCs present, and in this core, oxygen
dissociates into blood oxyhemoglobin. The velocity of blood in the core region is a
function of the plasma velocity and rate of oxygen dissociating. The second region is
a thin strip of flowing plasma with no RBCs at the wall of the micro-fluidic channel.
The appropriate Robin condition and no-flux conditions are incorporated at and
around a permeable membrane with oxygen transport through the membrane.
Since there are two distinct regions of flow of liquid, RBCs with plasma and plasma
alone, it is necessary to match the rate of change of partial pressure of oxygen at the
common boundary of the liquid in each of the two regions. This kind of model has
been used previously by Moschandreou et al. [4] studying the influence of tissue
metabolism and capillary oxygen supply on arteriolar oxygen transport. In that
study a numerical approach was used to solve the governing equations. In the
present work we seek an analytical solution for a different highly nonlinear problem
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in a micro-fluidic channel. Flows that are fully developed at inlet were studied by
Ng [5] who studied oscillatory dispersion in a tube with chemical species undergo-
ing linear reversible and irreversible reactions at the tube wall. Relative importance
to the present work is that fully developed flow occurs at inlet of channel with
boundary conditions specified on the wall. No inlet mass transport is specified at
inlet of channel similar to [5] but unlike [6], for example. Using Painlevé analysis
[7], certain nonlinear second-order ordinary differential equations (ODE) can be
factorized and solved. We consider the model of Nair et al. [1–3], where the
nonlinear PDE reduced in [8], to an “almost linear” second-order ode is considered.
It is well-known that the Weierstrass P function in its series form is problematic to
use in computational work due to very slow convergence of numerical methods. It is
the aim of the present work to show that a degenerate form of the special function
can be used as in [9] in the reduction of the nonlinear PDE in [1–3]. A thorough and
recent review of oxygen control with microfluidics has been carried out in [10] and
all of its references within. In this work we see how the microscale can be leveraged
for oxygen control of RBCs.

2. General tensorial mass transport

Regardless of the kinematics of a surface (dynamic or stationary), all surfaces,
S ¼ ∂Ω, enclosing a solid volume, Ω, obey the following intuitive conservation
relation for an enclosed observable mass, mo of some arbitrary substance:

d

dt
mo þ

ð

S
jo � dS ¼ Σ, (1)

where jo is the flux of the observable out or into the surface and Σ represents the
net increase or decrease in the observable’s mass.

The relation states intuitively that any change of the observable’s mass within the
solid, plus all observable mass entering or leaving the boundary, should represent the net
change in the mass of the object.

Any mass transport can be derived from the above relation converted into the
differential form. We first recognize that the observable’s mass can be represented
through the observable’s density:

mo ¼
ð

Ω

ρo dΩ,

In addition, we can make the same statement about the net equilibrium con-
stant. Suppose there is a local equilibrium density, σ, such that

Σ ¼
ð

Ω

σ dΩ:

We then can obtain a full integral form of the conservation relation:

d

dt

ð

Ω

ρo dΩþ
ð

S
jo � dS�

ð

Ω

σ dΩ ¼ 0: (2)

In general, it can be shown that for a general surface that is moving, the time
derivative of a volume integral defined over the dynamic volume enclosed by the
surface can be summarized as [11]
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d

dt

ð

Ω

ψ dΩ ¼
ð

Ω

∂

∂t
ψ dΩþ

ð

S

~Cψ dS, (3)

where ~C is defined as the normal projection of the surface’s perpendicular speed,
also named, the surface velocity. This is encapsulated (using Einstein summation
convention) by the tensorial equation:

~C ¼ V⊥ �N ¼ V i
⊥Ni,

where N ¼ ZiNi is the unit normal to the surface and Zi is the contravariant
basis for the coordinate space. Thus, we can simplify our conservation relation:

ð

Ω

∂

∂t
ρo dΩþ

ð

S

~Cρo dSþ
ð

S

jo � dS�
ð

Ω

σ dΩ ¼ 0,

We can also simplify the vector surface element, dS ¼ NdS, and convert the flux

term into a tensorial formation, by recognizing jo ¼ jo
� �i

Zi:

ð

Ω

∂

∂t
ρo dΩþ

ð

S

~Cρo dSþ
ð

S
jo
� �i

Ni dS�
ð

Ω

σ dΩ ¼ 0:

Finally, we will use the definition of the surface velocity and combine the two
surface integral terms into one:

