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Chapter

Propagating Stress-Strain Curve
Variability in Multi-Material
Problems: Temperature-
Dependent Material Tests to
Plasticity Models to Structural
Failure Predictions
Vicente Romero, Amalia Black, George Orient

and Bonnie Antoun

Abstract

This chapter presents a practical methodology for characterizing and propagat-
ing the effects of temperature-dependent material strength and failure-criteria
variability to structural model predictions. The application involves a cylindrical
canister (“can”) heated and pressurized to failure. Temperature dependence and
material sample-to-sample stochastic variability are inferred from very limited
experimental data of a few replicate uniaxial tension tests at each of seven temper-
atures spanning the 800°C temperature excursion experienced by the can, for each
of several stainless steel alloys that make up the can. The load-displacement curves
from the material tests are used to determine effective temperature-dependent
stress-strain relationships in ductile-metal plasticity models used in can-level model
predictions. Particularly challenging aspects of the problem are the appropriate
inference, representation, and propagation of temperature dependence and mate-
rial stochastic variability from just a few experimental data curves at a few temper-
atures (as sparse discrete realizations or samples from a random field of
temperature-dependent stress-strain behavior), for multiple such materials
involved in the problem. Currently unique methods are demonstrated that are
relatively simple and effective.

Keywords: materials, modeling, calibration, uncertainty, thermal-structural failure

1. Introduction

Sandia National Laboratories is developing the capability to adequately model
the complex multiphysics leading to pressurization and breach of sealed compart-
ments that contain organic materials such as foams, which volatilize when the
compartments are heated in fire accidents. The present chapter along with
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references [1–7] describes aspects of the associated activities, including experi-
ments, modeling and simulation, code and calculation verification, and advanced
model validation and uncertainty quantification (UQ) methods.

The modeling and verification, validation, and uncertainty quantification
(VVUQ) activities were performed under a multiyear “abnormal thermal-
mechanical breach” (T-M breach) task [1] of a Predictive Capability Assessment
Project (PCAP) in the Verification & Validation (V&V) subelement of the U.S.
Dept. of Energy Advanced Simulation and Computing (ASC) program. The goal of
the PCAP T-M breach task was to assess the error and quantify the uncertainty in
modeling the thermal-chemical-mechanical response and weld-related breach fail-
ure of sealed canisters (“cans”) weakened by high temperatures and pressurized
by heat-induced pyrolysis of foam. The planned outcome of the PCAP T-M breach
task was to measure improvements in prediction accuracy over time as the models
and computer platforms became more capable.

The Sandia Weapon System Engineering and Assessment Technology Campaign
(WSEAT) program supported the project by conducting material characterization
tests and validation experiments [2] (see Figure 1). This partnership provided an
opportunity to develop a fully integrated process from design of experiments
through model validation assessment, with uncertainty reduced as much as possible
and propagated through the process.

Breach failures were expected to occur, and in the tests, they did occur, at the
circumferential perimeter (laser) weld that joins the top lid to the can sidewalls.
This is because the weld thickness is significantly less than the can lid and sidewalls
(see Figure 2), and the tests/cans of interest in this chapter were heated at the lid
top surface, so the top weld material was much hotter/weaker than the perimeter
weld material at the bottom of the can. While prediction of canister internal tem-
peratures, time to breach, and breach pressure are sought in the T-M breach task,
breach pressure is the quantity of interest (QOI) in this chapter.

This chapter describes a practical methodology for characterizing and
propagating the effects of variability of material strength and failure criteria to
structural response and failure predictions involving multiple temperature-
dependent materials. Relatively simple and effective UQ techniques are used to
model and propagate temperature dependence and material sample-to-sample
variability effects inferred from very limited material characterization tests.

Figure 1.
Thermal-chemical-mechanical validation experiments [2], including internal pressure response. The ‘can’
includes the cylindrical ‘sidewalls’ or ‘walls,’ as well as the top ‘lid’ and bottom ‘base.’
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Section 2 summarizes the material characterization tests and results. These
involve uniaxial tension tests on several cylinder specimens at each of seven tem-
peratures spanning the 800°C temperature excursion experienced by the can, for
two stainless steel alloys that make up the can and weld materials. Section 3 sum-
marizes the ductile-metal material constitutive models used for elastic-to-plastic
stress-strain response at a given temperature. The procedure to parameterize the
constitutive model’s stress-strain relationships through inverse analysis to best
match measured load-deflection data curves from the tension tests is also explained
and demonstrated. Section 4 describes the material damage models and failure
criteria calibrated to the experimental stress-strain data. The thermal-chemical-
mechanical models for predicting can thermal, pressurization, and structural
response (and failure) are also briefly summarized. Section 5 describes the use of
the models and associated simulations to propagate effects of material strength and
failure variability to estimate breach failure pressure variability. Sensitivity analysis
is also performed to assess the relative contributions of the various materials’
strength and failure criteria variability on the total variability of predicted failure
pressure. Section 6 provides some summary observations and conclusions.

2. Temperature-dependent material strength characterization tests
and results

Round-bar tensile tests were conducted at seven temperatures: 20, 100, 200,
400, 600, 700, and 800°C for both the can lid and base (bar) material and the
sleeve/wall (tubular) material. Most specimens were in the axial orientation
(see Figures 3 and 5), but some tests for the lid material were conducted in the
radial orientation at 20, 600, and 800°C to provide an indication of orientation
dependence.

2.1 Tensile characterization for PCAP 304L stainless steel lid and base material

Round-bar tensile-test specimens of 0.3 in. (inch) diameter and extensometer
gage length 0.80 in. were used in the tension tests described here. Specimens in the
axial direction were extracted from 3.5 in. diameter bar stock as shown in Figure 3.
The can top lids and bottom bases were machined from this lot of bar stock.

Figure 2.
Close-up of modeled geometry where can top lid, sidewall, and internal foam meet. (Nominal geometry values
are 0.03 in. weld depth, 0.0645 in. wall thickness, and 0.007 in. clearance between the lid and sidewall in the
weld region.)
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Material strength stress-strain characterization tests (uniaxial tensile tests) were
conducted [8] on an MTS 880 20 Kip axial test frame with displacement (stroke)
control to produce a nominal strain rate of 0.001/s. This strain rate was based on the
model-predicted conditions in the PCAP thermal-mechanical breach experiments
[2]. A strain rate of 0.0001/s, based on computed local strain rates in the weld
region, was also tested to explore the sensitivity of the material to strain rate.
However, strain-rate effects were not included in the PCAP material strength model
because it was figured that in the accident scenarios being assessed here, strain-rate
effects were of secondary importance prior to reaching a stress-strain maximum
load condition where our failure criteria would be activated (see Section 4). For
conditions past maximum load, it is well known that 304L stainless steel (ss) has
nonnegligible strain-rate dependence at all temperatures.

The test results for the PCAP lid material in the axial direction are shown in
Figure 4 in terms of engineering stress versus engineering strain. As expected, the
strength of the material decreases as the temperature increases. However, around

Figure 3.
Axial tensile specimen extraction from bar stock.

Figure 4.
Engineering stress vs. engineering strain curves for PCAP lid and base material (ss 304L, axial specimens from
bar stock).
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600°C, there is a noticeable inflection point in the temperature related shape trend
of the stress-strain curves. It is believed that this inflection occurs because the
deformation mechanisms change from void growth and deformation to grain
slippage at about half of the material melt temperature for 304L stainless steel
(see last subsection of Section 2). Half the melt temperature of 304L stainless steel
is roughly 700°C.

Reannealed and not re-annealed sets of specimens were tested to better
quantify the effect of the material starting condition on the tensile properties.
It was presumed that annealing the tensile specimens would not have a large effect
since the raw materials were reported to be in an annealed condition, but the test
results do show a noticeable difference [1], which seems to indicate that the
original material was not in a fully annealed state. The specimens that were
reannealed in this test were placed in a vacuum at 1000°C for 30 min. The effect
of reannealing the specimens was larger at the lower temperatures. As the test
temperature increased, this effect became less noticeable, and by 700°C, it is fairly
indistinguishable.

Specimens cut from the cylindrical bar stock in a direction normal to its axis
were tested at 20, 600, and 800°C to provide an indication of orientation depen-
dence. These results are not shown, but typically exhibited ultimate stress values at
lower test displacements/strains and with sharper subsequent weakening than the
axial samples did show. Nonetheless, an isotropic constitutive model was used
(see Section 3.1). It was calibrated with stress-strain curves from tension tests with
the axial-cut specimens only.

