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Chapter

Dynamics of Biostructures on
a Fractal/Multifractal Space-Time
Manifold
Maricel Agop, Calin Buzea, Decebal Vasincu

and Daniel Timofte

Abstract

A theory of space-time is built on a fractal/multifractal variety. Thus, consider-
ing that both the spatial coordinates and the time are fractal/multifractal, it is
shown that both the energy and the non-differentiable mass of any biostructure
depend on both the “state” of the biostructure and a speed limit of constant value.
For the dynamics on Peano fractal/multifractal curves and Compton scale resolu-
tions, it is shown that our results are reduced to those of Einstein relativity. In such
a context, it has been shown that the “chameleon effect” of cholesterol corresponds
to the HDL-LDL state transfer dictated by the spontaneous symmetry breaking
through a fractal/multifractal tunnel effect. Then both HDL and LDL become dis-
tinct states of the same biostructure as in nuclear physics where proton and neutron
are distinct states of the same nucleon.

Keywords: fractal/multifractal tunnel effect, biostructures, cholesterol,
spontaneous symmetry breaking, chameleon effect

1. Mathematical model

1.1 Time as a fractal/multifractal

Analyzing the nonrelativistic dynamics of a particle in a fractal/multifractal
space [1–4], we observe a big discrepancy between the space coordinates and the
temporal one (considered as affine parameter of motion curve). If the space coor-
dinates are fractal/multifractal, the temporal coordinate is not a fractal/multifractal.
This discrepancy has an important consequence: the particle travels on an infinite
length curve in a finite time span, and so, it has an infinite velocity. In order to
eliminate this contradiction, in the following we will assume that not only the space
coordinates are fractal/multifractal but also the temporal one is a fractal/
multifractal. Practically, we shall build dynamics of biostructures on a non-
differentiable space-time manifold. In this framework, the most important ele-
ments from the nonrelativistic approach of scale relativity theory with arbitrary
constant fractal dimension, as described in [5–7], remain valid, but the time differ-
ential element dt is now replaced by the proper time differential element dτ. In this
way, not only the space but the entire space-time continuum is considered to be
non-differentiable and, therefore, fractal/multifractal.
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1.2 Consequences of non-differentiability on a space-time manifold

Let us suppose that on a space-time manifold, the motions of biostructures take
place on continuous but non-differentiable curves (in particular fractal/multifractal
curves). The non-differentiability of motion curves implies the following [2]:

(i) Any continuous but non-differentiable curve is explicitly scale dependent
(which will be referred as δτ). In other words, its length tends to infinity
when its proper time interval, Δτ, tends to zero (an extension of the Lebesgue
theorem on a space-time manifold). Consequently, in this limit, a curve in a
space-time manifold is zigzagged as one can imagine. Thus, it exhibits the
property of self-similarity in all its points of a space-time manifold, which
can be translated into an extension property of holography (every part of a
space-time manifold reflects the whole of the same space-time manifold).

Then a continuous but non-differentiable space-time is fractal/multifractal in
Mandelbrot’s sense:

(ii) The differential proper time reflection invariance of any variable is broken.
For example, the proper time derivative of four-coordinate Xμ, where μ = 0,
1, 2, 3, can be written two fold:

dXμ

dτ

� �

þ
¼ lim

∆τ!0þ

Xμ τ þ ∆τð Þ � Xμ τð Þ
∆τ

dXμ

dτ

� �

�
¼ lim

∆τ!0�

Xμ τð Þ � Xμ τ � ∆τð Þ
∆τ

(1)

These relations are equivalent in the differentiable case, Δτ ! �Δτ. In the non-
differentiable case, the previous definitions fail since the limits Δτ ! 0� are no
longer defined. In the approach of the non-differentiable model, the biophysical
phenomena are related to the behavior of the function during the “zoom” operation
on the proper time resolution δτ: then, by means of the substitution principle, δτwill
be identified with the differential element dτ, i.e., δτ � dτ, and will be considered as
independent variable. Thus, every classical variable Q(τ) is replaced by the non-
differentiable variable Q(τ,dτ) explicitly dependent on the proper time resolution
interval whose derivative is undefined only in the limit, Δτ ! 0. As a consequence,
two derivatives of every non-differentiable variable as explicit functions of τ and dτ
will be defined. For example, the two derivatives of the four-coordinate Xμ(τ,Δτ)
takes the following form:

dþX
μ

dτ
¼ lim

∆τ!0þ

Xμ τ þ ∆τ,∆τð Þ � Xμ τ,∆τð Þ
∆τ

d�X
μ

dτ
¼ lim

∆τ!0�

Xμ τ,∆τð Þ � Xμ τ � ∆τ,∆τð Þ
∆τ

(2)

The sign + corresponds to the forward biophysical process and the sign � to the
backward one:

(iii) The differential of four-coordinate dXμ(τ,Δτ) can be expressed as the sum of
two differentials, one not scale dependent (differentiable part d�x

μ(τ)) and
other scale dependent (non-differentiable part d�ξ

μ(τ,dτ)), i.e.,

d�X
μ τ,∆τð Þ ¼ d�x

μ τð Þ þ d�ξ
μ τ,∆τð Þ (3)

2
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(iv) The non-differentiable part of the four-coordinate satisfies the non-
differentiable equation

d�ξ
μ τ,∆τð Þ ¼ λ

μ
� dτð Þ1=DF (4)

where λ�
μ are constant coefficients whose statistical significance will be given in

what follows and DF is the fractal dimension of the motion curves from the space-
time manifold.