ð

Ω

∂

∂t
ρo dΩþ

ð

S
V i

⊥ρo þ jio
� �

Ni dS�
ð

Ω

σ dΩ ¼ 0:

We can use Gauss’ divergence theorem on the surface integral term and unite all
the terms under one volume integral:

ð

Ω

∂

∂t
ρo þ ∇i V

i
⊥ρo þ jio

� �

� σ dΩ ¼ 0:

Using the localization theorem, the integrand must be zero inside the volume
integral, and we obtain the differential form of the conservation relation:

∂

∂t
ρo þ ∇i V

i
⊥ρo þ jio

� �

� σ ¼ 0: (4)

We can simplify the equation, further by considering a particular form of the
flux. In this, we consider advective flux (flux due to bulk movement of an observ-
able’s mass) and diffusive flux (flux due to a concentration gradient). Using advec-
tive formulas and Fick’s first law, we obtain the flux to be

jio ¼ vioρo �Do∇
iρo, (5)

where vo ¼ vioZi is the velocity of the observable within the volume. Substituting
these into the differential conservation relation, we obtain

∂

∂t
ρo þ ∇i V

i
⊥ρo þ vioρo �Do∇

iρo
� �

� σ ¼ 0:

We simplify the equation, expanding the covariant derivative to obtain the final
form of the conservation relation:
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∂

∂t
ρo þ ∇i V i

⊥ þ vio
� �

ρo
� �

¼ ∇i Do∇
iρo

� �

þ σ: (6)

This form can also be put into an invariant tensorial form by utilizing the

invariant time derivative operator _∇
� �

from the calculus of moving surfaces [11]:

_∇ρo þ Vi
⊥∇iρo þ ∇i Vi

⊥ þ vio
� �

ρo
� �

¼ ∇i Do∇
iρo

� �

þ σ: (7)

This equation can also be put into a vector form:

_∇ρo þ V⊥ � ∇
!
ρo þ ∇

!
� V⊥ þ voð Þρoð Þ ¼ ∇

!
� Do∇

!
ρo

� �

þ σ: (8)

2.1 Application to oxygen transport

We consider a biological application of the observable’s mass transport equation
to microfluidic arterial oxygen transport. In this case, o ¼ O2. For this, we are
required to make a few assumptions:

(A1) We first tentatively assume that the arteriole’s surface is stationary and not.

This would necessarily imply Vi
⊥Zi ¼ 0:

(A2) We also consider steady-state solutions, by assuming that the density is
not dependent on time. This means that ∂

∂t ρO2
¼ 0:

(A3) In addition, we restrict our studies to microfluidic environments which are
in equilibrium. This would imply that the net local density change is zero, or
σ ¼ 0:

(A4) We also assume that the diffusion constant is a constant.

Using the above relations, we reduce the conservation relation to

∇i viO2
ρO2

� �

¼ DO2∇i∇
iρO2

: (9)

Both of the operators can be expanded using the Voss-Weyl formula [11] and

restated in terms of partial derivatives with respect to the spatial coordinates, Zi,
and the spatial metric tensor, Zij:

1
ffiffiffiffiffiffiffiffiffi

∣Zjk∣
p

∂

∂Zi

ffiffiffiffiffiffiffiffiffi

∣Zjk∣

q

viO2
ρo

� �

¼ 1
ffiffiffiffiffiffiffiffiffi

∣Zjk∣
p DO2

∂

∂Zi

ffiffiffiffiffiffiffiffiffi

∣Zjk∣

q

Ziℓ ∂

∂Zℓ
ρO2

� �

: (10)

We assume for a moment that the coordinate system chosen is some general

axial coordinate system consisting of two arbitrary coordinates, Z1,Z2
� �

, and a third

coordinate corresponding to the standard z coordinate found in cylindrical and
Euclidean coordinate systems.

This forms a three-dimensional coordinate system of Z1,Z2, z
� �

:We first assume
that the velocity of the observable is only along the z coordinate. This means that
the term on the left is greatly simplified:

1
ffiffiffiffiffiffiffiffiffi

∣Zjk∣
p

∂

∂z

ffiffiffiffiffiffiffiffiffi

∣Zjk∣

q

vO2ð ÞzρO2

� �

¼ 1
ffiffiffiffiffiffiffiffiffi

∣Zjk∣
p DO2

∂

∂Zi

ffiffiffiffiffiffiffiffiffi

∣Zjk∣

q

Ziℓ ∂

∂Zℓ
ρO2

� �

:

We then assume that the velocity of the observable does not depend on the z-
coordinate. This means that the particle moving along a streamline parallel to the
length of the tube will not accelerate. This will produce the equation:
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1
ffiffiffiffiffiffiffiffiffi

∣Zjk∣
p vO2ð Þz

∂

∂z

ffiffiffiffiffiffiffiffiffi

∣Zjk∣

q

ρO2

� �

¼ 1
ffiffiffiffiffiffiffiffiffi

∣Zjk∣
p DO2

∂

∂Zi

ffiffiffiffiffiffiffiffiffi

∣Zjk∣

q

Ziℓ ∂

∂Zℓ
ρO2

� �

:

From here, if we assume the coordinates Z1,Z2
� �

¼ x, yð Þ, then we can simplify
greatly to obtain the final form:

vO2ð Þz
∂ρO2

∂z
¼ DO2

∂

∂Zi
Ziℓ ∂ρO2

∂Zℓ

� �

: (11)

In addition, we assume that ρO2
does not depend on x. This produces the final

equation of

vO2ð Þz
∂ρO2

∂z
¼ DO2

∂
2ρO2

∂y2
: (12)

In addition, for all the above equations, since by Boyle’s law, at a constant
temperature, all instances of oxygen density can be equivalently replaced by oxygen
pressure.

3. Governing equation for oxygen transport

As can be extrapolated from above, the general form of the nonlinear PDE for
consideration defining oxygen transport in core region with Poiseuille hemody-
namic flow is given by Eq. (13). The boundary conditions are shown in Section 10.1
of the Appendix, the velocity profile is shown in Section 10.2, and Figure 1 shows
the geometry of the problem:

vp 1�HTð Þ þ vRBCHT
KRBC

Kp
1þ HbT½ �

KRBC

dSO2

dPO2

� �	 


∂PO2

∂z
¼ Dp∇

2PO2 (13)

There is a core region of blood flow with RBCs and plasma and a cell-free region
with only plasma flowing. In the plasma region near the wall, the governing equa-
tion is as in Eq. (13), without the second term in the square brackets. In general the
geometry of the problem can be either a tube or a channel, and the Laplacian is
generalized in [8]. In the present work, we confine the problem to a channel flow.
The blood plasma velocity is vp, and vRBC is the velocity of RBCs together with
plasma in the cell-rich region. The velocity of the RBCs is lower due to the slip

Figure 1.
Geometry of micro-channel with permeable membrane centered at the top of the channel.
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between plasma and RBCs. The distribution of RBCs is such that the hematocrit is

higher at the center of the channel and lower near the wall. The term dSO2

dPO2
is the

slope of the oxyhemoglobin dissociation curve and is a highly nonlinear function of
oxygen tension PO2 [1–3]. The dissociation curve is approximated by the Hill
equation [4, 6], where an empirical constant N is used and a constant P50 appears
which is the oxygen tension that yields 50% oxygen saturation. HbT½ � is the total
heme concentration, Dp is the given oxygen diffusion coefficient in plasma and has

units of μm2=s and KRBC, Kp are the solubilities of O2 in the RBCs and plasma,
respectively, and have units of M=mmHg. The values of the respective parameters
are taken from [8].

In connection with [8], we let

Σ PO2ð Þ ¼ constþ coeff
dSO2

dPO2
:

This allows for a transformation of Eq. (13) into Eq. (14) where “const” and
“coeff” are constants derived in [8].

We thus have a PDE of the form:

Σ PO2ð Þ ∂PO2

∂z
¼ 1

vp
∇2PO2: (14)

Choosing a separation form of PO2

PO2 ¼ PO2
~Z, z
� �

, (15)

where ~Z ¼ ~Z
1
, ~Z

2
� �

indicates a semi-general coordinate system; we assume the

following form of the solution:

Σ PO2
~Z, z
� �� �

¼ P ~Z
� �

L1 zð Þ þ L2 zð Þ: (16)

Let ~Zij be the metric tensor of the coordinate system composed of ~Z
1
, ~Z

2
� �

. As

derived in [8], we express the Laplacian of an arbitrary function, ψ ~Z
� �

, in terms of
the metric tensor in curvilinear coordinates, i.e.,

∇i∇
iψ ~Z
� �

¼ ∇2ψ ~Z
� �

¼ 1
ffiffiffiffiffiffiffiffiffi

∣~Zjk∣

q

∂

∂~Z
i

ffiffiffiffiffiffiffiffiffi

∣~Zjk∣

q

~Z
iℓ ∂ψ

∂~Z
ℓ

� �

: (17)