2.2 Tensile characterization for PCAP 304L stainless steel wall material

Specimens in the axial direction were extracted from the tube-stock material as
shown in Figure 5. The can sleeve/sidewalls were machined from this stock. The

Figure 5.
Axial tensile specimen extraction from wall material.
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nominal specimen diameter was 0.1 in. with an extensometer gage length of 0.62 in.
The test results for the PCAP wall material in the axial direction are shown in
Figure 6. Like the lid material, the strength of the wall material decreases as the
temperature increases and a noticeable change in the temperature related shape
trend of the stress-strain curves occurs at about 600°C.

2.3 Ignored but possible creep and strain-rate effects

In general, the engineering stress versus engineering strain curves for both the
wall and lid materials exhibit a markedly different character above 600°C. Below
this temperature, the ultimate strain decreases as the temperature increases, but
above 600°C, features of the stress-strain curve change and the ultimate strain
becomes larger. Considering that test data are only available at one strain rate, a
plausible explanation includes the hypothesis that at about half of the melt temper-
ature, creep deformation is observed manifesting in creep relaxation in a
displacement-controlled tensile test (see [9]).

For the PCAP test conditions, a temperature of 600°C translates to a homolo-
gous temperature of 0.48. The yield stress at 600°C is about 25 ksi. Converting yield
stress to shear stress and then normalizing it by the shear modulus (76.3 GPa) gives
a value of 1.1e�3. These conditions are right at the transition to power-law creep
[9], which is where dislocations are able to climb (through thermal fluctuations)
over precipitates and other barriers. Thus, a creep-dependent model may be neces-
sary for temperature conditions above 600°C.

Additional factors may include temperature and strain-rate–dependent phase
transformation mechanisms as reported in [10]. At room temperature, a
martensitic phase appears when strain is loaded. However, this does not appear
to happen at elevated temperatures leaving the material in an austenitic phase,
which is weaker than martensitic phase, allowing more necking at elevated
temperatures.

These potential mechanisms still need to be further investigated. A creep and
strain-rate–dependent phenomenological constitutive model is recommended in
future studies with elevated temperatures, especially if the material deformation
will be simulated past maximum load conditions.

Figure 6.
Engineering stress vs. engineering strain curves for PCAP tube (wall) material (ss 304L, axial specimens from
tube stock).

6

Engineering Failure Analysis



3. Temperature-dependent material strength characterization tests and
results

Mechanical constitutive behavior was modeled using a strain-rate-independent
isotropic ductile-metal multilinear elastic plastic (MLEP) plasticity model (e.g.,
[11]). The parameterized form of the “true” stress-strain curve (Cauchy
stress‑plastic logarithmic strain) consistent with the constitutive model’s formula-
tion is represented in piecewise linear fashion by multiple linear segments as
described in Section 3.2. Fundamental assumptions of the constitutive model follow.

3.1 Constitutive model description

Strain-rate independence: Load-displacement response of a specimen subjected
to constant strain rate is independent of the strain-rate magnitude. For ductile
metals and over the small strain rates and small range of rates encountered in the
PCAP application, this is considered an acceptable assumption below about half of
the melting temperature. However, it is known that 304L stainless steel exhibits
some strain-rate dependence at lower temperatures as well, especially past a
maximum load condition. In the PCAP project, this issue was examined by testing
specimens at several strain rates expected to represent the bulk strain rates of the
cans in the tests. This was used to assess model-form uncertainty since local
strain rates are expected to spatially vary over the regions surrounding stress
concentrations, like at the welds. Ultimately, strain-rate effects were judged to be
small relative to other modeling errors and uncertainties in the PCAP T-M breach
problem.

Independence on hydrostatic stress: Independence of yield behavior on the hydro-
static stress state in metals is well understood. Plastic deformation is attributed to
shear states of stress and strain characterized by the second invariant of the
deviatoric stress tensor (J2). Definitions of the von Mises effective stress σ_eff and
the equivalent plastic strain (EQPS) are derived from this statement [13]. The
effective stress and equivalent strain are uniaxial measures that allow collapsing
triaxial stress and strain states in structural applications into uniaxial measures
that map into experimental stress-strain curves derived from uniaxial
load-displacement tests.

Isotropy: The inelastic constitutive response is independent of the load orienta-
tion. This is a reasonable assumption for metal components unless they have been
fabricated with processes that introduce directional character of the grain structure
such as rolling or forging without annealing.

The MLEP model is a standard metal plasticity constitutive representation for
industry practice. MLEP treatment helps FE models to be affordable with reason-
able computational resources and is suitable as long as the limitations are under-
stood and not violated significantly. The MLEP model only relates stress and strain;
no intrinsic statement about material strength-related failure is made. Material
failure modeling is discussed in Section 4.1.

3.2 Constitutive model parameterization procedure

Material characterization involves solving an inverse problem to determine the
MLEP constitutive model’s “true” Cauchy stress‑plastic logarithmic strain relation-
ship that recovers the load-displacement or engineering stress-strain data (e.g.,
Figure 4) from tensile tests. As such, a fitting procedure was used to enable the
inverse calculation.
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Before the onset of necking, the true stress and true strain in a tensile specimen
can be calculated from the load-displacement recorded from the load cell of the
testing frame and an extensometer mounted on the specimen. Once necking occurs,
the true strain in the middle of the necked region must be calculated from a finite
element (FE) model of the gage section of the specimen. The ASC massively parallel
solid-mechanics code Adagio [12] was used for the simulations. To ensure that
necking initiates between the ends of the gage section, a small imperfection is
introduced in the mesh. Section 3.3 investigates hex-mesh density sufficiency.

The implicit relationship between the load-displacement response of the FE
model and the MLEP constitutive relationship necessitates implementing an itera-
tive procedure to fit an MLEP model to the load-displacement record obtained from
testing. Since the test data contain a large number of potentially noisy data points,
some data conditioning through down-sampling and/or smoothing is necessary,
resulting in order 20 data points. This is based on engineering judgment and is
ultimately confirmed by comparing the load-displacement curve with the entire test
record. Point selection could be done on the experimental data record or by
conditioning the experimental data and selecting points from the smooth
conditioned data.

Assuming that the multilinear true stress-true strain is fitted at the ith point, the
next linear section is obtained by a two-step process illustrated in Figure 7 and
summarized next.

1.Bracket the slope of the next segment.

a. Extend the current MLEP curve by the current slope candidate to the
next strain point in the conditioned dataset.

b. Solve the FE model with the current candidate MLEP model loaded with
the strain point.

c. Evaluate the reaction force in the gage section. If the force is less in the
conditioned dataset, decrease the slope candidate and repeat 1.a;
otherwise, slope candidates bracketing the actual slope are found.

2.Solve for the slope resulting in a reaction force that matches the force on the
experimental dataset. In the current implementation of the MLEP fitting
method, the bisection algorithm is used.

This process requires careful management of analysis restarts to efficiently
iterate on the MLEP line segment slopes. Once all the line segments are determined,
an analysis is run with the complete MLEP line segment set to characterize necking
through the entire strain history.

Noise in the test data was sometimes a factor in the MLEP calibrations for this
project, especially at high temperatures. Cubic spline smoothing [14] was used to
smooth test data when needed. The raw and smoothed data are illustrated in
Figure 8. The view is closely zoomed to a section of the curve.

It was visually observed that the differences between MLEP curves calibrated to
different specimens (specimen-to-specimen differences) were much larger than the
fitting errors from the calibration process itself.

Several factors influence the success of the iterative MLEP procedure:
Model gage-length and cross-section mismatch to test specimen geometry: This

may make the model too stiff to follow necking behavior. Iteration usually fails
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near the ultimate load, resulting in a true stress-true strain curve with
constant slope.

Element refinement: When the mesh is coarse, the model is too stiff to produce
the target necking behavior. For strains beyond ultimate load, the iteration fails,
resulting in a true stress-true strain curve with constant slope.

Load step: It may be necessary to reduce the load step in the solid-mechanics
simulation so that the calibration procedure does not miss the necking behavior,
which would drop the final engineering stress-strain curve below the test data.

Figure 8.
Cubic-spline smoothing of tension test data

Figure 7.
Iteration process to arrive at next point in piecewise linear parameterization of MLEP stress-strain curve.
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Number of points before and after ultimate load: Similar to the load step effect, too
few points result in the analysis taking the wrong path.

Noisy test data: An increased level of noise was observed in the data at elevated
temperatures. This may actually be a result of a physical phenomenon but the
modeling approach in this study assumes a smooth stress-strain behavior, and
constitutive curves with abrupt changes in slope may throw the iteration off course.
Data conditioning with piecewise smooth regression fit usually addresses this
adequately.

Stress and slope tolerance: Insufficient tolerance in the bisection method may
result in failure to converge (and, therefore, constant slope true stress-true strain
curve) caused by unstable undershooting/overshooting.

Confinement of necking within the extensometer gage length: It is possible that
numerically the model necks at the ends of the gage section instead of the middle.
Always check the final necking pattern before accepting the fitted model.

