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Chapter

Cyclodextrin Nanosponges: 
A Promising Approach for 
Modulating Drug Delivery
Sunil Kumar, Pooja Dalal and Rekha Rao

Abstract

Nanotechnology showed great promise and impact on administration of 
therapeutic agents owing to its advantages over contemporary delivery systems. 
Nanoscale carriers like nanosponges represent a novel category of hyper cross-
linked polymer structures with nanosized cavities which can be filled with variety 
of active moieties (hydrophilic as well as hydrophobic). These nanocarriers can 
circulate around the body until they found the specific target site and adhere on the 
surface and release the active moiety in a predictable and controlled manner, result-
ing in more effective delivery of a given dosage. Nanosponge technology helps to 
reduce drug associated side effects, improve stability, increase elegance and improve 
the flexibility of formulations, administered orally, parenterally and topically. 
Among nanosponges, cyclodextrin-based nanosponges (CDNS) are smart versatile 
carriers studied widely for drug delivery applications. Statistically, it have presented 
that approximately 40% of active moieties marketed currently and about 90% of 
active moieties in their preliminary phase confront problems regarding to solubil-
ity. In the past decade, the number of studies describing CDNS has dramatically 
increased. In the present chapter, scientists working in arena of nanotechnology can 
get an idea of fabrication, characterization and therapeutic utilities of nanosponges.

Keywords: drug targeting, solubility enhancement, porosity, nanocarrier,  
controlled release

1. Introduction

The development of new active moiety is very expensive and time consuming. 
Currently, it is estimated the bringing a new portion of active moiety through dis-
covery, development, clinical trials and regulatory approval will take a decade and 
cost approximately $120 million. Therefore, an attempt has been made to improve 
the safety efficacy relationship of established drugs using a variety of methods, such 
as individualized drug therapy, therapeutic drug monitoring and dose titration. The 
delivery of active moieties at controlled rate and targeted delivery have attracted 
the attention of research community and hence, pursued vigorously [1–4]. Further, 
effective and safe delivery of therapeutic drug molecules has always posed challenge 
for formulation scientists. For this purpose, numerous nanocarriers have been fabri-
cated and explored. Nanoformulations are highly multifunctional delivery systems 
possessing a range of applications such as enhanced solubility, stability, specific 
targeting, on-demand release and degradation within suitable period of time [5]. 



Colloid Science in Pharmaceutical Nanotechnology

2

Nanoformulations and nanoparticles have already been applied as carriers of active 
moieties with great success; and they have an even greater potential for many appli-
cations, like gene therapy, anti-tumor therapy, radiotherapy and AIDS therapy, in 
the delivery of virostatics, antibiotics, proteins and vaccines [6]. Among the various 
novel forms of drug delivery nanovehicle, colloidal systems like nanosponges have 
emerged as promising and potential carrier for promising drug delivery of tough 
molecules in the past few decades [5] because other novel carrier systems have their 
own drawbacks enlisted in Table 1.

Nanosponges are a new class of structures based on hyper reticulated poly-
mers that have cavities in the nanorange [7, 8]. Nanosponge technology offers 
pay load of active moieties and thought to help in reducing side effects, increase 
elegance, improve formulation flexibility and stability. These are non-mutagenic, 
non-irritating, non-toxic and non-allergenic. In comparison with other nano-
structres, NS are insoluble in organic solvents and water. NS are non-toxic, 
porous, biodegradable and highly stable (up to 300°C) [9]. These nanostructures 
are able to transport both hydrophilic and lipophilic moieties and improve the 
solubilization efficacy of drugs. Nanosponge based drug delivery system is used 
to improve the performance of drugs administered orally, parenterally, pulmo-
nary and topically [10]. Many active moieties with different pharmacological 
activities, structures and solubility have been encapsulated in NSs, including 
camptothecin, paclitaxel, doxorubicin, dexamethasone, 5-fluorouracil, itracon-
azole, nelfinavir mesylate, progesterone, tamoxifen and resveratrol [11]. Further, 
we acknowledge some excellent reviews that have been published earlier on 
nanosponges [8, 12–15]. Some of the well-known nanosponges are titanium based 
NS, silicon NS and cyclodextrin NS [16]. Nanosponges possess various attractive 
features [17] like

• Can be employed to mask unpleasant flavors and to turn liquid substances to 
solids

• Targeted site specific drug delivery.

• Being suitable aqueous solubility, the hydrophobic drugs can be encapsulated 
in these, after mixing with cross-linker.