Applying this definition to ∇2
Σ
�1 PL1 þ L2ð Þ similar to [8], we show that

PL1 þ L2ð Þ ∂

∂z
Σ
�1 PL1 þ L2ð Þ ¼ 1

vp
L1

dΣ�1

dΣ
∇2Pþ L1

~Z
ij
∇iPð Þ ∇iPð Þ d

2
Σ
�1

dΣ2

" #

:

Rearranging in terms of dΣ�1

dΣ , we obtain

PL1 þ L2ð Þ P
dL1

dz
þ dL2

dz

� �

vp � L1∇
2P

	 


dΣ�1

dΣ
¼ L1

~Z
ij
∇iPð Þ ∇iPð Þ

h i d2Σ�1

dΣ2 :

6
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Isolating Σ terms and allowing a zero separation constant, we obtain

PL1 þ L2ð Þ P
dL1

dz
þ dL2

dz

� �

vp � L1∇
2P ¼ 0: (18)

where L1 6¼ 0 and P must obey the metric condition

~Z
ij
∇iPð Þ ∇iPð Þ 6¼ 0: (19)

Also, Σ�1 must obey the conditions

dΣ�1

dΣ
6¼ 0,

d2Σ�1

dΣ2 ¼ 0

( )

: (20)

It has been shown in [8] that for L2 zð Þ ¼ 0, Eq. (13) can be reduced to

∇2Pþ 2vpP
2 ¼ 0,

dL1

dz
þ 2 ¼ 0

� �

, (21)

where 2 is a separation constant, vp ~Z
� �

¼ c� d rk k2 is Poiseuille flow, and

PO2 ¼ A1PL1 þ A2, (22)

where A1,A2 are arbitrary constants.
In the present work, we consider the general case where the forms are chosen for

L1 and L2:

L1 ¼ �1 Czþ 1

3
mi

� �2

,L2 ¼ C1zL1

( )

,

where C, C1, and mi are constants. C1 is a free constant, C is to be determined
using boundary conditions, and mi is a fixed known constant. The reason for this
choice of functions L1 zð Þ and L2 zð Þ will be made apparent in Sections 4 and 5. The
constant mi is chosen as in Figure 1, and 1 is a free constant.

4. Transformation of associated equation

The equation to solve is a PDE related to Eq. (18) and condition Eq. (20), for L1

and L2 defined above:

Prr ¼ �1 c� dr2
� �

f2C Czþ 1=3mið ÞP2 þ f2zC1 Czþ 1=3mið Þ
þ C1 Czþ 1=3mið Þ2 þ 2zC1 Czþ 1=3mið ÞCgP
þ zC1 C1 Czþ 1=3mið Þ2 þ 2zC1 Czþ 1=3mið ÞC

h i

:

(23)

Let

ξ ¼ ξ rð Þ ¼ c� dr2
� �

, (24)
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The transformed equation becomes

�2d
∂P

∂ξ
þ 4d c� ξð Þ ∂

2P

∂ξ2
¼ �1ξf2CMP2 þ 2zC1Mþ C1M

2 þ 2zC1MC
� �

P

þ zC1 C1M
2 þ 2zC1MC

� �

, g
(25)

whereM ¼ Czþ 1
3mi, z ¼ M�1

3mi

C , and C1 ¼ � �1ð Þ1=n ¼ �ϵ, small, for n= 5, 4, 3, 2.

5. General form of nonlinear equation

The following form of the nonlinear nonhomogeneous PDE, Eq. (25), is considered:

∂
2Y ξ, zð Þ
∂ξ2

þ F1 ξð Þ ∂Y ξ, zð Þ
∂ξ

þ F2 ξ, zð ÞY2 ξ, zð Þ � ϵ=2ð ÞF3 ξ, b0 zð Þð ÞY ξ, zð Þþ

1=2ð ÞG ξ, z; ϵ2
� �

¼ 0,

(26)

where

F1 ξð Þ ¼ � 2c� 2ξð Þ�1, (27)

F2 ξ, zð Þ ¼ �1=4
1 2CMð Þξ
d c� ξð Þ , (28)

and G ξ, z; ϵ2ð Þ involve a small parameter by choice of L1 and L2 and can be made
arbitrarily small, whereas F3 ξ, b0 zð Þð Þ can be made large due to choice of b0 zð Þ.