Amount of mesh imperfection to induce necking in the middle of the gage section: This
is an artificial imperfection, and care must be taken not to reduce the cross-section
area significantly. Typically, 0.1% or less artificial reduction of area is desired
although this guideline may not be sufficient for “flat” stress-strain curves. Insensi-
tivity with respect to this numerical uncertainty needs to be demonstrated.

Element type selection: Necking tends to excite the hourglass modes, if present,
and the hardening curve might be altered by low resistance to shear deformation in
the necked section.

The calibration process requires the elastic modulus, yield stress, and Poisson’s
ratio as input. While the experimental load-displacement curves have data at small
strains (<0.2%), they have been measured with extensometers optimized for large
strains (>50%). No specifications regarding their accuracy at small strains were
received, and it was observed that while the lid data showed an initial linear section
consistent with literature data for elastic modulus and yield stress, the wall data
exhibited no significant linear section. The decision was made to use the modulus/
yield data obtained from the test record for the lid and literature data for wall.

The MLEP model is not parametric in the sense of a power law or a Johnson-
Cook constitutive model, where a handful of parameters describe the shape of the
true stress-true strain curves. A cubic spline elastic-plastic (CSEP [15]) version of
MLEP now exists where the true stress-strain curve is parameterized by order 7
stress-strain points or knots whose stress and strain values are simultaneously
optimized such that the experimental load-displacement or engineering stress-
strain curve is best matched. This appears to also generally work well but often
requires more model runs. In either case, generating material-curve data fits is
not easy.

3.3 Solution verification

The MLEP fit process has been used by analysts at Sandia National Laboratories
to fit room-temperature curves for several years and experience has shown that
about 16 elements across the radius of a cylindrical gage section have been suffi-
cient. High-temperature 304L curves, however, exhibit rather “flat” characteristics
and low yield points, so the concern of using mesh-converged models was revisited
here. The results in Figure 9 show that, for the final number of elements (32) used
in the FE simulations in the MLEP calibrations, the calibration results are well
converged up to and beyond the maximum load point where the stress-strain curves
will be evaluated in the can-level simulations (because of the material failure
criteria being tied to the maximum load point; see Section 4.1).
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3.4 Selected calibration results

Calibration to a set of wall specimen test data at room temperature is shown in
Figures 10 and 11. The yellow symbols indicate the calibrated curve, the test data
are shown with black symbols, and the blue symbols identify the points selected
from the spline smoothed data where the MLEP fit was performed. Figure 11
illustrates the following: (a) the fact that the load-displacement record is not linear
at small strains; (b) so literature data were used for modulus and yield stress
(second blue marker); and (c) the MLEP calibration iteration is stopped when
convergence criteria are satisfied; the knee of the yellow curve and the second blue
marker (the target) do not coincide exactly. Convergence criteria were decided
based on considerations of the expected impact on QOIs and practical computa-
tional throughput limits.

Figure 10.
Room temperature MLEP calibration.

Figure 9.
Solution verification for gage-section FE model and solves used for MLEP model calibrations.
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3.5 Process automation and archiving

Considering the number of calibration instances (49 sets of test data comprised
of several replicate tension tests at seven temperatures for two materials), the
calibration process was automated in a script, and the different instances of cali-
bration were executed under the control of a DAKOTA [16] parametric study.

4. Material failure criteria and can pressurization and response/failure
modeling

4.1 Weld material modeling and failure criteria

It was originally planned to obtain weld material stress-strain curves and failure
criteria by calibrating to tension tests of butt-weld square bar specimens and then
validating to can pie-section weld flexure tests to failure. However, both endeavors
proved to be problematic experimentally and computationally [1] such that ade-
quate model accuracy could not be established.

As a reasonable alternative, the following approach was taken. For welds of
normal quality that do not have anomalies like voids, empirical evidence strongly
suggests that weld material strength lies somewhere between the strengths of the
two materials joined by the weld—here the lid and the can wall. Wall/tube material
was slightly weaker at max load than the lid/bar-stock material, so we made a
conservative-leaning choice to assign the wall/tube material curves and failure
criteria to the weld.

Microstructural examination of the PCAP cans pressurized to failure indicated
ductile overload failure of the laser welds of the heated lids. Equivalent plastic strain
(EQPS) and tearing parameter (TP) are candidate models for accumulated material
damage, as explained next. These models’ computed damage values at the point of
maximum load and engineering stress in the uniaxial tension tests are taken to be
critical material failure criteria for these two models. This is consistent with current

Figure 11.
Room temperature calibration, small strains.
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failure modeling practice at Sandia National Laboratories in conjunction with MLEP
models in overload failure modes. Because of the notorious difficulty of predicting
structural failure from material damage modeling, the two models and their failure
criteria were used and assessed as candidate indicators of onset of failure in the
PCAP application.

As paraphrased from [11], the TP failure indicator within Sierra uses an
approach based on the work of Brozzo et al. [17]. This parameter takes the form of
an evolution integral of the stress state integrated over the plastic strain. Two
modifications were needed beyond Brozzo’s original formulation. The first
modification was the inclusion of a Heaviside bracket on the maximum principal
stress. That is, if the maximum principal stress is compressive (negative), the
increment to the tearing parameter is zero. Thus, there is no increase in material
“damage” for compressive stress states, nor is there “damage healing” for
compressive states.

The second modification to TP calculation resulted from the investigation of
notched tensile test results. Two sets of notched round bar tensile tests referenced
and summarized in [11] were performed on different heating treatments of 6061-
T6. Comparison between the simulations and the experimental results showed
excessive ductility for the simulations using the original formula. By raising the
stress-state portion of the integral to the fourth power, a match between experi-
mental data and simulation results was achieved. The final form follows. It is used
as well for the ductile stainless steels in the present work.

TP ¼

ð

2σT
3 σT � σmð Þ

� �4

dεp (1)

In this equation, σT is the maximum principal stress; σm is the mean stress
(average of principal stresses); and εp is the equivalent plastic strain, EQPS.

All input parameters, including the critical value of TP that coincides with
material “failure” as interpreted below can be obtained from a model calibrated to a
standard tensile test as explained below. The mechanical response code with MLEP
constitutive model requires a Cauchy stress and plastic logarithmic strain to define
strain-hardening behavior. To determine this from a standard tensile test, it is
necessary to solve the inverse problem described in Section 3.2. More details of the
tearing parameter model for ductile failure can be found in [11].

In addition to the critical TP value, the equivalent plastic strain critical value is
also used to predict failure in order to assess the uncertainty due to failure-model
form. EQPS is derived directly from the strain (e.g., [13]).

Although TP and EQPS critical values are often defined based on tension test
material separation failure, the critical values for this project were defined at the
maximum load in the tension tests. This decision was made for two reasons. First,
the global loading of the can structure is due to pressurization, and the pressure is
always increasing and will cause incipient failure when a maximum load condition
is reached. Second, the weld failures observed in the can tests showed little evidence
of necking. Up to maximum load, there is little necking. It was reasoned that
defining critical failure values based on any finite element in the model reaching the
hardening curve maximum load point identified from the tension tests would result
in conservative failure predictions for the can.

Therefore, the failure criteria defined at the maximum load in the tube/wall
round bar tension tests were used to signify weld material failure in the can breach
predictions. Figure 12 shows the location (i.e., circle) of the max load condition
used to obtain the critical values for EQPS and for TP at each temperature from the
stress-strain curves. The critical values were obtained by calibrating the MLEP
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TEST # TEMP (°C) Critical TP Critical EQPS

1NA 20 0.40411 0.400321

2NA 20 0.419455 0.415633

3NA 20 0.403365 0.399622

4NA 100 0.303277 0.300511

5NA 100 0.293452 0.290511

6NA 100 0.276675 0.273797

7NA 200 0.224306 0.221862

8NA 200 0.236491 0.233974

9NA 200 0.225990 0.223562

10NA 400 0.203274 0.201021

11NA 400 0.205928 0.203682

12NA 400 0.206650 0.204383

14NA 600 0.237258 0.234747

15NA 600 0.272458 0.269665

16NA 600 0.217022 0.215917

17NA 700 0.184131 0.182011

18NA 700 0.208394 0.206040

19NA 700 0.234210 0.231570

24NA 800 0.233182 0.230782

25NA 800 0.193157 0.192174

26NA 800 0.164383 0.162645

Table 1.
Max load-related failure criteria values for TP and EQPS determined from tension-test specimen model
calibrated to each ss 304L tube/wall experimental load-displacement curve.