• Less harmful side effects (since small amount of the active moiety is in contact 
with healthy tissue).

• Particle size can be varied by using different proportion of cross-linker to 
polymer.

• Easy to scale-up.

• Simple method production

• The drug profile can be tailored from fast, medium to slow release as per need.

• Gives predictable release.

Despite of these advantages, nanosponges have some limitations also. Only small 
molecules can be entrapped which depend on loading capacities [18]. Cyclodextrin 
nanosponges can be categorized into four successive generations, on the basis their 
chemical configuration and features (Table 2).
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2. Architecture of nanosponges

Typically, nanosponges have been constructed from cyclodextrin cross-linked 
with organic carbonates. Nanosponges mainly comprise of three components- poly-
mer cross linking agent and drug moiety [44].

Nature and type of polymer used can impact the formulation and the perfor-
mance of NS. The selection of polymer relies on the nature of drug and purpose 
for which drug is encapsulated. For drug targeting the polymer should possess 

Generation Category Sub category References

First Plain nanosponges Cyclodextrin-based urethane nanosponges 
ether nanosponges, cyclodextrin-based 
carbonate nanosponges, ester nanosponges

[33–36]

Second Modified 
nanosponges

Fluorescent carbonate nanosponges, 
fluorescent carboxylated nanosponges, 
electrically charged CD-NSs, hydrophobic NSs

[37, 38]

Thirrd Stimuli nanosponges pH responsive cross-linked CD based 
hydrogels, glutathione-responsive NSs, 
aminocyclodextrin nanosponges

[39–41]

Fourth Molecularly 
imprinted 
nanosponges

Molecularly imprinted polymers based CD 
nanosponges

[42, 43]

Table 2. 
Evolution of cyclodextrin based nanosponges.

S. No. Novel drug 

carrier systems

Limitations References

1 Microspheres Premature release of active molecules, deficient 
entrapment of active molecules, Expeditiously taken 
up by reticular endothelial system (RES)

[19]

2 Liposphere Weak loading capacity, limited chemical and physical 
stability during storage, rapid drug leakage,

[20]

3 Polymeric 
Nanoparticle

Challenging large-scale up, polymer toxicity, [21, 22]

4 Solid lipid 
Nanoparticle

Insufficient stability and reproducibility, problematic 
sterilization, low payload

[23]

5 Nanolipid Carriers Sterilization difficulties [23, 24]

6 Micelle Not good for hydrophilic drugs [25]

7 Dendrimers Polymer dependent biocompatibility [26]

8 Liposome Weak load capacity, poor chemical and physical 
stability on storage, rapid drug leakage,

[20, 27]

9 Niosome Less skin penetration [28]

10 Transferosome Chemically unstable, very expensive [29]

11 Sphingosome Low entrapment efficacy, high cost of sphingolipids [30]

12 Ethosome Poor yield [31]

13 Phytosomes Low stability [32]

Table 1. 
Novel drug carrier systems with their limitations.
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the capacity to bind with specific ligands. The capacity of the polymer to be cross-
linked depends on its active and functional groups to be substituted [44]. Polymers 
used for architecting the NS are include polyvinyl alcohol (PVA), ethyl cellulose, 
polymethylmethacrylate, hyper connected polystyrenes, cyclodextrins and their 
derivatives like methyl beta cyclodextrins, alkyloxycarbonylcyclodextrins [45]. 
Among these, cyclodextrins (CDs) have been the most popularly employed for 
fabrication of nanosponges. These cone-shaped truncated cyclic oligosaccharides 
are comprised of glucopyranose units aligned around the hydrophobic cavity that 
may lodge guest moieties owing to inclusion complexes formation [46]. The basic 
physicochemical features of CD have been discovered in the early 1950s and since 
then they have been applied to improve the pharmaceutical and physicochemi-
cal properties, like stability, solubility and bioavailability of active moieties [47]. 
Conventionally, these nanosponges have been applied for decontamination of water 
[48]. However, nowadays they have been investigated and employed as nanocarriers 
for drug delivery in the field of pharmaceuticals.

Cyclodextrin complexes prepared with biocompatible hydrophilic polymers 
have been reported to enhance the solubility of encapsulated categories in aqueous 
media. Recently, it has been described that, by reacting cyclodextrins with cross-
linkers, a new hyper-crosslinked nanostructured material can be obtained; these are 
termed as nanosponges [49].