In light of work in [7], upon substitution of F1 and F2 for λ as defined in Eq. (33):

λ ξ, zð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1=4 1 2CMð Þξ
d c�ξð Þ

5

q

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c� 2ξ5
p , (29)

and

Y ξ, zð Þ ¼ λ ξ, zð Þ W Z ξ, zð Þð Þ � b0 zð Þð Þ þ ϵM c� dt2
� �

�
z=3 9Czþmið Þ½ �t�2 � F�1

3 ξ, b0 zð Þð Þ,
(30)

where Z is defined such that

∂Z ¼ ϕ ξ, zð Þ∂ξ, (31)

where F�1
3 ¼ 1=F3 is defined by Eq. (35), ϕ ξ, zð Þ is defined by Eq. (34), and

W Zð Þ is defined by Eq. (32). It follows that substitution of Eq. (30) for Y into
Eq. (26) will cancel part of the coefficient of the Y term leaving the first term on the
right side of Eq. (30). (The second term on the right side of Eq. (30) is the

simplification of the last term on the right-hand side of Eq. (25) except the F�1
3

term). Next, ε2 terms will cancel in Eq. (26) leaving a form of the equation which is
homogeneous similar to that in [7] (where we have assumed that supzb0 zð Þ is large
for z far down the channel), i.e.:

∂
2Y ξ, zð Þ
∂ξ2

þ F1 ξð Þ ∂Y ξ, zð Þ
∂ξ

þ F2 ξ, zð ÞY2 ξ, zð Þ þ F3 ξ, zð ÞY ξ, zð Þ ¼ 0:

8
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It can be verified that as 1 ! 0 and ϵ ! 0, the solution obtained from Eq. (26)
is a linear function in ξ and independent of z, and one possible solution is a
decreasing function on the height of the channel, which is intuitive as the PO2

should drop at the wall of the channel (see Figures 1 and 2). In an approximating
sense, though, the other terms will contribute in Eq. (26) as shown below.

The functions λ ξ, zð Þ,ϕ ξ, zð Þ and function b0 zð Þ chosen to be large in magnitude
in the supremum sense for all z values are selected so that the transformed equation,
Eq.(26), through Eqs. (29)–(31) is written as one of the Painlevé classifications of
the second-order differential equations [7].

There are two independent canonical forms for this equation [7], one of which is

d2W Zð Þ
dZ2 � 6W2 Zð Þ þ 6b20 ¼ 0: (32)

According to Estevez et al. [7], the functions must be of the form

λ ξ, zð Þ ¼ F
�1=5
2 ξ, zð Þe�2

5

Ð

F1 ξð Þdξ, (33)

and

ϕ ξ, zð Þ2 ¼ � λ ξ, zð ÞF2 ξ, zð Þ
6

: (34)

The functions F1, F2 and F3 should satisfy the compatibility relation [7]:

F3 ξ, b0 zð Þð Þ ¼ 2b0 zð ÞF2 ξ, zð Þλ ξ, zð Þ �
∂
2

∂ξ2
λ ξ, zð Þ

λ ξ, zð Þ �
F1 ξð Þ ∂

∂ξ
λ ξ, zð Þ

λ ξ, zð Þ: (35)

The previous equation, Eq.(35), after substitution of Eqs. (27)–(29) reduces
considerably to the following for F3:

Figure 2.
Oxygen tension PO2 [mmHg] versus channel height in microns at axial distance z = mi = �7000 (at top)
through �7950 microns (bottom) in intervals of 95 microns for lower human hematocrit.
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F3 ξ, b0 zð Þð Þ ¼ �50 c� ξð Þξ2
� ��1�

12c� 7ξþ 25b0 zð Þξ2
ffiffiffi

25
p

� S1ξCM

d c� ξð Þ

� �4=5

2c� 2ξð Þ4=5
( )

:
(36)

The two forms of the solution for F3 (one being the coefficient of P simplified in
Eq. (25) and the other Eq. (36)) are equated to each other and compared:

� 1=50ð Þ 12c� 7 ξþ 25b00zM22=5ξ2 � 1 ξCM

d c� ξð Þ

� �4=5

2c� 2ξð Þ4=5 �1ð Þ1=5 CMð Þ�4=5

 !

�

c� ξð Þ�1
ξ�2 ¼ M

1 ξ

c� ξ

z 2þ 3Cð Þ þmi

2
� M

1 ξ

c� ξ

z 2þ 3Cð Þ
2

:

For z large mi=2 is dropped from the total expression. The ξ4=5 term is scaled
by multiplying by a factor of 4 to obtain ξ approximately (see Figure 3).