Figure 12.
Maximum load locations (circled) where critical failure values of TP and EQPS are obtained (from ss 304L
tube/wall material tension tests, only one curve is shown at each temperature for illustration).
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model to match the load-displacement curves (engineering stress-strain curves)
from a mesh-converged model of the specimen gage section and then by searching
for the maximum TP and EQPS values on the specimen midsection. There were
replicate tension tests at each temperature and the corresponding critical values
were determined for each data curve as listed in Table 1.

4.2 Models for can thermal-chemical-structural response and failure

The thermal-chemical-mechanical models used are briefly summarized
here from [1]. The Sandia SIERRA module [18] for massively parallel thermal-fluid
computations was used to model the heating of the can, its thermal response, and
thermally-induced chemical-kinetic decomposition of the foam [19] and resulting
gas species generation that causes pressurization. The solid mechanics and struc-
tural modeling module [12] were used to model the mechanical response of the can
and failure at the weld under pressurization and high temperatures and large tem-
perature variations in time and space. The module uses a nonlinear quasi-statics
finite element approach based on a Lagrangian, three-dimensional, implicit scheme.
A multilevel iterative solver enables solution of problems with large deformations,
nonlinear material behavior, and contact. Temperature-dependent elasto-plastic
constitutive models are accommodated, where the elastic parameters (Young’s
modulus, Poisson’s ratio, and yield stress) and the stress-strain plasticity curves are
temperature dependent.

The thermal-chemical simulation provides the temperature and pressure
boundary conditions for the mechanical model. The only feedback from the
mechanical model to the thermal-chemical model is the can’s internal volume
change due to deformation. The volume change affects the pressure level in the can
through the Ideal Gas Law, which is evaluated within the thermal module and then
communicated to the mechanical module. The can geometry is not changed/
updated in the computational heat-transfer model because the can deformation is
fairly slight (lateral bulging equivalent to a few can-wall widths) so it is thought to
negligibly affect the heat transfer (or at least not affect the heat transfer in the
model, given the way it was modeled). The heat transfer and foam decomposition
submodels and parameters are also not affected by pressure in the current treat-
ment. (The uncertainties associated with including pressure effects on these phe-
nomena were judged larger than the error involved by not including pressure
effects, and any modeling error effects would be quantified through the validation
comparisons [1, 4] that were the culmination of the PCAP assessments).

The thermal-chemical and mechanical models were run in a “concurrent but
segregated” manner in which Sandia’s SIERRA [20] software framework for mas-
sively parallel multiphysics computations passed temperature, pressure, and vol-
ume information between the thermal-chemical simulation and the mechanical
simulation. SIERRA coordinates and manages the different time-stepping of the
thermal-chemical and mechanical codes and the transfer of spatial temperature
fields solved on the tetrahedral thermal mesh to nodal temperature assignments to
the nodes of the mechanical hex mesh.

The full 360-degree can geometry with internal foam was used for the thermal-
chemical simulations, and the 90-degree pie-slice geometry without foam was used
for the mechanical simulations. The full 360-degree geometry was used in the
thermal-chemical simulations because at the time, the foam and enclosure radiation
models did not accommodate any kind of symmetry boundary conditions.
The mechanical simulations were much more computationally expensive, so a
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quarter-can partial geometry without foam was used to reduce cost. Leaving foam
out of the mechanical model tremendously reduces the number of finite elements
and thus computational cost, and is thought to have negligible impact on structural
behavior and pressure-breach failure in the PCAP problem.

In the thermal model, a uniform heat flux boundary condition was applied on the
lid surface. The flux level was calculated as follows to be consistent with the temper-
ature data from the experiment control TCs. The four control TCs were fully inserted
into radially drilled holes at midplane on the lids at 0, 90, 180, and 270 degrees
around the lids [2]. A proportional-integral-derivative (PID) routine [21] was used to
determine the heat flux magnitude needed to match the control thermocouple tem-
perature responses. This approach results in a more realistic temperature distribution
versus using a TC-guided uniform temperature condition over the entire lid surface.

On the side walls and base of the can, convection and radiation boundary
conditions were specified (as described in [5]) to represent the heat transfer
between the can exterior and the surrounding environment.

Different element types and mesh densities are used as appropriate in the ther-
mal and mechanical models. Code verification activities were performed for the
thermal and solid/structural mechanics codes and models [1]. For the order-200
thermal-mechanical and mechanical-only simulations run for VVUQ and sensitivity
analysis in the PCAP project, an affordable mesh size of 1.85 million hex elements
for the structural model (12 elements through the thickness of the weld) and 14.3
million tet elements for the more affordable thermal model were used. This afford-
able ‘Level 4’ mesh was one in a succession that went up to Level 6 with approxi-
mately double the number of elements in the structural and thermal models (see
[3]). The succession of meshes was used for a solution verification assessment in [1]
to estimate and account for Mesh 4–related error/uncertainty in the VVUQ analysis
and results in [4]. Solver tolerances were experimented with and set to contribute
small error/uncertainty relative to mesh effects.

Figure 13 shows the Level 4 mesh at a critical portion of the structural model
where weld failure is determined in the thermal-structural simulations. Stress

Figure 13.
Weld-section close-up of structural-model Level 4 hex mesh used in model validation, UQ, and sensitivity
analysis simulations in the PCAP project. Stress concentration is evident at the crown of the weld notch.
(Figure from [3].)
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concentration is evident at the crown of the weld notch. This type of weld-geometry
representation was found to best support weld failure predictions analyzing many
different geometry representation schemes [1, 22].

5. Discrete propagation of material strength and failure variability to
can breach-pressure variability predictions

The material strength uncertainty sources treated here come in discrete (not
parametric) form of multiple slightly varying stress-strain curves and failure
criteria representing stochastic material strength variations in the can lid, weld, and
wall materials. These curve-to-curve variations and failure criteria when propa-
gated cause predicted variability (and uncertainty thereof) in can response and
failure pressure level. The 16 uncertainties not related to material strength and
failure variability are all parametric in nature and are held at nominal values listed
in [4] for the purposes of the following material-curve propagations and analysis of
results.

Sensitivity studies in [1, 4] of the effects of the more prominent modeling
uncertainties regarding thermal, pressurization, and structural phenomena in the
PCAP T-M breach problem reveal that material curve strength variations are among
the most significant causes of failure-pressure predicted variability and uncertainty
thereof.

5.1 Dealing with temperature dependence of the material stress-strain curves

Dealing with temperature dependence of the material curves adds a significant
difficulty to the discrete propagation problem. This is addressed in the following
two data processing steps before propagation can be performed in Section 5.2.

Step I: material stress-strain curves strength-to-failure ranking and down-selection

In this step, the effective strength of the repeat material curves at each temper-
ature was ranked and then down-selected to three representative curves (high,
medium, and low strength) according to predicted failure pressure predictions from
the PCAP can simulations. The curve-strength ranking process at a given tempera-
ture is much more involved when multiple materials exist than when only one
material exists (which allows a simple straightforward process, [23]). This is
because the strength ranking of a given set of material curves can depend on the
particular combination of material curves used for the other two materials (e.g.,
wall strength and flexure can affect stress-strain phenomena at the weld notch).
There are many such combinations because each of the two other materials has
multiple material curves, so the ranking investigation should involve confirming
curve ranking is robust over all or at least a few different test combinations of the
other materials’ curves. This is addressed in the rather involved and computation-
ally expensive ranking process, summarized in the Appendix.

Step II: correlation and Interpolation of stress-strain curves across temperatures

This step proceeds from a precedent in [23] and Step I’s determinations,
portrayed conceptually in Figure 14. Three material curves of low, medium, and
high effective strength exist per characterization temperature. When several mate-
rial curves exist at each temperature, for UQ purposes, strength is assumed to be
highly correlated across temperatures such that a curve with higher relative
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strength at lower temperatures is assumed to retain higher relative strength at
higher temperatures. This assumes that material weakening mechanisms and %
weakening are roughly similar with increasing temperature whether the material is
initially of higher, medium, or lower relative strength.

The correlation assumption appears physically reasonable and tremendously
reduces the number of potential combinations of material curves to be sampled
when a material transitions temperatures. For example, there are 3 � 3 � 3 = 27
potential combinations of material curve combinations in the figure that could be
used in a simulation that transitions temperatures from 600°C to 700°C to 800°C.
So to investigate all these potential combinations would take 27 simulations with
the expensive PCAP can model. To transition all seven temperatures would pre-
sent 37 = 2187 possible combinations. This is just for one material. For the three
materials in this problem, each with three material curve options, this would
present 21,873 ≈ 1010 possible combinations. Clearly, this is unaffordable and
seems wholly unnecessary given the reasonableness of the temperature-strength
correlation assumption.

Hence, for each material, we link, for example, its high-strength curves across
the seven characterization temperatures. We interpolate across the characterization
temperatures as follows: at a temperature in-between two adjacent characterization
temperatures, the stress is linearly interpolated from the stress values (at the appli-
cable input stain level) from the two stress-strain curves at the upper and lower
enveloping temperatures.