Selection of crosslinker depends on the structure of polymer employed and 
active moiety to be incorporated [44]. Efficient crosslinkers help to transform 
molecular nanocavities into three-dimensional nanoporous products. By varying 
the degree of crosslinking, either hydrophobic or hydrophilic matrix can be formu-
lated and possesses ability to entrap targeted moieties. By taking epichlorohydrin 
as a crosslinker, hydrophilic nanosponges can be developed, which can modify the 
amount of active moiety release, increase the absorption of active moiety through 
biological barriers and act as a potential system for immediate release formula-
tions. Other cross-linking agents, like pyromellitic anhydride, diphenyl carbonate, 
diisocyanates, diarylcarbonates, glutarldehyde, carbonyldiimidazoles, 2,2- 
bis(acrylamido) acetic acid and carboxylic acid dianhydrides result in hydrophobic 
nanosponges [16, 50].

3. Engineering of cyclodextrin based nanosponges

Nanosponges are synthesized depending on type of delivery system, polymer 
and nature of drug and solvents [14]. Various approaches used for formation of 
nanosponges are (Table 3).

3.1 Techniques for synthesis of cyclodextrin based nanosponges

Several techniques have been reported for synthesis of nanosponges, however 
melt method and solvent evaporation techniques have been widely reported in 
literature for preparation of these porous colloidal nanostructures (Figure 1).

An account of various methods that have been proposed is presented below:

3.1.1 Melt method

In brief way, the cross-linking agent is melted with CD and all components are 
homogenized and heated at 100°C with stirring magnetically for 5 hrs. Then, above 
matrix is allowed to cool. Frequent bathing is done to eliminate by-products and 
unreacted components [47].
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Types of nanosponge Crosslinkers Example of crosslinkers Method Encapsulated drugs References

Cyclodextrin carbonate 
nanosponges

Carbonyl 
cross-linkers

Diphenyl carbonate, Carbonyl 
diimidazole, Dimethyl carbonate

Solvent extraction, 
Thermal 
desorption

L-DOPA, erlotinib, quercetin, telmisartan, 
curcumin, reservertol, tamoxifen, paclitaxel, 
Itraconazole, Camptothecin,

[43, 51–59]

Cyclodextrin carbomate 
nanosponges

Diisocyanate 
cross-linkers

Hexamethylene diisocyanate and 
Toluene diisocyanate

Solvent method Dextromethorphan, Steroids, Dyes and Naringin [60–63]

Cyclodextrin anhydride 
nanosponges

Anhydride 
cross-linkers

Pyromellitic dianhydride, 
Ethylenediaminetetraacetic acid 
dianhydride

Solvent method Ibuprofen, doxorubicin, meloxicam, acetylsalicylic 
acid and strigolactones

[36, 39, 
64–66]

Epichlorohydrin 
cyclodextrin 
nanosponges

Epichlorohydrin 
cross linkers

Epichlorohydrin Solvent method Creatinine, cilazapril captopril and enalapril [67, 68]

Table 3. 
Engineering of cyclodextrin based nanosponges.
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3.1.2 Solvent evaporation technique

In solvent evaporation method, the fusion step is avoided and solvents like 
dimethylsulfoxide (DMSO) or dimethylformamide (DMF) are employed to solubi-
lize the cross-linking agent. Polymer is mixed with solvent (polar aprotic) and the 
mixture obtained is put in solution of cross-linker and refluxed for 1–48 hrs. By add-
ing cold solution to a large surplus of distilled water, the product is achieved. Finally, 
filtration is done to recover of the final product and is purified using Soxhlet extrac-
tion for prolonged periods. The product achieved is spherical and solid nanostruc-
tures with high water solubility either by non-inclusion or inclusion mechanism. The 
size of NS can be reduced by high pressure homogenization where water suspension 
of prepared nanosponges is homogenized at constant speed for 10 min [48, 49, 69].

3.1.3 Ultrasound-assisted synthesis

In ultrasound-assisted fabrication, in first, cyclodextrins are reacted with cross-
linking agents under ultrasound without solvents. Anhydrous β-CD and DPC are 
taken in a vial and put in an ultrasound bath, pre-filled with water (at 90°C) and 
sonicated for 5 hrs. Furthermore, crystallization and purification steps are same as 
in solvent evaporation and melt technique [70].