Here b00 ¼ 1=8ð Þ 2þ 3Cð Þ= 2 �S1ð Þ1=5
h i� �

b0 zð Þ ¼ b00z
M �S1ð Þ1=5

CMð Þ4=5
: (37)

Since z can be large downstream, even for some small 1, then the term 12c� 7ξ
drops out. This results in equality of the two forms of F3 presented. A final substitution

Figure 3.

ξ versus 4ξ4=5.
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for zwith a large number multiplied with itself maintains the equality (i.e., z ! αz, for
α large and positive). The solution is valid for z downstream, and we exclude the
interval 0,mi½ � in Figure 1with no inlet PO2 value specified as a boundary condition at
z ¼ 0 as this would give erroneous results in the upstream region.

The final form of the general solution to Eq. (25), downstream (defined on the

interval mi,mf


 �

in Figure 1) using Eq. (30) is

P r, zð Þ ¼ 2CMfN rð Þϵ� z 9Czþmið Þ=6C½ � � F�1
3 ξ, b0 zð Þð Þþ

2CMð Þ�1 π
2

4
� sin

π

2
K r, zð Þ þQ

� ��2
þ 1

3

� �

� 24=5

M1 r, zð Þ �

104z �S1ð Þ1=5 2þ 3Cð Þ=16C4=5
h i

M1=5 2CMð Þ�1 1

M1 r, zð Þg,

(38)

where

K r, zð Þ ¼ 0:29 c� dr2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� CMð Þ1 c� dr2
� �

� 2CMð Þ1 c� dr2
� �� �1=5

v

u

u

t , (39)

M1 r, zð Þ ¼ � 2CMð Þ1 c� dr2
� �

Þ
� �1=5

, (40)

N rð Þ ¼ c� dr2

r2
, (41)

Figure 4.

2CM versus 0:01040 ∗ 2CMð Þ9=5.
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C and Q are constants and ϵ ¼ �1ð Þ1=n, small, for n = 5, 4, 3, 2.
As an approximation, if we divide Eq. (26) by z, using Eq. (30), for large z

downstream in the channel, it can be seen that the following equation emerges:

∂
2

∂ξ2
λWð Þ þ F1 ξð Þ ∂

∂ξ
λWð Þ ¼ F2 ξð Þλ2W2 � F3 ξð Þ λWð Þ:

Now the z part appearing in λ is 1= 2CMð Þ1=5. Multiplying the equation above by

2CMð Þ6=5 will result in the left side of the equation to consist of two 2CM terms, and

the right-hand side of the equation to have two 2 CMð Þ9=5 terms where F3 ξð Þ has a
2CMð Þ4=5 term from Eq. (36). In Eq. (38) the sin π=2K rð ÞþQð Þ�2

M1 r, zð Þ term will oscillate to

zero as z approaches minus infinity.

A best line of fit can be made by scaling the term 2 CMð Þ9=5. Multiplying this by
approximately 0.01040 results in a best approximation as shown in Figure 4. This
allows us to cancel almost all z dependence in the equation except oscillating term
and get a homogeneous “almost” z-independent equation as in [7]. Hence, the PDE
of Eq. (26) can be reduced to an ode in ξ of similar form but homogeneous as z
approaches minus infinity.

6. Boundary and matching conditions at wall and core-plasma interface

We employ the Robin boundary condition Eq. (58) in Appendix and derivative
matching conditions at the interface of plasma and RBC core regions, respectively,
at z ¼ mi and z ¼ mf , shown in Figure 1, to determine constants Q and C as well as

two additional constants for linear solution in plasma layer. The solution to the
linear part of Eq. (13) defined in the plasma layer, i.e.,

vp
∂PO2 plasmað Þ

∂z
¼ Dp∇

2PO2 plasmað Þ, (42)

is

PO2 plasmað Þ ¼ CP1CylinderU 1=2c

ffiffiffiffiffiffiffiffiffiffiffi

� 1

Dp

s

1
ffiffiffi

d
p , r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4
1d

Dp

4

s !

þ

CP2CylinderV 1=2c

ffiffiffiffiffiffiffiffiffiffiffiffi

� 1

Dp

s

1
ffiffiffi

d
p , r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4
1d

Dp

4

s !