In our opinion, the complexity of the biophysical processes implies dynamics on
geodesics with various fractal dimensions. Precisely, DF = 2 is a characteristic to the
biophysical processes of quantum type, DF < 2 is a characteristic to the biophysical
processes of correlative type, while DF > 2 is a characteristic to the biophysical
processes of non-correlative type. Since such dynamics simultaneously are opera-
tional on a given biophysical system, the space-time manifold will exhibit
multifractal type properties [2].

(v) The differential proper time reflection invariance is recovered by combining
the derivatives d+/dτ and d�/dτ in the non-differentiable operator:

d̂

dτ
¼ 1

2

dþ þ d�
dτ

� �

� i

2

dþ � d�
dτ

� �

(5)

This specific procedure is called, according to [8], “differentiability by extension
in complex on a space-time manifold” (Cresson’s theorem). Applying now the non-
differentiable operator to the four-coordinate Xμ yields the complex velocity:

V̂
μ ¼ d̂Xμ

dτ
¼ 1

2

dþX
μ þ d�X

μ

dτ

� �

� i

2

dþX
μ � d�X

μ

dτ

� �

¼ 1

2

dþxμ þ d�xμ

dτ
þ dþξ

μ þ d�ξ
μ

dτ

� �

� i

2

dþxμ � d�xμ

dτ
þ dþξ

μ � d�ξ
μ

dτ

� �

¼ Vμ � iUμ

(6)

with

Vμ ¼ 1

2
vμþ þ vμ�
� �

,Uμ ¼ 1

2
vμþ � vμ�
� �

, vμþ ¼ dþxμ þ dþξ
μ

dτ
, vμ� ¼ d�xμ þ d�ξ

μ

dτ
(7)

The real part Vμ is differentiable and scale resolution independent, while the
imaginary one Uμ is non-differentiable and scale resolution dependent.

(vi) An infinite number of geodesics can be found relating any pair of points of a
space-time manifold, and this is true on all scale resolutions of the dynamics of
biostructures. Then, in the space-time manifold, all the entities of the biostructures
are substituted with the geodesics themselves so that any external constraint can be
interpreted as a selection of geodesics in the same space-time manifold. The infinity
of geodesics in the bundle, their non-differentiability, the two values of the deriva-
tive, etc., imply a generalized statistical fluidlike description (fractal/multifractal
fluid). In this way, one provides the fractalization/multifractalization type through
stochastic processes. From such a perspective, averages, variances, covariances, etc.
of the fractal/multifractal fluid variables (by means of which now we can describe
the dynamics of the biostructures) must be considered in the sense of the stochastic
process associated with fractalization/multifractalization. In such a context, the
choice of the average of d�X

i in the form

3
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d�X
i

� 	

� d�x
i (8)

implies through (3)

d�ξ
i

� 	

¼ 0 (9)

1.3 Motion non-differentiable operator on a space-time manifold

Let us now consider that the movement curves (continuous and non-
differentiable) are immersed in the space-time and that Xμ are the four coordinates
of a point on the curve. We also consider a variable Q(Xμ,τ) and the following
Taylor expansion, up to the second order

d�Q Xμ, τ, dτð Þ ¼ ∂τQdτ þ ∂μQd�X
μ þ 1

2
∂μ∂νQd�X

μd�X
ν (10)

where

∂τ ¼
∂

∂τ
, ∂μ ¼

∂

∂Xμ , ∂μ∂ν ¼
∂
2

∂Xμ
∂Xν

Relations (10) are valid in any point of the space-time manifold and more for the
points “Xμ

” on the non-differentiable curve which we have selected in relation (10).
From here, forward and backward average values of (10) become

d�Q Xμ, τ, dτð Þh i ¼ ∂τQdτh i þ ∂μQd�X
μ

� 	

þ 1

2
∂μ∂νQ d�X

μd�X
νh i (11)

Wemake the following stipulations: the average values of the variables Q(Xμ,τ,dτ)
and its derivatives coincide with themselves, and the differentials d�X

μ and dτ are
independent. Therefore, the average of their products coincides with the product of
their averages. In these conditions, (11) takes the form

d�Q Xμ, τ, dτð Þ ¼ ∂τQdτ þ ∂μQ d�X
μh i þ 1

2
∂μ∂νQd�X

μd�X
ν

� 	

(12)

or using (3), (8), and (9)

d�Q Xμ, τ, dτð Þ ¼ ∂τQdτ þ ∂μQd�x
μ þ 1

2
∂μ∂νQ d�x

μd�x
ν þ d�ξ

μd�ξ
νh ið Þ (13)

Even the average values of the 4-non-differentiable coordinate d�ξ
μ is null, for

the higher order of the four-non-differentiable coordinate average, the situation can
be different. Let us focus now on the mean <d�ξ

μd�ξ
ν
>. Using (4), we can write

d�ξ
μd�ξ

νh i ¼ �λ
μ
�λ

ν
� dτð Þ 2=DF�1ð Þdτ (14)

using the convention that the sign + corresponds to dτ > 0, while the sign �
corresponds to dτ < 0.