3.1.4 Microwave assisted synthesis

It is the simplest method for synthesizing of CDNS using microwave irradia-
tion, remarkably retards the reaction time. The resultant NS possess higher degree 
of crystallization. In comparison to common melt method, microwave assisted 
fabrication had exhibited four time reduction in reaction time. The process led to 
production of particle homogeneous distribution and crystallinity [52].

Figure 1. 
Various techniques for fabrication of nanosponges.
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3.2 Drug loading into blank NS

Crystal structure of the active moiety acts as one of the important criteria that 
determine its complex efficiency with CD and nanosponges. Paracrystalline and 
crystalline NS vary in the drug loading capacities. When compared, crystalline NS 
result in higher drug pay load the paracrystalline NS [47, 58, 71]. The porous cross-
linked blank NS have numerous interactive sites for inclusion of drug moieties than 
parent CD. Further, these possess numerous mesh polarities owing to hydrophobic 
channels of CD which are enclosed by hydrophilic nanocavities of the polymeric 
matrix, allowing for large interactions with guests of variable lipophilicities and 
structures [72]. The resultant polymeric network of NS may be responsible for 
NS protection and solubilization compared to original CD as shown in Figure 2 
[58, 71]. The active moieties are entrapped into nanopores of blank nanosponges 
by dispersing them within drug dispersion and consequently freeze drying. The 
solvent evaporation is one another method reported for loading active moieties 
into NS using organic solvents suitable for dissolving the active moiety. Finally, NS 
are added to the prepared active moiety dispersion and triturated until the solvent 
evaporates [47, 73, 74].

4. Analytical techniques to characterize nanosponges

4.1 Spectroscopic techniques

Spectroscopic analytical tools represent a complementary tool to evaluate nano-
sponges. The variation in properties such as fluorescence intensity, wave number, 
absorbance and NMR shift of NS can be investigated by different spectroscopic 
analytical tools.

4.1.1 Ultraviolet: Visible spectrophotometry

To analyze NS in solution (liquid medium), UV–Visible spectrophotometry is 
a fast, simple, valuable and economic tool. The solubilization efficacy of various 
molecules such as telmisartan (296 nm) [53], acetyl salicyclic acid (234 nm) [65], 
resveratrol (303 nm) [55], repaglinide (283 nm) [75], quercetin (372 nm) [76] and 
efavirenz (286 nm) [73] entrapped in NS have been analyzed using this tool.

Anandam and Selvamuthukumar checked payload, stability assay in simulated 
intestinal fluid, in vitro release, metal chelating and photostability investigation for 
quercetin NS via this spectrophotometeric tool (λmax 372 nm) [76].

Figure 2. 
Schematic representation of engineering of cyclodextrin based nanosponges.
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4.1.2 Fourier-transform infrared spectroscopy

It is major employed technique for characterization of nanosponges. In general, 
measurements of FTIR absorption are carried out on dry samples, in the range 
400–4000 cm−1 [77]. In case of nanosponges, during the reticulation (cross link-
ing), the vibrational modes of cross-linkers, polymers and moieties are displayed 
from parent positions, broadening or disappearance of the prominent peaks of the 
molecule, polymer and cross-linkers [78, 79].

In FTIR spectra of the placebo NS, bands that varies from 1700 to 1750 cm−1 evi-
dences the carbonate bond. Although, the parent polymer for NS fabrication, β-CD 
does not show peak at 1750 cm−1 in FTIR spectrum [76]. Cavalli and his colleagues 
explored the occurrence of carbonate bond (1700 cm−1) in NS [80].

4.1.3 Raman spectroscopy (RS)

Nowadays, it is suggested as a useful analytical tool to study drug entrapment 
in NS [81]. Not only this, it can be employed together with FTIR to provide a 
better image to investigate interactions of active moiety and NS. Swaminathan 
and his colleagues performed RS to investigate dexamethasone and nanosponge 
interaction. On complexation with nanosponges, the prominent bands of the 
dexamethasone at 1620, 1480, 1440, 950 and 680 cm−1 in Raman spectra of the 
active moiety were substantially masked or displaced, advocating the inclusion 
phenomenon [82].

4.1.4 Nuclear magnetic resonance

It is based on the principle of radiofrequency radiation absorption by atomic 
nuclei having non zero spins in a high magnetic field [83]. Olteanu and co-workers 
performed the physicochemical characterization of NS using 1H-NMR. High 
alteration in the chemical shift (0.47–0.24 ppm) of repaglinide A ring protons was 
observed. It was envisioned that inclusion in hydrophobic pores of CD and steric 
hinderance owing to CD substitution, have been considered responsible for interac-
tion phenomenon [75].