For each material, this effectively gives one constructed high-strength,
temperature-varying, stress-strain function. Temperature-dependent medium and
low strength functions are likewise constructed. For this problem, we end up with

Figure 14.
Notional portrayal of high, medium, and low effective strength stress-strain curves at adjacent characterization
temperatures.

Figure 15.
Notional depiction of PCAP can materials’ high strength (HS), medium strength (MS), and low strength (LS)
temperature-dependent stress-strain functions, and propagation of the material strength variability via 27
assumed equally-likely combinations of material strength functions (e.g., one combination is lid MS function/
weld HS function/wall LS function).
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each material having high strength (HS), medium strength (MS), and low strength
(LS) temperature-dependent stress-strain functions as depicted in Figure 15.

5.2 Stress-strain function uncertainty propagation, results, and sensitivities

Given the constructed high, medium, and low strength stress-strain functions
for the materials, a strategy in [1, 4] was taken to form and propagate all 27 possible
combinations of stress-strain functions as conveyed in Figure 15. The model (Mesh
4) was run with experimental heating and other conditions summarized in [5] from
Test 6 in [2]. This is the reference nominal test of the five replicate tests in the PCAP
validation assessment (see [4]). This yields 27 failure pressures for each of the TP
and the EQPS failure criteria as depicted in the figure.

5.2.1 Sensitivity analysis

The 27 failure pressures for the TP and EQPS failure criteria are plotted in
Figure 16. The left columns of the TP and EQPS results are for the HS stress-strain
function for the weld material coupled with nine different (all possible) combina-
tions of lid and tube/wall strengths varied over their LS, MS, and HS options.
Similarly, the center and right columns of results in the figure are, respectively, for

Figure 16.
Predicted failure pressures and sensitivities for different combinations of lid, weld, and tube material strength
functions.
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MS and LS weld strength functions coupled with the nine possible combinations of
lid and tube/wall strengths.

The EQPS results are an average of about 460 psi or 50% higher than the TP
failure pressures. (It was later determined that much of this difference could be
explainable by very underconverged Mesh 4 results with the EQPS damage model;
see [3, 4].) For both failure criteria, the individual and average failure pressures
decrease as expected from column to column as the weld material strength
decreases from HS to MS to LS. The decreases are somewhat greater with the EQPS
failure criterion than with the TP criterion. This is reflected in the relative sizes of
the interval bars labeled weld material strength variation relative effect in the figure.
These mark the average decrease in failure pressure when weld strength goes from
high to low. For EQPS, the interval bar has a length of 83 psi = average of HS weld
column (1468 psi) minus average of LS weld column (1385 psi). For TP, the interval
bar has a length of 55 psi = average of HS weld column (993 psi) minus average of
LS weld column (938 psi).

For EQPS, the vertical ordering of results within a column does not change from
column to column as weld strength decreases from HS to MS to LS. The ordering of
TP results is also consistent across columns but is slightly different from the order-
ing of EQPS results, as discussed below. Both TP and EQPS results within a given
column (where weld strength is fixed) are marked by a symbol shape that identifies
the lid material strength (like the triangle that corresponds to a lid strength 1 = High
per the legend at the bottom of the figure). The color of the symbols signifies the
strength level for the tube/wall material: red, yellow, and green correspond to
1 (High), 2 (Medium or Nominal), and 3 (Low) strengths.

The predicted failure pressures in Figure 16 always show that the red instance of
a given symbol corresponds to a higher failure pressure than the yellow instance,
which is always higher than the green instance. Thus, for any given weld and lid
material strength combination, the predicted failure pressure increases with wall
strength. The interval bars labeled tube material strength variation relative effect in
the figure signify a representative magnitude of increase in failure pressure when
tube/wall strength rank goes from low to high (green to red for a given symbol
shape). For EQPS, the plotted interval bar has a representative magnitude of 32 psi.
For TP, the corresponding interval bar has a much larger tube/wall strength effect
of representative magnitude of 52 psi. As expected, these tube/wall strength effects
are less than the weld strength EQPS and TP average failure pressure effects of
83 psi and 55 psi.

Failure pressure orderings relative to lid material strength rankings are less intui-
tive. EQPS and TP results within a given column (where weld strength is fixed) are
indicated by a given symbol shape while holding the symbol color (signifying tube/
wall strength) fixed. A stronger lid might make the weld fail at lower pressure than a
weaker lid because there is more bending occurring at the weld if a stiffer lid is
involved. This proposition is supported by the TP results ordering that the triangle
symbols (lid strength 1 = High) and the diamond symbols (lid strength 2 = Medium)
are always lower than the rectangle symbols (lid strength 3 = Low). However, the
proposition conflicts with the TP ordering of the diamond symbols (lid strength 2 =
Medium) always being lower than the triangle symbols (lid strength 1 = High). This
apparent nonmonotonic behavior of predicted failure pressure with lid-strength
could be due to the nonisothermal can temperatures underlying the simulation results
here, whereas isothermal cans were used to rank the lid curve strengths. This could
indicate that the isothermal lid curve-strength ranking process was not fully robust.

For EQPS, results within a given column and for a given color show a monotonic
ordering fully consistent with the said proposition: the rectangle symbols (lid
strength 3 = Low) are always highest on the plot and then the diamond symbols
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next (lid strength 2 = Medium), with the triangle symbol (lid strength 1 = High)
always lowest.

The sizes of the interval bars labeled lid material strength variation relative effect
in the figure are indifferent to any potential curve strength ordering errors because
all 27 curve combinations are used. For both TP and EQPS, the said interval bars
have representative magnitudes of 25 psi each. As expected, these lid strength
variation effects are smaller in magnitude than, but not insignificant relative to, the
effects of weld and tube/wall material strength variations.

Thus, for both TP and EQPS failure criteria, weld material strength variations
have the largest effect, as expected, but lid and wall strength variations also have
significant effects.

5.2.2 Uncertainty processing and interpretation of failure pressure results

We now consider the uncertainty processing and interpretation of the pressure
failure results. If dealing with multiple but few stress-strain curves for only one
material, then appropriate uncertainty treatment has been established and con-
firmed in the series of papers and reports [24–27]. The approach recognizes that the
stress-strain curves are discrete realizations with no readily identifiable parametric
relationship between them. Yet, the stress-strain curves come from and belong to a
larger population that reflects the material’s variability. Fortunately, a mathematical
description of the generating function for the larger population of ss curves is not
needed with the approach summarized next. The output scalar data (the predicted
failure pressures) are worked with, rather than attempting to create a parametric or
spectral generator function that is consistent with the ss curve data realizations.

In analogy with Figure 15, an application of the approach with, say, three stress-
strain function curves for a single material would result in three predicted failure
pressures with the EQPS or TP failure criteria. (We could also work with other
scalar output responses of interest, like displacement, strain, or Von Mises stress at
a given point on the can and at a given time, or even spatial-temporal maxima as
scalar quantities that vary with the three input stress-strain function curves.)
Because only three function curves and corresponding failure pressure realizations
exist, small-sample related error will typically exist in any characterization of alea-
tory uncertainty due to the stochastic material strength variability. Thus, substantial
small-sample epistemic uncertainty exists concerning the error in characterizing the
aleatory variability.

A small number of realizations or samples will usually underpredict the true
variance of material strength and related failure pressures or other responses. Mean
or central response will also usually be significantly mispredicted. Potential signifi-
cant nonconservative small-sample bias error can result, causing unsafe engineering
design and risk analysis, even if the physics prediction model was perfect in every
other way.

Statistical tolerance intervals (TIs) attempt to compensate for sparse sample data
by appropriately biasing response estimates. For instance, the three failure pressure
values would be processed into 95%coverage/90%confidence TIs (95/90 TIs). With
reasonably high reliability, these estimate conservative but not overly conservative
bounds on the “central” 95% of response from very sparse random samples/reali-
zations of the input data. The central 95% of response is the range between the 2.5
and 97.5 percentiles of the true response distribution that would arise from an
infinite number of samples. This central 95% range has been found to be convenient
and meaningful for model validation comparisons of experimental and model-
predicted aleatory response quantities (e.g., [23, 28–30]), which is also the purpose
[4] of the present UQ results.
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Investigations in [26, 31, 32] have concluded 95/90 TIs to be preferable to many
other UQ methods tried or critically assessed for estimating, from very sparse
sample data, conservative but not overly conservative bounds on the central 95% of
response. The other methods tried or critically evaluated include bootstrapping
[33], optimized four-parameter Johnson-family distribution fit to the response
samples [34], nonparametric kernel density estimation specifically designed for
sparse data [35], nonparametric cubic spline PDF fit to the data based on maximum
likelihood [36], and Bayesian sparse-data approaches [37].