Then (13) takes the form:

d�Q Xμ, τ, dτð Þ ¼ ∂τQdτ þ ∂μQd�x
μ þ 1

2
∂μ∂νQd�x

μd�x
ν � 1

2
∂μ∂νQλ

μ
�λ

ν
� dτð Þ 2=DF�1ð Þdτ

(15)

4
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If we divide by dτ and neglect the terms that contain differential factors, using
the method from [5–7], we obtain:

d�Q Xμ, τ, dτð Þ
dτ

¼ ∂τQ þ ν
μ
�∂μQ � 1

2
λ
μ
�λ

ν
� dτð Þ 2=DF�1ð Þ

∂μ∂νQ (16)

These relations also allow us to define the operators:

d�
dτ

¼ ∂τ þ ν
μ
�∂μ �

1

2
λ
μ
�λ

ν
� dτð Þ 2=DF�1ð Þ

∂μ∂ν (17)

Under these circumstances, let us calculate d̂=dτ. Taking into account (5), (6),
and (17), we obtain:

d̂Q

dτ
¼ 1

2

dþQ þ d�Q

dτ

� �

� i
dþQ � d�Q

dτ

� �� �

¼ ∂τQ þ V̂
μ
∂μQ þ 1

4
dτð Þ 2=DF�1ð ÞDμν

∂μ∂νQ (18)

where

Dμν ¼ dμν � id
μν

dμν ¼ λ
μ
þλ

ν
þ � λμ�λ

ν
�, d

μν ¼ λ
μ
þλ

ν
þ þ λμ�λ

ν
�, i ¼

ffiffiffiffiffiffi

�1
p

(19)

The relation also allows us to define the motion non-differentiable operator:

d̂

dτ
¼ ∂τ þ V̂

μ
∂μ þ

1

4
dτð Þ 2=DF�1ð ÞDμν

∂μ∂ν (20)

If the non-differentiability of motion curves is realized through Markov type
stochastic process [2, 4].

λ
μ
þλ

ν
þ ¼ λμ�λ

ν
� ¼ �λημν (21)

where ημν is the Minkowski metric and λ is the coefficient associated with the
differentiable-non-differentiable transition, then the motion non-differentiable
operator takes the form

d̂

dτ
¼ ∂τ þ V̂

μ
∂μ þ i

λ

2
dτð Þ 2=DF�1ð Þ

∂μ∂
μ (22)

If the non-differentiability of motion curves is realized through non-Markov
type stochastic process [2, 4].

λ
μ
þλ

ν
þ � λμ�λ

ν
� ¼ λ1η

μν

λ
μ
þλ

ν
þ þ λμ�λ

ν
� ¼ �λ2η

μν (23)

where λ1 and λ2 are two coefficients associated with the differentiable-non-differ-
entiable transition, then the motion non-differentiable operator takes the form

d̂

dτ
¼ ∂τ þ V̂

μ
∂μ þ

1

4
λ1 þ iλ2ð Þ dτð Þ 2=DF�1ð Þ

∂μ∂
μ (24)
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1.4 Non-differentiable geodesics on a space-time manifold

In what follows, let us consider the functionality of the scale covariance princi-
ple [5–7]: the biophysics laws are simultaneously invariant both with respect to the
four-coordinate transformation and with respect to scale transformations. Then the
passage from differentiable biophysics in a space-time manifold to the non-
differentiable biophysics in a same space-time, manifold which is considered here,
can be implemented by replacing the standard derivative d/dτ by the non-

differentiable operator d̂=dτ. This operator plays the role of a “covariant derivative
operator,” namely, it is used to write the fundamental equations of dynamics of
biostructures under the same form as in the classical (differentiable) case. Thus,
applying the operator (20) to the complex velocity (6), the geodesics equation
becomes:

d̂V̂
μ

dτ
¼ ∂τV̂

μ þ V̂
ν
∂νV̂

μ þ 1

4
dτð Þ 2=DF�1ð ÞDαβ

∂α∂βV̂
μ � 0 (25)

or, also using (6), through separation of motions on scale resolutions (the real
part from the imaginary one):

d̂Vμ

dτ
¼ ∂τV

μ þ Vν
∂νV

μ � Uν
∂νU

μ þ 1

4
dτð Þ 2=DF�1ð Þdαβ∂α∂βV

μ

� 1

4
dτð Þ 2=DF�1ð Þd

αβ
∂α∂βU

μ ¼ 0

d̂Uμ

dτ
¼ ∂τU

μ þ Vν
∂νU

μ þUν
∂νV

μ þ 1

4
dτð Þ 2=DF�1ð Þdαβ∂α∂βU

μ

þ 1

4
dτð Þ 2=DF�1ð Þd

αβ
∂α∂βV

μ ¼ 0 (26)

For motions on non-differentiable curves realized through Markov type sto-
chastic process [1, 2, 4], the geodesics equation takes the form

d̂V̂
μ

dτ
¼ ∂τV̂

μ þ V̂
ν
∂νV̂

μ � i
λ

2
dτð Þ 2=DF�1ð Þ

∂
ν
∂νV̂

μ ¼ 0 (27)

or through separation of motions on scale resolutions:

d̂Vμ

dτ
¼ ∂τV

μ þ Vν
∂νV

μ � Uν � λ

2
dτð Þ 2=DF�1ð Þ

∂
ν

� �

∂νU
μ ¼ 0

d̂Uμ

dτ
¼ ∂τU

μ þ Vν
∂νU

μ þ Uν � λ

2
dτð Þ 2=DF�1ð Þ

∂
ν

� �

∂νV
μ ¼ 0 (28)