4.2 Differential scanning calorimetry

It is a thermoanalytical technique to measure the change in physical or 
chemical properties of nanostructures and their fabricating materials owing to 
alteration in temperature. In general, thermal processes (both exothermic and 
endothermic) are evidenced by the peak direction [84]. This tool explored the 
exothermic and endothermic processes at the temperature range from −120 to 
600°C [85–88]. The thermal behavior of the various drugs (dexamethasone, 
furbiprofen, doxorubicin [80], Itraconazole [59], camptothecin [58], resverarol 
[55], amino salicylic acid [65], gamma-oryzanol [89], telmisartan [53], curcumin 
[54], acyclovir [37], quercetin [76] and meloxicam [64]) entrapped in the NS was 
examined by DSC.

The complete disappearance of the therapeutic molecule fusion peak in graph 
of the NS complex is commonly considered as a confirmatory evidence of the 
encapsulation of therapeutic molecule within the NS cavity [90]. This may be due 
to conversion of the crystalline nature to amorphous ones [91]. Other evidence for 
confirming NS fabrication reported by research scientists include alterations in 
temperature peak and shape of cyclodextrins, alongwith disappearance of active 
moiety fusion peak and appearance of new peaks [92].
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4.3 Thermogravimetric analysis

Thermogravimetric analysis (TGA) is crucial for supply of fundamental data for 
NS characterization. Due to its very simplicity, relative reliability and rapidity, TGA 
is widespread approach to solid-state characterization of nanosponges.

TGA chart of dexamethasone, quercetin, silibinin, apple polyphenols NS have 
been explored. In drug loaded NS thermograms, endotherms of the pure drug 
disappeared fully, evidencing the potential encapsulation of these molecules in 
nanostructures [82, 93, 94].

4.4 X-ray diffraction techniques

It gives detailed information on phases, texture, structures and other structural 
parameters (crystallinity, crystal defects and deformation) [95]. Unlikely thermal 
techniques, sample does not suffer any physical or chemical changes during analy-
sis. Furthermore, XRPD studies can support the results of thermal methods. The 
complete amorphization of the sample in DSC analysis, can be validated by this 
technique.

Crystalline and paracrystalline nature of NS and porosity can be revealed using 
this technique. A number of molecules (acetyl salicylic acid [65], camptothecin 
[58], telmisartan [53], resveratrol [55], acyclovir [37], quercetin [76], meloxicam 
[64], curcumin [54], and dexamethasone [82]) encapsulated in nanosponges have 
been evaluated using this technique.

4.5 Microscopic techniques

Microscopy can be used as an imaging analytical technique for qualitative analy-
sis of NS with respect to their aggregation, size and shape. This section provides 
information on the microscopic methods like AFM, SEM, TEM, and CLSM that are 
properly used for NS characterization [96].

Scanning electron microscopy is used for observation of surface processes and 
is capable of obtaining images of bulky samples with a greater depth. It is also 
employed in solid state evaluation of nanosponges [97]. The topographic changes 
(related to the interactions of the polymer, active moiety and cross-linking agent) 
are provided [98]. Various pharmacological active molecules like resveratrol [55], 
telmisartan [53], dexamethasone [82], and meloxicam [64] have been explored 
microscopically using SEM.

A nanoscale imaging tool, TEM is used to visualize and characterize various 
types of nanoparticles [99, 100]. It is relatively expensive and slow technique. 
Surface morphology via TEM has also been performed for several NS such as 
ibuprofen [36], quercetin [76], acyclovir [37], paclitaxel [57], dexamethasone [82], 
camptothecin [58], resveratrol [55], acetyl salicylic acid [65].

Recently developed microscopic technique with high resolution, atomic force 
microscopy (AFM) is used for viewing atoms and molecules [101]. AFM has been 
applied to image the molecular nature of β-CDNS in the distilled water and to 
investigate their mechanical properties. The paracrystalline NS presented spheri-
cal colloidal structures (nearly 600 nm), whereas the crystalline NS presented the 
spectacular crystal planes (nearby 500 nm) [82].