The TI approach is also much easier to use than the other UQ methods investi-
gated. A 95/90 TI is constructed by simply multiplying the calculated standard
deviation ~σ of the data samples by a factor f to create an interval of total length 2f~σ.
The interval is centered about the calculated mean (~μ) of the samples.

The multiplying factor f is readily available from tables in statistical texts (e.g.,
[38, 39]), formulas (e.g., [40]), or software (e.g., [41]) that encodes the formulas.
The factor is parameterized by two user-prescribed levels: one for the desired
“coverage” proportion of stochastic response, and one for the desired degree of
statistical “confidence” in covering or bounding at least that proportion. For
instance, a 95%coverage/90%confidence TI prescribes lower and upper values of a
range that is said to have at least 90% odds that it spans at least 95% of the true
probability distribution from which the random samples were drawn. The said 90%
odds or confidence exist only when sampling from a Normal distribution. Reduced
confidence levels for non-Normal distributions are discussed next.

Although derived for Normal populations, 95/90 TIs will span the central 95%
ranges of many other sparsely sampled PDF types with reasonable/useful odds or
confidence. For instance, 89% of 144 PDFs (including highly skewed and multi-
modal highly non-Normal distributions) studied in [25–27] had empirical confi-
dence levels of 75% or greater with 95/90 TIs and N = 4 random samples. From
studies in [26] on several representative PDFs, it is projected that 90% of the 144
PDFs would have confidence levels > 85% with 95/95 TIs and N = 4.1 These average
or expected confidence levels decline slowly as the number of samples increases.

Although TIs often provide reliably conservative estimates, TIs can egregiously
exaggerate the true variability when very few samples are involved. This is a
downside that comes with high confidence levels of bounding the true central 95%
of response.

Now, we consider the problem where the output response samples come from
discrete stress-strain function variations of “multiple” materials as in the present
problem. A naive approach would be to construct (e.g., 95/90) TIs from the 27
failure pressure values indicated in Figure 15 for the TP and EQPS failure criteria.
However, TIs pertain to random sampling of the contributing input uncertainties,
where for 27 response samples, each of the contributing source uncertainties would
typically be sampled at 27 different values. Repeat values would not ordinarily
occur, especially with a moderately small number of samples like 27. This is not the
case here; each input stress-strain function of a given material is sampled repeatedly

1 Confidence levels of 75% or 85% are often adequate to manage risk, especially if conservatism from

other sources exists in the analysis or results—such as when several sources of uncertainty are present

where each involves sparse data conservatively treated with the TI method. Studies in [32] and [42]

indicate that when more than one dominant or influential uncertainty sources are sparsely sampled and

represented conservatively with TI confidence levels of say >70%, when the conservatively represented

uncertainties are combined in linear propagation or aggregation, the individual conservative biases

compound to yield substantially greater than 70% confidence of conservative bias in the combined

uncertainty estimate.
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(nine times) in the course of propagating all possible combinations of curves. So it
was decided that constructing TIs using N = 27 would not be appropriate. (This was
later confirmed by studies on a linear test problem in [42].) Instead, because only
nine independent realizations of input information exist in this problem (three
stress-strain functions for each of three materials), it was ventured that TIs should
be constructed based on an effective number of samples N = 9. Having no more-
fundamental basis to proceed on at the time, this course was taken in the PCAP
VVUQ project [1, 3–7].

There is a lack of well-established sampling methods for identifying combina-
tions of model inputs from sparse quantized sets of choices or “levels” in the various
factors (i.e., the levels are not prescribable; the few available stress-strain functions
are the only “levels” available), such that propagation of the relatively small num-
ber of affordable or available input combinations will yield appropriate response
statistics and distribution information. Subsequent to the PCAP project, investiga-
tions in [43] provide a more fundamentally grounded approach. For the present
problem, it would construct and average TIs based on failure pressure results from
propagating selected sets of the 27 possible combinations of material curves
according to an analogy with Latin hypercube sampling (LHS [44]) as explained
next.

5.2.2.1 Latin hypercube sampling analogue for discrete material curves, and
associated TIs

Latin hypercube sampling of one or more continuous input random variables is
well recognized as an efficient sampling method for Monte Carlo propagation of
probabilistic uncertainty through general nonlinear response functions or models
(e.g., [45, 46]). With LHS and continuous random variables, M samples of a given
output variable corresponds to M points in a D-dimensional space of D input ran-
dom variables, where each input random variable is sampled at M different values
or realizations of that variable. An analogue of this type of treatment exists for our
discrete random function UQ problem as follows:

a. For each of the three materials, there are M = 3 different realizations of stress-
strain functions.

b. For each material, choose one strength level, for example, form an input data
combination {weld HS, tube/wall LS, lid LS} (refer to Figure 15). This is one
of the possible 27 combinations of the materials’ stress-strain functions
discussed previously.

c. Run the model with these input curves to predict a corresponding failure
pressure.

d. Do this three times; each time create a new random combination of input
curves that does not use a curve that was previously selected and used. This
yields three simulations, each with a single curve from each material, where
each material curve is used once and only once over the prediction set of three
simulations.

e. The three failure pressures predicted from the three simulations are used to
construct a 95/90 TI based on n = 3 samples of response, in analogy with n = 3
TI that would be constructed for three samples of response from LHS MC
with continuous random variable inputs.
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5.2.2.2 Averaging equally legitimate TIs to reduce chances of extreme/
nonrepresentative TIs

This methodology yields a prediction set of M = 3 results from M = 3 LHS
combinations of the 27 possible combinations. Many such equally legitimate M = 3
prediction sets can be formed. Table 2 lists three equally legitimate sets as exam-
ples. Across any row for Set 1, 2, or 3, the high-strength, medium-strength, and low-
strength function curves appear and are used once and only once for each of the
materials (Weld, Tube/Wall, and Lid).

Each set in the table leads to a legitimate TI. There is no apparent reason to favor
one LHS input set and TI result over another. Therefore, one could think about
equally weighting the various TI results to get an “average TI” by averaging the
individual TI upper ends to get an average TI upper end, and similarly to get an
average TI bottom end. The average TI might be better than the individual TIs in
that the average TI has a reduced chance of being an anomalous nonrepresentative
result from an extreme/nonrepresentative sample set that could be obtained by
random chance. A constraint on the averaging strategy is that the averaged TIs
should ideally come from LHS sets that are diverse as a group. This means they do
not have input-sample combinations (so output response samples) in common
between the sets. Table 3 shows three individually legitimate LHS sets that are
nondiverse as a group because all sets have a response sample based on the same
input Combination A and corresponding output response sample.

Diverse TI averaging was performed on a “Can Crush” solid-mechanics UQ test
problem where reference truth results were available as part of the development of
the test problem [43]. The test problem had two material variability sources each
with two aleatory realizations of stress-strain curves. It was found that TI-averaging
improved 95/90 TI success rates of bounding the true central 95% of response by
9 percentage points over the average success rate of individual TIs. A success rate of
94% was obtained for average TIs over a test matrix of 16 output quantities and 10s
of random trials for each quantity. Individual TIs had a lesser but still reasonable
success rate of 85% on average over the same 16 quantities. Similar results have
been found on a second solid mechanics test problem with a different constitutive
model and structural failure problem. This is now in the process of being written up.

Example 3-run

LHS sets

Combination A {weld,

tube/wall, lid}

Combination B {weld,

tube/wall, lid}

Combination C {weld,

tube/wall, lid}

Set 1 {H,H,H} {M,L,M} {L,M,L}

Set 2 {L,L,L} {M,H,M} {H,M,H}

Set 3 {L,M,H} {M,L,L} {H,H,M}

Table 2.
Three diverse LHS sets of material curves combinations.

Example 3-run

LHS sets

Combination A {weld,

tube/wall, lid}

Combination B {weld,

tube/wall, lid}

Combination C {weld,

tube/wall, lid}

Set 1 {H,H,H} {M,L,M} {L,M,L}

Set 2 {H,H,H} {M,M,L} {L,L,M}

Set 3 {H,H,H} {M,L,L} {L,M,M}

Table 3.
Three LHS sets of material curves combinations that are nondiverse between sets.
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Note that the TI averaging method does not require more experimental data
(realizations of stress-strain random functions), but does require more model runs.
For the present PCAP UQ application, one legitimate TI requires three model runs.
To average three equally legitimate TIs results would require nine model runs total.
It appears that averaging three or four individual TIs represents the knee in the cost
vs. reliability curve (the size of confidence intervals on sample means has a sharp
knee at 4 samples). Therefore, TI averaging incurs �3� computational cost over
producing a single TI, but for the regime of solid mechanics UQ problems discussed
in this chapter, the total computational cost would often be limited to �10 model
runs. This is a moderate computational cost to pay for the likely significant
improvement from TI averaging. It is also small relative to the computational cost of
the material curve ranking procedure that temperature dependence requires. The
computational cost would also usually be small compared to the cost of getting the
experimental data in the first place, or getting more of it.