For motions on non-differentiable curves realized through non-Markov type
stochastic process [1, 2, 4], the geodesics equation becomes

d̂V̂
μ

dτ
¼ ∂τV̂

μ þ V̂
ν
∂νV̂

μ þ 1

4
λ1 þ iλ2ð Þ 2=DF�1ð Þ

∂ν∂
νV̂

μ ¼ 0 (29)

or through separation of motions on scale resolutions:

6
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d̂Vμ

dτ
¼ ∂τV

μ þ Vν
∂νV

μ � Uν � λ2

4
dτð Þ 2=DF�1ð Þ

∂
ν

� �

∂νU
μ þ λ1

4
dτð Þ 2=DF�1ð Þ

∂ν∂
νVμ ¼ 0

d̂Uμ

dτ
¼ ∂τU

μ þ Vν
∂νU

μ þ Uν � λ2

4
dτð Þ 2=DF�1ð Þ

∂
ν

� �

∂νV
μ þ λ1

4
dτð Þ 2=DF�1ð Þ

∂ν∂
νUμ ¼ 0

(30)

1.5 Non-differentiable geodesics in terms of the scalar complex field
on a space-time manifold

Let us choose V̂
μ
in terms of the scalar complex field Ψ:

V̂
α ¼ iλ dτð Þ 2=DF�1ð Þ

∂α lnΨ (31)

Then the geodesics equation (27) becomes

d̂V̂α

dτ
¼ λ dτð Þ 2=DF�1ð Þ

∂τ∂α lnΨ

þ iλ dτð Þ 2=DF�1ð Þ
∂
μ lnΨþ i

λ

2
dτð Þ 2=DF�1ð Þ

∂
μ

� �

∂μ∂α iλ dτð Þ 2=DF�1ð Þ lnΨ
h i

¼ 0 (32)

Since

∂α ∂μ lnΨ∂
μ lnΨ

� �

¼ 2∂μ lnΨ∂α∂μ lnΨ

∂α∂μ∂
μ lnΨ ¼ ∂

μ
∂μ∂α lnΨ

∂α ∂μ lnΨ∂
μ lnΨþ ∂μ∂

μ lnΨ
� �

¼ ∂α
∂μ∂

μΨ

Ψ

� �

(33)

Equation (32) takes the form:

iλ dτð Þ 2=DF�1ð Þ
∂τ∂α lnΨþ λ2 dτð Þ 4=DF�2ð Þ

∂α
∂μ∂

μΨ

Ψ

� �

¼ 0 (34)

By integrating the above relation, we obtain:

λ2 dτð Þ 4=DF�2ð Þ
∂μ∂

μΨþ iλ dτð Þ 2=DF�1ð Þ
∂τΨþ F2 τð ÞΨ ¼ 0 (35)

where F2(τ) is an arbitrary function depending on τ.
Consequently, the non-differentiable geodesics (35) in terms of Ψ are well

defined up to an arbitrary function F2(τ) depending on τ. A particular form of F2(τ)
can be obtained, for instance, based on a correspondence with the standard Klein-
Gordon equation.

1.6 Non-differentiable geodesics in terms of Klein-Gordon equation of fractal/
multifractal type

If Ψ is independent on τ, i.e., ∂τΨ = 0 and F2(τ) = V0
2 = const., with V0 a limit

velocity with constant value, the geodesics (35) become the Klein-Gordon equation
of fractal/multifractal type
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∂μ∂
μΨþ 1

Λ
2 Ψ � 0 (36)

with

Λ ¼ Λ0 dτð Þ 2=DF�1ð Þ,Λ0 ¼ λ

V0
(37)

From (37) it results in a scale resolution dependence of the fundamental length

Λ, where Λ0 is the fundamental unscaled length. For relativistic motions on Peano

curves, DF = 2, at Compton scale Λ0 ¼ λ=V0 � ℏ= m0cð Þ, λ ¼ ℏ=m0,V0 � c with ħ the
reduced Planck constant, m0 the rest mass of the biophysical system entity, and c
the velocity light in vacuum, (37) takes the usual form of Klein-Gordon equation:

∂μ∂
μΨþ m0c

ℏ

� �2
Ψ � 0

1.7 Non-differentiable specific potential force and energy

Using the explicit form of the function, Ψ ¼ √ρeiS, where √ρ is an amplitude
and S is a phase, the expression of Uα becomes

Uα ¼ �λ∂α ln√ρ (38)

Thus it results in

Uμ �
λ

2
dτð Þ 2=DF�1ð Þ

∂μ

� �

∂
μUα ¼ λ2 dτð Þ 4=DF�2ð Þ

∂
μ ln

ffiffiffi

ρ
p

∂μ∂α ln
ffiffiffi

ρ
p þ 1

2
∂
μ
∂μ∂α ln

ffiffiffi

ρ
p� �

(39)