Confocal laser scanning microscopy (CLSM) is recently emerging tool to 
improve the optical contrast and resolution of sample graph [102]. Lembo and his 
co-workers examined carboxylated NS loaded with acyclovir for cellular uptake 
of nanopreparation through CLSM. For this, fluorescent carboxylated NS were 
prepared [37].
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4.6 Measurement of zeta potential

The zeta potential (ZP) is employed to measure the electrokinetic potential of 
nanomedicines. Simply, it is used for quantifying the charge [103]. To investigate 
the charge on the nanostructures, ZP must be carried out by suspending them in 
distilled water or suspension medium [104]. CDNS have been evaluated via the 
electrophoretic light scattering technique [53, 80, 105]. In practice, ZP predicts 
surface charge and colloidal stability of nanomaterials.

5. Nanosponges in drug delivery

Owing to their versatile, biocompatible and nanoporous nature, nanosponges 
have variety of applications in pharmaceuticals, cosmetics, agriculture, environ-
ment, food and polymer industry [55, 80, 106–108]. Among these, they have been 
predominantly studied for drug delivery. Numerous active molecules including 
lipophilic and hydrophilic actives and volatile oils can be conventionally entrapped 
in these multifaceted nanostructures for solubility and stability enhancement and 
for controlled delivery [7]. Hence, these novel carriers have attracted much interest 
of formulation scientists as they hold promise in addressing other challenges like 
poor bioavailability, permeation and therapeutic activity [69]. Cyclodextrin nano-
sponges have also been explored for drug delivery and drug targeting for cancer 
management [40, 109, 110]. In the following sections, information regarding their 
applications in pharmaceutical field has been summarized (Table 4).

Drug candidate Category Route of 

administration

Remarks References

Dexamethasone Anti-inflammatory Oral, Parenteral Improved aqueous 
solubility

[80, 82]

Flurbiprofen Anti-inflammatory Oral Improved aqueous 
solubility

[80]

Doxorubicin Antineoplastic Parenteral Enhanced aqueous 
solubility

[80]

Itraconazole Antifungal Oral, Topical Improved solubilization 
efficiency

[59]

Tamoxifen Antiestrogen Oral Enhanced 
pharmacokinetic activity 
of drug

[56]

Resveratrol Antioxidant Oral, Topical Enhanced permeation, 
stability and cytotoxicity 
against HCPC-1 cells

[55]

Paclitaxel Antineoplastic Parenteral In vitro enhancement of 
anticancer activity

[57, 111]

Camptothecin Antineoplastic Parenteral Inhibits the adhesion and 
migration of tumor cells

[58]

Curcumin Anti-cancer Oral Higher solubilization 
potential

[54, 112]

Acetylsalicylic acid Analgesic Oral Controlled release [65]

Acyclovir Antiviral Oral, topical, 
parenteral

Enhanced antiviral 
activity against HSV-1 
(clinical isolates)

[37]
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Drug candidate Category Route of 

administration

Remarks References

Gamma-oryzanol Antioxidant Topical Improved antioxidant 
potential and 
photostability

[89]

Repaglinide Hypoglycemic 
agent

Oral Solubility enhancement [75]

Apple  
polyphenols 
(Rutin, phloridzin 
and chlorogenic 
acid)

Antioxidant 
antiaging and 
anti-inflammatroy

Topical High degree of retention 
and protection

[93]

Telmisartan Antihypertensive Oral Improved intrinsic 
solubility and 
bioavailability

[53]

Efavirenz Anti HIV Oral Bioavailability 
enhancement

[73]

Lansoprazole Antiulcer Oral Prolonged drug release [113]

Tamoxifen and 
quercetin

Anti-cancer — Dual drug delivery [114]

Lysozyme Antihypcaalcemic Oral Inhibit depletion 
of calcium in 
antibiotic associated 
hypocalcemic  
condition

[105]

Meloxicam Anti-
inflammatory and 
analgesic

Oral Controlled release [64]

Quercetin Antioxidant — Enhanced 
photostability and 
anti-oxidant activity; 
Improved dissolution 
profile

[76]

Tazarotene Anti acne topical Improved bioavailability 
and skin retention of 
drug

[115]

Levodopa Anti Parkinson’s 
disease

Oral Prolonged release of 
drug

[43]

N,N Diethyl-Meta-
Toluamide

Insect Repellent Topical Prolong the persistence [116]

Atorvastatin 
Calcium

Anti-
hyperlipidemic

Oral Bioavailability 
enhancement

[117]

Rosuvastatin Anti-
hyperlipidemic

Oral Bioavailability 
enhancement

[118]

Strigolactones Anti-cancer — Targeted delivery to 
prostate cancer cells

[66]

Salvia officinalis 
essential oil

Hypoglycemic 
activity

Oral Enhancement of stability 
and hypoglycemic 
activity

[119]