,

where CylinderU and CylinderV are parabolic cylinder functions and CP1 and
CP2 are constants to be determined. 1 is a separation constant for Eq. (42). The
following boundary matching condition is utilized at the interface of the plasma
layer (1 micron in height) and RBC core region (49 microns in height):

∂PO2 plasmað Þ
∂r

¼ ∂PO2 coreð Þ
∂r

, (43)

at z ¼ mi and z ¼ mf , respectively (see Figure 1). Four equations in four

unknowns were solved in Maple 18, where two constants are from each of the two
solutions in plasma and core regions, respectively. The total of eight constants was
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determined and is shown in Table 1 for low and high hematocrit. The value of Dp is
obtained from Table 1 in [6] and c ¼ 1250 and d ¼ 0:5. For high hematocrit as
shown in the Appendix, the solution incorporates different values of c and d. Also

we let 1 ¼ �0:911� 10�8 in the core region and 1 ¼ �0:211� 10�3 the in plasma
layer. Here there are two different separation constants for two different regions.

The fourth equation used was that the change in flux at the wall at the edge of

the plasma layer far downstream z< <mf

� �

is zero. In addition the no-flux condi-

tion shown in Figure 1 (i.e., impermeable membrane) at r ¼ 0 was satisfied exactly
for all z for the core region solution. This is the fifth boundary condition. There is no

inlet PO2 specified at z ¼ 0. The oxygen tension in core is PO2 coreð Þ ¼
33:07440049þ 3:63804058210�7P which is in the form of Eq. (22) and gives a PO2

of approximately 150 mmHg at r ¼ 0, z ¼ mi ¼ �7000 microns.

7. Weierstrass elliptic function

The Weierstrass P function is defined as

W Zð Þ ¼ 1

Z2 þ
X

w

1

Z �wð Þ2
� 1

w2
: (44)

As in [9], we consider the following expression:

η ¼ exp uπi=ωð Þ, (45)

and derive a function of η which behaves like the Weierstrass P function at η ¼ 0.
The development of η in the neighborhood of u ¼ 0 is

η ¼ 1þ uπi

ω
þ 1

2!

uπi

ω

� �2

þ … , (46)

or

η� 1 ¼ uπi

ω
1þ 1

2!

uπi

ω
þ 1

3!

uπi

ω

� �2
"

� (47)

Observe that the function

η� 1ð Þ2 ¼ � u2π2

ω2
1þ uπi

ω
þ 7

12

uπi

ω

� �2

þ …

" #

, (48)

is zero of the second order at all the points u ¼ 2μω μ ¼ 0, � 1, � 2, � 3, ::ð ).

Constants C Q CP1 CP2

High hematocrit = 0.45 �0.1009687192 6.261616672 �107 1.111333619 1.542724257

Low hematocrit t = 0.15 �0.09824747318 2063.831966 1.111333619 1.542724258

Table 1.
System of constants for associated system of four unknowns solved in maple.
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Consider a function J ηð Þ such that J ηð Þ 6¼ 0 for η ¼ 1, the function

J ηð Þ
η� 1ð Þ2

, (49)

is infinite of the second order for all values u ¼ 0 and u ¼ 2μω.
This behavior at these points is the same as the Weierstrass P function.
We write J ηð Þ ¼ aþ bηþ cη2 where a, b, c are constants.

Since η2 ¼ e
2uπi
ω , we have

J ηð Þ
η� 1ð Þ2

¼

aþ b 1þ uπi

ω
þ 1

2!

uπi

ω

� �2

þ …

" #

þ c 1þ 2uπi

ω
þ 1

2!

2uπi

ω

� �2
" #

� u2π2

ω2
1þ uπi

ω
þ 1

3

uπi

ω

� �2

þ …

" #

�ω2

π2

aþ b 1þ uπi

ω
þ 1

2

uπi

ω

� �2

þ …

 !

þ c 1þ 2uπi

ω
þ …

	 


" #

u2
1� uπi

ω
þ u2

	 


:

(50)

As in [9] the Weierstrass P function is shown to have the following degenerate
form which is used in Section 5:

J ηð Þ
η� 1ð Þ2

¼ π=2ωð Þ2 sin �2 uπ=2ωð Þ � 1=3

 �

: (51)

8. Results and discussion

The present work shows that near the inlet of the permeable membrane (see
Figure 1), there is a significant drop at the wall of the channel in PO2 as compared
to downstream values as shown in Figures 2 and 5. It is worthy to note that the
structure of the solution obtained in terms of degenerate Weierstrass P function
forms a near constant solution across the height of a micro-fluidic channel down-
stream at end of the membrane region. This is seen in both Figures 2 and 5, and in
Figure 5, the contours flatten out as the flow of blood proceeds far downstream.
The release of ATP has been shown to be caused by a change in oxygen saturation
[6]. It is concluded that there is a significant decrease in oxygen tension to the right

Figure 5.
Contour plot for channel from z0 ¼ �7000 to z ¼ �7900 microns. Vertical axis is r variation across the
channel. Horizontal axis is z variation.
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of the permeable membrane downstream. It is in this region that there is a signifi-
cant concentration of ATP released. It is important to mention that a rapid decrease
in oxygen saturation is one means to produce ATP; it is also accomplished by means
of applying shear stress on the RBC as shown in [12].