Since the identities from (33) work in variable ln√ρ, Eq. (39) becomes

Uμ �
λ

2
dτð Þ 2=DF�1ð Þ

∂μ

� �

∂
μUα ¼

λ2

2
dτð Þ 4=DF�2ð Þ

∂α ∂
μ ln

ffiffiffi

ρ
p

∂μ ln
ffiffiffi

ρ
p þ ∂

μ
∂μ ln

ffiffiffi

ρ
p� �

¼ λ2 dτð Þ 4=DF�2ð Þ
∂α

∂
μ
∂μ

ffiffiffi

ρ
p
ffiffiffi

ρ
p

� �

(40)

which implies through the specific non-differentiable potential

Q ¼ λ2

2
dτð Þ 4=DF�2ð Þ ∂

μ
∂μ

ffiffiffi

ρ
p
ffiffiffi

ρ
p ¼ 1

2
UμUμ � λ dτð Þ 2=DF�1ð Þ

∂
μUμ ¼

¼ λ2 dτð Þ 4=DF�2ð Þ
∂α

∂
μ
∂μ

ffiffiffi

ρ
p
ffiffiffi

ρ
p

� �

(41)

the specific non-differentiable force

Fα ¼
λ2

2
dτð Þ 4=DF�2ð Þ

∂α

∂
μ
∂μ

ffiffiffi

ρ
p
ffiffiffi

ρ
p

� �

¼ Uμ � λ

2
dτð Þ 2=DF�1ð Þ

∂
μ

� �

∂
μUα (42)

Thus, the first equation (28) takes the form

8
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d̂Vα

dτ
¼ ∂τVα þ Vμ

∂μVα ¼
λ2

2
dτð Þ 4=DF�2ð Þ

∂α

∂
μ
∂μ

ffiffiffi

ρ
p
ffiffiffi

ρ
p

� �

(43)

If

Vα ¼ λ dτð Þ 2=DF�1ð Þ
∂αS (44)

which implies

Vν
∂νVα ¼ Vν

∂αVν (45)

the relation (43) becomes

d̂Vα

dτ
¼ ∂τVα þ Vν

∂νVα �
λ2

2
dτð Þ 4=DF�2ð Þ

∂α

∂
ν
∂ν

ffiffiffi

ρ
p
ffiffiffi

ρ
p

� �

(46)

and more, for ∂τVα ¼ 0:

∂α VνVν �
λ2

2
dτð Þ 4=DF�2ð Þ ∂

μ
∂μ

ffiffiffi

ρ
p
ffiffiffi

ρ
p

� �

¼ 0 (47)

Now, by a suitable choice of the constant integration and knowing that [2]:

VνVν ¼
E

m0V0

� �2

� p

m0

� �2

¼ V2
0 þ λ2 dτð Þ 4=DF�2ð Þ □

ffiffiffi

ρ
p
ffiffiffi

ρ
p

we obtain the non-differentiable energy expression in the form

E ¼ �V0 m0V0ð Þ2 þ p
2 þ m0λð Þ2 dτð Þ 4=DF�2ð Þ □

ffiffiffi

ρ
p
ffiffiffi

ρ
p

� �1=2

(48)

where

□ ¼ � ∂
2

∂x2
� ∂

2

∂y2
� ∂

2

∂z2
þ V�2

0

∂
2

∂t2

For relativistic motions on Peano curves, DF = 2 at Compton scale, Λ0 ¼
λ=V0 � ℏ= m0cð Þ, λ ¼ ℏ=m0,V0 ¼ c, the fractal energy (48) is reduced to the de
Broglie’s relation:

E ¼ �c m0cð Þ2 þ p
2 þ ℏ

2 □
ffiffiffi

ρ
p
ffiffiffi

ρ
p

� �1=2

(49)

Relation (48) specifies the following: (i) information propagates with a limit
speed V0 which differs from one biophysical structure to another; (ii) energy,
through □

ffiffiffi

ρ
p

=
ffiffiffi

ρ
p

, depends on the state of the biophysical structure; and (iii) the
non-differentiable mass

M ¼ �m0 1þ p2

m0V0ð Þ2
þ λ

V0

� �2

dτð Þ 4=DF�2ð Þ □
ffiffiffi

ρ
p
ffiffiffi

ρ
p

" #1=2

(50)
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depends also on the state of the biophysical structure, through □
ffiffiffi

ρ
p

=
ffiffiffi

ρ
p

.

1.8 Non-differentiable state density conservation law

Let us consider Eq. (35) and its complex conjugate:

λ2 dτð Þ 4=DF�2ð Þ
∂μ∂

μΨ� iλ dτð Þ 2=DF�1ð Þ
∂τΨþ F2 τð ÞΨ ¼ 0 (51)

Multiplying (35) by iλð Þ�1 dτð Þ1�2=DFΨ, (51) by iλð Þ�1 dτð Þ1�2=DFΨ and subtracting
the results, one obtains the state density conservation law:

∂τρþ ∂μj
μ ¼ 0 (52)

where

ρ ¼ ΨΨ, jμ ¼ iλ dτð Þ 2=DF�1ð Þ
Ψ∂

μΨ�Ψ∂
μΨ

� �

(53)

In the above relations, ρ defines the state density, while jμ defines the state
density 4-current. If Ψ does not depend on τ, which implies ∂τρ � 0, then for

relativistic motions on Peano curves, DF = 2 at Compton scale Λ0 ¼ ℏ= m0cð Þ, and
relation (52) reduces to the state density standard conservation law:

∂μj
μ ¼ 0 (54)

2. Applications of the mathematical model

2.1 Stationary dynamics of the cholesterol at fractal/multifractal scale
resolutions

Since cholesterol in any of its forms (principally LDL and HDL) is a fundamental
component of blood, its dynamics will be dictated by those of the blood at fractal/
multifractal scale resolutions having in view the average dimensions of the choles-
terol particles (9–10 nm for HDL and 20–27 nm for LDL [9–12]).