Rilpinavir Anti-retroviral Oral Increased in 
Bioavailability

[74]

Norfloxacin fluoroquinolone 
antibiotic

Oral Enhancement in 
intestinal permeation 
and antibacterial  
activity

[120]
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5.1 Improved stability

Cyclodextrin nanosponges can prevent degradation of drug molecules which 
are susceptible to degradation when exposed to water, oxygen (air), heat or radia-
tion. Such interactions are being widely studied in nanosponges. The nanosponges 
safeguard the drug molecules from oxidation, hydrolysis, racemization, polym-
erization and enzyme hydrolysis [126, 127]. A number of molecules including 
L-DOPA, resveratrol, camptothecin and γ-oryzanol and have been encapsulated in 
nanosponges are reported for stability enhancement and reported [43, 55, 58, 89]. 
Anandam and Selvamuthukumar found that phototability of anti-oxidant drug 
quercetin increased on incorporating into nanosponges. The main hindrance in its 
utility is its photodegradation. In addition, dissolution rate of the biomolecule was 
also remarkably enhanced in quercetin nanosponges.

5.2 Enhanced solubility

Poor solubility of BCS (Biopharmaceutical Classification System) class II drugs 
possesses a challenge in their formulation. However, these drugs can be successfully 
incorporated into cyclodextrin nanosponges with better efficacy. These nanocarriers 
improve their aqueous solubility via formation of inclusion complexes by enhancing 
their wetting and solubility in water. The drug dissolution enhancement conse-
quently enhances their bioavailability. Curcumin is a upcoming herbal active drug 
having potential for treatment of various fatal diseases including cancer. Though, 
it has higher efficacy and safety profile, its poor solubility and low bioavailability 
limit its therapeutic application. Darandale and Vavia fabricated cyclodextrin based 
nanosponges of curcumin to increase solubility and control its release. These nano-
sponges were obtained using dimethyl carbonate as linking agent. The prepared 
nanoformulation showed enhanced solubility, prolonged drug release and reduced 
cytotoxicity against MCF-7 cells. Besides this, other drug moieties which have been 
successfully encapsulated in cyclodextrin nanosponges for improved dissolution 
include doxorubicin [80], itraconazole [59], flurbiprofen, dexamethasone [80], 
telmisartan [53], tamoxifen [56], repaglinide [75] and paclitaxel [111].

5.3 Reduction in volatility of essential oil and material handling benefits

Nanosponges have been reported to protect volatile oils against lost by evapora-
tion. These nanosponges can have resulted in long lasting effect due to slow release 

Drug candidate Category Route of 

administration

Remarks References

Ellagic acid Antioxidant, 
Anticancer

Oral Enhancement in oral 
bioavailability

[121]

Doxirubicin Anti-cancer Oral Site specific drug 
delivery

[122]

Babchi oil Anti-psoriatic Topical Enhanced 
photostability, solubility 
and anti psoriatic 
efficacy

[123, 124]

Imiquimod Anti-cancer Toipcal Enhanced skin retention 
and permeation

[125]

Table 4. 
Active molecules encapsulated in cyclodextrin based nanosponges.
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of chief volatile components of oils [72]. Further, volatile oil liquids (at room 
temperature) can be difficult to handle and hence needed to be formulate into 
stable solid formulations. Nanosponges may help to convert these substances into 
amorphous or microcrystalline powders which are convenient to handle [49].

5.4 Modulated drug release

Judicious loading of therapeutic actives into nanosponges ensures a tailored 
drug release. Developing controlled drug delivery systems is the topic of interest for 
research community while maintaining therapeutic effectiveness of drug. Employing 
these nanocarriers ensures optimal drug use with improved patient compliance 
owing to reduced frequency of administration. Nanosponges showed strong potential 
for providing sustained drug release in a controlled fashion. Shende et al., prepared 
meloxicam loaded cyclodextrin nanosponges to enhance solubility and stability and 
to prolong its release. In vitro and in vivo results demonstrated controlled release of 
meloxicam from the nanocarrier for 24 hrs. It was discussed that slow release of drug 
might have been due to large degree of cross linking that permitted the entrapment of 
drug as inclusion complex in the nanosponges. Decrease in crystallinity and enhance-
ment in solubility also led to improve in vitro release behavior [64].