In related methodology, reference [6] presents a method for aggregating the
aleatory uncertainty of response (failure pressure) from propagated discrete alea-
tory realizations of functional data (per the present chapter), with aleatory uncer-
tainty from propagated parametric random variables. Ref. [7] demonstrates how to
further handle, in a practical way, any epistemic parametric uncertainty that may
be involved in the UQ problem.

Finally, if the model predictions are to be used to support estimation of small
“tail” probabilities of response for robust/reliable design or safety/risk analysis, the
sample results from the LHS sets in 2 would be processed in a different way. This is
demonstrated in recent investigations in [26, 47–49] on 16 diversely shaped distri-
butions and tail probability magnitudes from 10�5 to 10�1. Reliably conservative
and efficient estimates of small tail probabilities are obtained. Further reliability and
accuracy benefits occur from averaging multiple estimates from equally legitimate
subsets of samples from the available sparse-data pool (i.e., from use of statistical
jackknifing).

6. Conclusions

This chapter presented a practical and reasonable methodology for characteriz-
ing and propagating the effects of temperature-dependent material strength and
failure-criteria variability to structural model predictions. Particularly challenging
aspects of the application problem in this chapter (and often in other real applica-
tions) are the appropriate inference, representation, and propagation of tempera-
ture dependence and material stochastic variability from just a few experimental
stress-strain curves at a few temperatures (as sparse discrete realizations or samples
from a random field of temperature-dependent stress-strain behavior), for multiple
such materials involved in the problem. Currently unique methods are demon-
strated that are relatively simple and effective. The practical methodology is versa-
tile and flexible for application to other solid-mechanics problems involving
constitutive model calibration to sparse functional temperature- and/or strain-rate-
dependent data, and then propagation of the incorporated uncertainty to
application models and their output quantities.
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Appendix: Process for stress-strain curves strength-to-failure
ranking and down-selection

Table A1 lists the material tests for the bar stock (can lid and base) and tube
stock (can sidewall and weld) characterized at seven temperatures (Section 2). The
weld material is specified to be the same as the wall material because it was weaker
than the lid material, so it provides a more conservative representation of the weld

20°C 100°C 200°C 400°C 600°C 700°C 800°C

Lid—1 2NAL 5NAL 8NAL 11NAL 14NAL 17NAL 20NAL

Lid—2 3NAL 6NAL 9NAL 12NAL 15NAL 18NAL 21NAL

Lid—3 4NAL 7NAL 10NAL 13NAL 16NAL 19NAL 22NAL

Lid—4 28NAL — 26NAL 24NAL — — 23NAL

Lid—5 29NAL — — 25NAL — — —

Weld—1 1NA 4NA 7NA 10NA 14NA 17NA 24NA

Weld—2 2NA 5NA 8NA 11NA 15NA 18NA 25NA

Weld—3 3NA 6NA 9NA 12NA 16NA 19NA 26NA

Tube—1 1NA 4NA 7NA 10NA 14NA 17NA 24NA

Tube—2 2NA 5NA 8NA 11NA 15NA 18NA 25NA

Tube—3 3NA 6NA 9NA 12NA 16NA 19NA 26NA

Table A1.
List of all material curves for the lid, weld, and tube (wall) at each temperature.

20°C 100°C 200°C 400°C 600°C 700°C 800°C

Lid—1 2NAL 5NAL 8NAL 11NAL 14NAL 17NAL 20NAL

Lid—2 3NAL 6NAL 9NAL 12NAL 15NAL 18NAL 21NAL

Lid—3 4NAL 7NAL 26NAL 25NAL 16NAL 19NAL 23NAL

Weld—1 1NA 4NA 7NA 10NA 14NA 17NA 24NA

Weld—2 2NA 5NA 8NA 11NA 15NA 18NA 25NA

Weld—3 3NA 6NA 9NA 12NA 16NA 19NA 26NA

Tube—1 1NA 4NA 7NA 10NA 14NA 17NA 24NA

Tube—2 2NA 5NA 8NA 11NA 15NA 18NA 25NA

Tube—3 3NA 6NA 9NA 12NA 16NA 19NA 26NA

Table A2.
Final set of three material curves for the lid, weld, and tube (Wall) at each temperature.
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material strength. Nonetheless, the following is pursued as though the weld material
has different stress-strain curve data because this was the original plan in the project
and illustrates how three different materials would be handled.

For the wall material, there were three stress-strain (ss) curves at each temper-
ature. For the lid material, there were four to five replicates at some temperatures as
shown in Table A1. These were reduced to three curves at each temperature by first
determining which curve had the lowest effective strength to failure (lowest
predicted failure pressure in the PCAP can simulation) and which curve had the
highest effective strength to failure. Then, the medium strength curve that resulted
in a computed failure pressure closest to the middle between the failure pressures
with the high and low strength curves was identified.

Ranking and down-selection were conducted with mechanical-only isothermal
simulations with Mesh 4. The effective strength of the material curves was deter-
mined according to the calculated pressure at which weld critical TP and EQPS
values from Table 1 were reached. A uniform temperature condition at the relevant
temperature from Table A1 and a linear pressure ramp of 63 psi/min representative
of the reference can/test #6 were used in the simulations.

To down-select the lid material curves for temperatures with more than three
curves, simulations were conducted for each ss curve at 20, 200, 400, and 800°C.
These simulations used wall and weld ss curves labeled Tube-1 and Weld-1 in
Table A1 at the said temperatures.

Table A2 shows the final three material curves chosen for the lid. It should be
noted that the order of the lid material curves at each temperature does not neces-
sarily coincide with the high, medium, and low rankings. The final ranking of the lid
material curves is reevaluated in the next phase of this process.

The next phase involved running mechanical-only simulations with various
combinations of the tube (T), lid (L), and weld (W) ss curves at each temperature.
The ranking process included 6 rounds of simulations as exemplified in Table A3
for the case of 700°C. In the first three rounds, each of the three replicate curves
was sampled starting with the weld in Round 1, then the lid in Round 2, and finally
the tube in Round 3. An example ranking analysis for Round 1 is explained imme-
diately after Table A3. Rounds 4 and 5 rechecked the rankings for both the weld

Round T L W Comments

1 1 1 1,2,3 Three runs to determine weld curve rankings

2 1 3,2,(1) 2 Two runs to determine lid curve rankings using the medium weld

curve (here W = 2). Note that the L = 1 simulation was previously

performed in Round 1

3 2,3,(1) 2 2 Two runs to determine tube curve rankings using the medium weld

(W = 2) and lid (L = 2) curves. Note that T = 1 simulation was

performed in Round 2

4 3 2 1,(2),3 Two runs to recheck weld curve rankings from Round 1. Use the

medium tube (T = 3) and lid (L = 2) curves. Note that the W = 2

simulation was performed in Round 3

5 3 3,(2),1 2 Two runs to recheck lid curve rankings from Round 2. Use the

medium tube (T = 3) and weld (W = 2) curves. Note that the L = 2

simulation was performed in Round 4

6 2,3,1 3 1 Three runs to recheck tube curve rankings from Round 3. Use the

low lid (L = 3) and low weld (W = 1) strength curves

Table A3.
700°C example of process used to rank replicate material curves at a given temperature.
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and the lid curves using the nominal curves of the other two materials because the
initial tests were not necessarily performed using their medium curves. Finally,
Round 6 rechecked the rankings for the tube curves using off-medium conditions,
in particular at low-low material curve strengths of the lid and weld, since the
original tube rankings were conducted using the medium lid and weld curves.

This process was performed for all seven temperatures. In all rechecked cases,
the result of material curve rankings remained the same with the one exception of
the tube curves at 20°C, which changed low to high strength ordering from 3-2-1 to
3-1-2.

Six rounds of simulations were involved. Numerical indexes in columns 2–4 are
from Table A2. Left-to-right order for multiple entries in a cell is lowest to highest
effective curve strength. Entries in parenthesis ( ) indicate no new simulation was
needed; result already available from a prior round.

Figure A1 shows an example of the computed spatial-maximum tearing param-
eter (TP) in the weld as a function of time (which is linearly related to pressure for
these linear pressure-ramp simulations) for a 700°C temperature in Round 1. In this
round, the lid-1 and tube-1 ss curves for 700°C in Table A2 were used as indicated

Figure A1.
Comparison of weld spatial-maximum TP results to corresponding critical TP values (plotted horizontal
curves) at 700°C.