In such a framework, nonrelativistic equations of the non-differentiable hydro-
dynamics at fractal/multifractal scale resolutions for the stationary case write like

f i ¼ Ui þ λ dtð Þ 2=DF�1ð Þ
∂l

� �

∂
lUi ¼ 0 (55)

∂lU
l ¼ 0, i ¼ 1, 2, 3 (56)

results obtained from Eq. (28) under the conditions Vi � 0 and |Ui| << V0.
The first of these equations corresponds to the canceling of specific multifractal

force at a differentiable scale resolution, while the second equation corresponds to
the incompressibility of the blood at non-differentiable scale.

Generally, it is difficult to obtain an analytical solution for our previous equation
system, taking into account its nonlinear nature (induced both by means of non-

differentiable convection Ul
∂lU

i and by the non-differentiable dissipation

λ dtð Þ2=DF
�1
∂l∂

lUi).
We can still obtain an analytic solution in the case of a plane symmetry (in x, y

coordinates) of the dynamics of the blood. For this purpose, let us consider the
equation system (55) and (56) in the form:
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u∂xuþ v∂yu ¼ ν∂2yyu (57)

∂xuþ ∂yv ¼ 0 (58)

where we substituted

Ux ¼ u x, yð Þ,Uy ¼ v x, yð Þ, υ ¼ λ dtð Þ2=DF
�1 (59)

Using the similarities method given in [6, 7] to solve the equation system (57)
and (58) with limit conditions

lim
y!0

v x, yð Þ ¼ 0, lim
y!0

∂u

∂y
¼ 0, lim

y!∞
u x, yð Þ ¼ 0 (60)

and a constant flux momentum per unit of depth,

q ¼ ρ

ð

þ∞

�∞

u2dy ¼ const:, (61)

we obtain the field of velocities as solutions of the equation system (57) and (58)
in the form:

u ¼
1:5 q

6ρ

� �2
3

νxð Þ13
sech2

0:5y q
6ρ

� �1
3

νxð Þ23

2

6

4

3

7

5
(62)

v ¼
1:9 q

6ρ

� �2
3

νxð Þ13
y q

6ρ

� �1
3

νxð Þ23
sech2

0:5y q
6ρ

� �1
3

νxð Þ23

2

6

4

3

7

5
� tanh

0:5y q
6ρ

� �1
3

νxð Þ23

2

6

4

3

7

5

8

>

<

>

:

9

>

=

>

;

(63)

The above equations are simplified greatly if we introduce both non-dimensional
variables and non-dimensional parameters:

X ¼ x

x0
,Y ¼ y

y0
,U ¼ u

w0
,V ¼ v

w0
, (64)

ξ ¼ υ

υ0
, υ0 ¼ y0

3
2

x0

q

6ρ

� �1
2

,w0 ¼ 1

y0
� �1

2

q

6ρ

� �1
2

, (65)

where x0, y0, w0, and ν0 are lengths, velocity, and “multifractality degree”
specific to the blood. The normalized velocity field is obtained:

U ¼ 1:5

ξXð Þ13
sech2

0:5Y

ξXð Þ23

" #

, (66)

V ¼ 1:9

ξXð Þ13
Y

ξXð Þ23
sech2

0:5Y

ξXð Þ23

" #

� tanh
0:5Y

ξXð Þ23

" #( )

, (67)

Any of Eqs. (62)–(65) specifies the nonlinearity of the velocity fields: a
multifractal soliton for the velocity field across the Ox axis, respectively, “mixtures”
of multifractal soliton-multifractal kink for the velocity fields across the Oy axis.
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The multifractality of the system is “explained” through its dependence from scale
resolutions [Figures 1a–c and 2a–c].

The velocity fields (66) and (67) induce the multifractal minimal vortex
(Figure 3a–c).

Ω ¼ ∂U

∂Y
� ∂V

∂Y

� �

¼ 0:57Y

ξXð Þ2
þ 0:63ξ

ξXð Þ43
tanh

0:5Y

ξXð Þ23

" #

þ 1:9Y

ξXð Þ2
sech2

0:5Y

ξXð Þ23

" #

�

Figure 1.
Normalized velocity field U for various fractal degrees: (a) ξ = 0.4; (b) ξ = 1.0; (c) ξ = 1.9.
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�0:57Y

ξXð Þ2
tanh 2 0:5Y

ξXð Þ23

" #

� 1:5

ξX
þ 1:4Y2

X ξXð Þ53

" #

sech2
0:5Y

ξXð Þ23

" #

tanh
0:5Y

ξXð Þ23

" #

, (68)

Since the fractal degree depends on the dimensions of the cholesterol particle
(the bigger, the lower the fractal degree), from the analysis of both the velocity field
and the vortex field, it results that the LDL particles will deposit at the wall, while
the HDL particles will not deposit themselves at the wall.