5.5 Drug targeting

Besides enhancing effectiveness of drug, drug targeting also helps in reducing 
its adverse effects on healthy cells. By using nanosponges for drug delivery, drug is 
released at the specific site preventing its circulation throughout the body. A limited 
number of research papers were found on drug targeting using nanosponges. Harth 
and Diaz have widely explored nanosponges for targeted drug delivery. Polyester 
nanosponges were fabricated using special chemical “linkers” for delivery of 
anti-cancer drugs. These linkers ensure that nanosponge bound selectively to tumor 
cells, on injection. These nanosponges stick to the surface of tumor cells and release 
the drug in a controlled fashion [128].

5.6 Oral drug delivery

Oral drug delivery has been well-established route of administration having high 
patient compliance. However, delivery of molecules via this route poses challenges 
owing to poor solubility, presystemic activation and inefficient intestinal perme-
ability. Cyclodextrin based nanosponges have emerged as potential carriers for oral 
delivery without any compromise on safety issues. An excellent mini review on 
cyclodextrin nanosystems for oral delivery of drugs have been recently published by 
Adeoye and Cabral-Marques [129].

Zidan et al., have developed atorvastatin calcium for oral drug delivery by 
encapsulating it in β- cyclodextrin nanosponges cross linked with carbonyldiimid-
azole. The prepared nanosponges were found to increase bioavailability of drug up 
to 2.13-folds in comparison to its suspension. In addition, pharmacokinetic studies 
revealed remarkable decrease in total cholesterol, LDL-C (Low Density Lipoprotein 
Cholesterol) and triglyceride and improved level of HDL-C (High Density 
Lipoprotein Cholesterol) leading to improvement of liver steatosis [117].

5.7 Topical drug delivery

Nanosponges can also be incorporated in cream and gels for topical delivery 
of drugs. Although least explored, nanosponges may prove very promising 
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for treatment of skin disorders via this route. Besides drug targeting nano-
sponges also improved drug delivery from topical gel, if entrapped successfully. 
Nanosponges for topical delivery of drugs have been mentioned for resveratrol, 
γ-oryzanol, diclofenac sodium and babchi oil in literature [55, 89, 106, 124]. In 
addition, this nanoformulation also helps to alleviate local irritation problem 
associated with topical drugs. Conte et al., developed cyclodextrin nanosponges 
with pyromellitic dianhydride as cross linker and loaded them in semi-solid 
formulations for skin delivery. Skin permeation studies in diclofenac sodium 
loaded nanosponge gel and cream gels significantly retarded the drug permeation 
through skin while enhancing its concentration in viable epidermis and stratum 
corneum, confirming the localization of highly penetrating drugs in external 
layers of skin [11].

5.8 Pulmonary drug delivery

The pulmonary route is an alternative option to parenteral drug delivery, 
however, for delivery via this route, the drug must be in the form of aerosol. The 
nanosponges possess the advantage of reduced interparticle attraction forces and 
better flow characteristics. Further, they possess low bulk density and small narrow 
dynamic diameter resulting in their greater deposition in lower pulmonary area. For 
pulmonary delivery, nanosponges of sodium cromoglicate, budesinide, bendroflu-
methazide using sugar excipients like trehalose and raffinose have been reported 
[130–133].

Additionally, nanosponges have also been used for protein encapsulation, 
enzyme immobilization and stabilization. The enzymes like isomerase, hydro-
lase, oxidoreductase, ligase, and transferase has been studied. Bovine serum 
albumin when encapsulated as nanosponges resulted in prolonged release [13]. 
NS can also be employed as carrier of gases like carbondioxide and oxygen. 
Oxygen loaded NS can be used to supply oxygen to hypoxic tissues in different 
disorders [134].

6. Conclusion

Cyclodextrin nanosponges are colloidal nanoparticles made from inexpensive, 
biodegradable materials and can be used for internal or external administration. 
As such, these offer a versatile platform to address challenges like solubility, stabil-
ity and toxicity for therapeutically effective drugs. Cyclodextrin nanosponges are 
developing rapidly in the field of nanotechnology possessing several applications 
in drug targeting, delivery and research, as well as in other fields. Due to their 
unique porous nature and size-dependent properties, they present the possibility 
to develop new therapeutic options. Their ability to entrap drugs and controlled 
release features offer a new mode in drug delivery resulting in higher levels of drug 
targeting. Therefore, cyclodextrin nanosponges are a great promise to achieve the 
goal of site specific and controlled delivery aspects and can open new perspectives 
in the management of complex diseases, in coming future.
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