9. Conclusion

A well-known governing nonlinear PDE used to model oxygen transport was
formulated in a recent paper in a generalized coordinate system where the
Laplacian is expressed in metric tensor form. A reduction of the PDE to simpler
problem subject to specific integrability conditions was shown there. A reduced
almost linear ode was derived, and in the present paper, a solution has been
obtained using a well-known factorization method for the second-order ode where
a compatibility equation has been used in equating it to a specific form of the
original differential equation. Approximate oxygen tension profiles have been
determined downstream in a micro-channel in the vicinity of a permeable mem-
brane with an oxygen supply on the other side of the membrane. Although it is
expected that ATP will be released as blood flows past the permeable membrane
downstream, it has been shown mathematically that this is the case and increases in
hematocrit produce more ATP. Future work remains to apply tensor equations for a
moving arterial surface as generalized at the start of the present work.
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Appendix

A.1 Cell free

For cell-free region as shown in Figure 1, we have that

vp
∂PO2

∂z
¼ Dp∇

2PO2, (52)

where vp is the velocity of plasma, given at the end of the Appendix.

A.2 Core region

In this case there is a central core region where oxygen dissociates to form HbO2.

Therefore, the velocity in core region, i.e., vℓO2 ¼ f vp qi
� �

, dSO2

dPO2

� �

.

The model consists of the following partial differential equation:

vp 1�HTð Þ þ vRBCHT
KRBC

Kp
1þ HbT½ �

KRBC

dSO2

dPO2

� �	 


∂PO2

∂z
¼ Dp∇

2PO2: (53)
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A.3 Boundary conditions

The boundary conditions are defined as follows:

PO2 r,mið Þ ¼ PO2ð Þi, r∈ 0, hð Þ, (54)

1.Pre-membrane

∂PO2

∂r

�

�

�

�

r¼h

¼ 0, z∈ 0,mið Þ: (55)

2.Bottom of membrane region

∂PO2

∂r

�

�

�

�

r¼0

¼ 0, z∈ 0,Lð Þ: (56)

3.Post-membrane

∂PO2

∂r

�

�

�

�

r¼h

¼ 0, z∈ mf ,L
� �

: (57)

The only region not covered by the above three flux equations is the region of
PO2 occupying z∈ mi,mf

� �

at r ¼ h the membrane. This region is governed by a

Robin condition specified in [8].

Figure 6.
Oxygen tension PO2 versus channel height in microns at axial distance z ¼ mi = �7000 (at top) through z ¼
mf = �7700 microns (at the bottom) for higher human hematocrit in intervals of approximately 95 microns.
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The boundary condition is

∂PO2

∂r

�

�

�

�

r¼h

¼ DmKm

DpKp

PO2ð Þo � PO2 h, zð Þ
τ

� �

, z∈ mi,mf

� �

, (58)

where PO2ð Þo is the PO2 level on the other side of the membrane.
All of these conditions act on the entire system, and constants appearing are

found in Table 1 in [6].

A.4 Velocity profile function

The following velocity profile is used in channel:

vp x̂ð Þ ¼ 3 130ð Þ � 106

4w h3 þ μp=μc

� �

y3i

� �

h2 � x̂2
� �

, yi ≤ ∣x̂∣ ≤ h

h2 � y2i
� �

þ μp=μc y2i � x̂2
� �

0≤ ∣x̂∣ ≤ yi

(

(59)

Relative apparent viscosity, μp=μc � 1, for low discharge hematocrit. The previ-

ous results (Figures 2 and 5) were based on this data. Figure 6 is based on a
discharge hematocrit of approximately 40% higher with relative apparent viscosity
equal to 1.7. It is apparent from the graph that in comparison to Figure 2 with lower
discharge hematocrit that there is an increase in the drop of PO2 profiles down-
stream with a resulting higher production of ATP.
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