2.2 On the chameleonic behavior of cholesterol

Cholesterol fractions, especially LDL and HDL cholesterol, are frequently ana-
lyzed biomarkers in clinical laboratories [9]. Observational studies have shown that
LDL and HDL have opposing associations with the risk of myocardial infarction,
with LDL cholesterol being a positive factor and HDL cholesterol being a negative
(protective) factor [10]. Observational studies cannot separate the causal role in the
pathological process from the role of a marker of the underlying pathophysiology.
The results of both randomized trials of LDL-cholesterol-lowering treatments [11]
and from human Mendelian diseases [12] are suggesting that plasma LDL

Figure 2.
Normalized velocity field V for various fractal degrees: (a) ξ = 0.4; (b) ξ = 1.0; (c) ξ = 1.9.
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cholesterol is related to the risk of myocardial infarction. However, few proofs are
available for the causal relevance of HDL cholesterol from randomized trials or
Mendelian diseases, and the existing ones are inconsistent [10, 11]. Moreover, more
and more studies are starting to oppose the idea that raising plasma HDL cholesterol
will surely translate into a risk reduction of myocardial infarction [9–12]. Therefore
both LDL and HDL cholesterol can constitute risk factors for myocardial infarction.
Such a behavior has been called by experts in the field the “chameleonic effect” of
cholesterol [9–12]. In the present paragraph, using our previous mathematical
model, LDL and HDL cholesterol dynamics is proposed. In such a context, a fractal/
multifractal tunneling effect for biostructures with spontaneous symmetry breaking
is analyzed. If the spontaneous symmetry breaking is assimilated to an inflamma-
tion (in the form of a specific scalar potential), then two fractal/multifractal states
can be observed. In these conditions, these two states, which have been associated
with biostructures such as LDL and HDL, transfer their states through a fractal/
multifractal tunneling effect. As a result, in our opinion, the widely used notions of
“good” and “bad” cholesterol must be redefined as two different states of the same
biostructure named “cholesterol,” such as in nuclear physics the neutron and proton
are two different states of the same particle named nucleon.

Figure 3.
Multifractal minimal normalized vortex fieldΩ for various fractal degrees: (a) ξ = 0.4; (b) ξ = 1.0; (c) ξ = 1.9.
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With this aim in view, let us reconsider the differential equation (35) with

F2 τð Þ ¼ 0 subjected to an external constraint independent on τ given as a scalar
potential U. One gets

λ2 dτð Þ 4=DF�2ð Þ
∂μ∂

μΨþ iλ dτð Þ 2=DF�1ð Þ
∂τΨ�U

2
Ψ ¼ 0 (69)

For nonrelativistic dynamics, Eq. (69) in the one-dimensional case admits the
fractal/multifractal stationary solution:

ψ z, tð Þ ¼ θ zð Þ exp � i

m0λ dtð Þ 2=DFð Þ�1
Et

" #

(70)

where E is the fractal/multifractal energy of the fractal/multifractal stationary
cholesterol state θ(x) and m0 is the rest mass of the cholesterol particle. Then θ(x)
becomes a fractal/multifractal solution of the fractal/multifractal space equation:

∂zzθ zð Þ þ 1

m0λ
2 dtð Þ 4=DFð Þ�2

E� Uð Þθ zð Þ ¼ 0 (71)

If, in such a context, we suppose that the state transfer between LDL and HDL
cholesterol implies spontaneous symmetry breaking [13], then U = V(z) from (71)
must have the form of an effective potential, as shown in Figure 4.

In these conditions, the stationary fractal/multifractal equation becomes

d2θα

dz2
þ 1

m0λ
2 dtð Þ 4=DFð Þ�2

E� Vα½ �θα ¼ 0, α ¼ 1, 3 (72)

Figure 4.
The effective potential of a fractal/multifractal tunneling effect in the dynamics of biostructures with
spontaneous symmetry breaking.
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For each of the three regions, the solutions of the equations are

θ1 zð Þ ¼ Cþe
ikz þ C�e

�ikz

θ2 zð Þ ¼ Beqz þ Ce�qz

θ3 zð Þ ¼ Dþe
ikz þD�e

�ikz

(73)

with

k ¼ E

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2

q ¼ V0 � E

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2
(74)

and

Cþ,C�,B,C,Dþ,D�

integration constants.
Due to the infinite potential in the two extreme regions, zj j>l, the fractal/

multifractal state function continuity in z ¼ �l implies

θ2 �lð Þ ¼ Cþe
�ikl þ C�e

ikl ¼ 0

θ3 lð Þ ¼ Dþe
ikl þD�e

�ikl ¼ 0
(75)

Since the state density Ψj j2 is not altered by the multiplication of the fractal/
multifractal state function in the form of a constant phase factor, the two equations
for C� and D� can be immediately solved by imposing the forms:

Cþ ¼ A

2i
eikl,C� ¼ �A

2i
e�ikl

Dþ ¼ D

2i
e�ikl,D� ¼ �D

2i
eikl

(76)

so that θ1,3 are given through simple expressions:

θ1 zð Þ ¼ A sin k zþ lð Þ½ �
θ3 zð Þ ¼ D sin k z� lð Þ½ �

(77)

These, along with θ2, lead to the concrete form of “alignment conditions” in
z = �d

θ1 �dð Þ ¼ θ2 �dð Þ, θ2 dð Þ ¼ θ3 dð Þ
dθ1
dz

�dð Þ ¼ dθ2
dz

�dð Þ, dθ2
dz

dð Þ ¼ dθ3
dz

dð Þ
(78)

namely

e�qdBþ eqdC ¼ A sin k l� dð Þ½ �
qe�qdB� qeqdC ¼ kA cos k l� dð Þ½ � in z ¼ �d

eqdBþ e�qdC ¼ �D sin k l� dð Þ½ �
qeqdB� qe�qdC ¼ kD cos k l� dð Þ½ � in z ¼ d

(79)
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Due to the algebraic form of the two equation pairs, in order to establish the
actual expression of the “secular equation” (for eigenvalues E of the energy),
Δ[E] = 0, we avoid calculating the 4th order determinant, Δ[k(E), q(E)], formed
with the fractal/multifractal amplitude coefficients A, B, C, D, by employing the
following: we note with ρ the ratio C/B, and we divide the first equation to the
second one, for each pair. It results in

e2qdρþ 1

e2qdρ� 1
¼ � q

k
tan k l� dð Þ½ �

e�2qdρþ 1

e�2qdρ� 1
¼ q

k
tan k l� dð Þ½ �

(80)

which leads to the equation for ρ:

e2qdρþ 1

e2qdρ� 1
þ e�2qdρþ 1

e�2qdρ� 1
¼ 0 (81)

We find

ρ2 ¼ 1

which implies

ρ� ¼ �1, ρþ ¼ 1 (82)

For ρ+ = 1, the amplitude function, θ2 zð Þ ffi coth qzð Þ, is symmetric just as the
fractal/multifractal states of cholesterol with regard to the (spatial) reflectivity
against the origin. Then the permitted value equation of the energy of these states,
Es, has the actual form:

tan kS l� dð Þ½ � ¼ � coth qSd
� �

qS
kS (83)

where

kS ¼
ES

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2

qS ¼
V0 � ES

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2
(84)

For ρ� = �1, the amplitude function θ2 zð Þ ffi sinh qzð Þ, so that the states will be
antisymmetric and permitted values equation, EA, becomes

tan kA l� dð Þ½ � ¼ � tanh qAd
� �

qA
kA (85)

where

kA ¼ EA

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2

qA ¼ V0 � EA

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2
(86)

17

Dynamics of Biostructures on a Fractal/Multifractal Space-Time Manifold
DOI: http://dx.doi.org/10.5772/intechopen.90360



It results in, for now, at least qualitatively that the presence of the barrier (of
finite height V0) between -d and d leads to the splitting of the fundamental level E0

into two sublevels Es and EA accounting for the two types of fractal/multifractal
states, symmetric and antisymmetric, respectively, in which the system can be
found (both states can be associated to LDL and HDL). Because both eigenvalue
equations are strongly transcendent, a direct estimation of solutions Es,A could be
possible only by means of numerical methods, which in our case is not necessary.
More precisely, we can see here a process of coupling between two different fractal/
multifractal (LDL and HDL) states, made possible through a fractal/multifractal
tunneling effect.

Taking the above into account, we can thus state that LDL and HDL are two
different states of the same biostructure, like in the case of neutron and proton
which are two different states of the same particle, named nucleon. The state
transfer between LDL and HDL occurs by means of a fractal/multifractal tunneling
effect (Figure 5).

The fact presented above is in accordance with the latest study results. Thus, we
can unequivocally state that the role of cholesterol fractions must be clearly
reconsidered. Our model could offer an explanation of why high values of HDL
cholesterol can be “toxic” or why, in certain conditions, LDL cholesterol can be a
protective factor. We can practically discuss about different states of the same
entity, HDL and LDL being expressions of a unique entity—cholesterol—with a
pro- or antiatherogenic effect modeled by the instant state and the alternation
between the two possible sides. As a consequence, as long as cholesterol fractions
maintain a continuous “fluidity,” the maximum benefit will be attained if the total
cholesterol, in absolute value, is decreased. Our mathematical model only enforces
the recent medical findings in the field, which are more and more frequent. At the
same time, in our opinion, the present mathematical model confirms and explains
the apparent paradoxes from clinical studies.

Figure 5.
Schematic representation of the chameleonic behavior of cholesterol.
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The mathematical model developed here allows also some numerical evaluations
on both the time of transfer between the LDL and HDL states and on the probability
of achieving such a transfer. Thus, having in view the nonrelativistic relations,

E ¼ 2m0λ dtð Þ 2=DF�1ð Þ 1

τ
(87)

E ¼ m0v
2
0

2

one gets through λ = αv0, in the case of motion on Peano curves of the choles-
terol particles, a time of transfer τ, of the state, of the form

τ ¼ 4α

v0
(88)

In the relations (87) and (88), α is the dimension of the cholesterol particle and
v0 the blood flow speed, e.g., knowing that in the arteries the average speed of the
blood flow is v0 ≈ 12 cm/s [10, 11] and the average dimensions of the cholesterol
particles are αHDL ≈ 9 nm and αLDL ≈ 25 nm, then through (88) we get
τHDL ≈ 0.189 μs and τLDL ≈ 0.526 μs. Accordingly, the HDL ! LDL transition is
faster than the inverse one.

3. Conclusions

The main conclusions of the present work are as follows: (i) we develop a
dynamics of the biological systems on a fractal space-time manifold. In such a
context, we build the motion operator and the equations of geodesics for rotational
and irrotational motions on non-differentiable curves induced by Markov and non-
Markov type stochasticities, and we establish correlations with known theories of
motion (relativity theory, de Broglie relativistic model, etc.). (ii) In the two-
dimensional relativistic case, we determine both the velocity field and the vortex
one of the cholesterol type biological structure. Based on these we show that the
process of wall deposition of the LDL cholesterol is much more accentuated than the
HDL cholesterol; (iii) using a multifractal Schrödinger-type equation, we show that
by spontaneous symmetry breaking HDL transforms into LDL and vice versa by
means of a fractal tunneling effect. We calculate the time transfer probability
HDL $ LDL, and we show that the HDL ! LDL process is more probable than the
inverse one.
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