20°C 100°C 200°C 400°C 600°C 700°C 800°C

Lid—H 4NAL 7NAL 8NAL 25NAL 15NAL 17NAL 20NAL

Lid—M 3NAL 6NAL 26NAL 11NAL 14NAL 18NAL 23NAL

Lid—L 2NAL 5NAL 9NAL 12NAL 16NAL 19NAL 21NAL

Weld—H 2NA 4NA 8NA 12NA 15NA 19NA 24NA

Weld—M 1NA 5NA 9NA 11NA 14NA 18NA 25NA

Weld—L 3NA 6NA 7NA 10NA 16NA 17NA 26NA

Tube—H 3NA 4NA 9NA 12NA 16NA 17NA 24NA

Tube—M 1NA 5NA 7NA 10NA 14NA 19NA 25NA

Tube—L 2NA 6NA 8NA 11NA 15NA 18NA 26NA

Table A4.
Final material curve rankings for the lid, weld and tube.
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in the applicable row of Table A3, while the weld material ss curves varied over the
three identified for 700°C in Table A2. The calculated rises of the material damage
TP values in time are compared to their critical TP values from Table 1 (plotted
horizontal lines) to indicate failure by these criteria. The first result (W1) to reach
its critical TP value was designated as low strength (L), the second result (W2) was
designated as medium (M), and the third result (W3) was designated as high
strength (H).

A similar process was used to evaluate the material curve rankings in all rounds
of the ranking process. From Figure A1, note that at any point in time the 700°C
W2 ss curve yields lowest calculated damage (TP value) of any of the weld ss
curves, so it represents the “strongest” ss curve by this measure. However, the TP
response reaches its critical value faster than the W1 ss curve, which is higher in
effective “strength-to-failure.” The latter is the measure used for ranking the effec-
tive strength of the ss curves.

The final curve strength rankings for the lid, weld, and tube are summarized in
Table A4. Approximately, 116 mechanical-only simulations were performed in the
ranking process, 18 to reduce the number of lid curves to three at 20, 200, 400, and
800°C, and 14 for each of the 7 temperatures to rank the curve strengths. For lid
and weld ss curves, the rankings were consistent whether a critical TP or critical
EQPS value was used to indicate failure. However, some of the tube results did
show differences, and in those cases, the TP ranking was used because the tearing
parameter was believed to be the most valid criterion for this application (less
mesh-related error than with EQPS; see [3]). Note that even though the same three
stress-strain curves per temperature are used for the can weld and walls, the curve
strength rankings at a given temperature are usually different for these can parts.
This reflects the dependency of effective curve strength on the particular geometry
and loading conditions.

Author details

Vicente Romero*, Amalia Black, George Orient and Bonnie Antoun
Sandia National Laboratories, Albuquerque, NM, USA

*Address all correspondence to: vjromer@sandia.gov

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

29

Propagating Stress-Strain Curve Variability in Multi-Material Problems: Temperature…
DOI: http://dx.doi.org/10.5772/intechopen.90357



References

[1] Black A, Romero V, Breivik N,
Orient G, Antoun B, Dodd A, et al.
Predictive capability assessment project:
Abnormal thermal-mechanical breach
V&V/UQ. Sandia National Laboratories
report SAND2019-13790 (Official Use
Only/Export Controlled). November
2019

[2] Suo-Anttila JM, Dodd AB,
Jernigan DA. Thermal mechanical
exclusion region barrier breach foam
experiments (800C upright and
inverted 20 lb/ft3 PMDI Cans). Sandia
National Laboratories report
SAND2012-7600 (OUO/ECI).
September 2012

[3] Black A, Romero V, Breivik N,
Orient G, Suo-Anttila J, Antoun B, et al.
Verification, validation, and uncertainty
quantification of a thermal-mechanical
pressurization and breach application.
In: Presentation VVS2015-8047 in the
Archives of the ASME Verification &
Validation Symposium. Las Vegas, NV;
May 13-15, 2015

[4] Romero V, Black A, Dodd A,
Orient G, Breivik N, Suo-Anttila J, et al.
Real-space model validation-UQ
methodology and assessment for
thermal-chemical-mechanical response
and weld failure in heated pressurizing
canisters. ASME Journal of Verification,
Validation and Uncertainty
Quantification. 2019

[5] Romero V, Black A. Processing of
random and systematic experimental
uncertainties for real-space model
validation involving stochastic systems.
ASME Journal of Verification,
Validation and Uncertainty
Quantification.

[6] Romero V. Propagating and
combining aleatory uncertainties
characterized by continuous random
variables and sparse discrete realizations
from random functions. Sandia National

Laboratories document SAND2019-
14642 C, 22nd Non-Deterministic
Approaches Conference, AIAA SciTech.
Orlando, FL; Jan 6-10, 2020

[7] Romero V, Black A. Adaptive
polynomial response surfaces and level-
1 probability boxes for propagating and
representing aleatory and epistemic
components of uncertainty in model
validation. Sandia National Laboratories
document in review. 2019

[8] Antoun BR. Material
Characterization and Coupled Thermal-
Mechanical Experiments for
Pressurized, High Temperature
Systems. Technical Report. Livermore,
CA: Sandia National Laboratories; 2012

[9] Frost HJ, Ashby MF. Deformation-
Mechanism Maps: The Plasticity and
Creep of Metals and Ceramics. Oxford
[Oxfordshire]: Pergamon Press; 1982

[10] Lichtenfeld JA, Mataya MC, Van
Tyne CJ. Effect of strain rate on stress-
strain behavior of alloy 309 and 304L
austenitic stainless steel. Metallurgical
and Materials Transactions A. 2006;
37A:147-161

[11]Wellman GW. A simple approach to
modeling ductile failure. Sandia
National Laboratories report SAND
2012-1343. June 2012

[12] Sierra/SM Development Team.
Sierra/SM theory manual. Sandia
National Laboratories report
SAND2013-4615. July 2013

[13] Chen W-F, Han DJ. Plasticity for
Structural Engineers. Ft. Lauderdale, FL:
J. Ross Publishing; 2007

[14] Available from: http://www.
mathworks.com/matlabcentral/
fileexchange/13812-splinefit

[15]Wilson KM, Karlson KN, Jones R,
Hoffa T. MatCal: A tool for improving

30

Engineering Failure Analysis



the traceability and workflow for
material calibration. Sandia National
Laboratories document SAND2019-
11952 C (Official Use Only/Export
Controlled). October 2019

[16] Adams BM, Bauman LE,
Bohnhoff WJ, Dalbey KR, Ebeida MS,
Eddy JP, et al. Dakota, a multilevel
parallel object-oriented framework for
design optimization, parameter
estimation, uncertainty quantification,
and sensitivity analysis: Version 6.0
user’s manual. Sandia Technical Report
SAND2014-4633. July 2014

[17] Brozzo P, Deluca B, Rendina R. A
new method for the prediction of the
formability limits of metal sheets. In:
Proceedings of the 7th Biennial
Congress of International Deep Drawing
Research Group. 1972

[18]Notz PK, Subia SR, Hopkins MM,
Moffat HK, Nobel DR. Aria 1.5: User
manual. Sandia National Laboratories
report SAND2007-2734. April 2007

[19] Erickson KL, Dodd AB, Hogan RE.
Modeling pressurization caused by
thermal decomposition of highly
charring foam in sealed containers. In:
Proceedings of BCC 2010, Stamford,
CT, 23-26 May 2010

[20] Edwards HC, Stewart JR. SIERRA: A
software environment for developing
complex multi-physics applications. In:
Bathe KJ, editor. First MIT Conference
on Computational Fluid and Solid
Mechanics. Amsterdam: Elsevier; 2001.
pp. 1147-1150

[21] Larsen ME, Dodd AB. Modeling and
validation of the thermal response of
TDI encapsulating foam as a function of
initial density. Sandia National
Laboratories report SAND2014-17850.
September 2014

[22] Contact: Nicole Breivik, Sandia
National Laboratories, Laser weld
modeling methods for deformation and
failure

[23] Romero V, Dempsey F, Antoun B.
Application of UQ and V&V to
experiments and simulations of heated
pipes pressurized to failure. In: Mehta U,
Eklund D, Romero V, Pearce J, Keim N,
editors. Chapter 11 of Joint Army/Navy/
NASA/Air Force (JANNAF) e-book:
Simulation Credibility—Advances in
Verification, Validation, and Uncertainty
Quantification, Document NASA/TP-
2016-219422 and JANNAF/GL-
2016-0001. 2016

[24] Romero V, Dempsey JF,
Wellman G, Antoun B. A Method for
projecting uncertainty from sparse
samples of discrete random functions ─
Example of multiple stress-strain
curves. Paper AIAA-2012-1365, 14th
AIAA Non-Deterministic Approaches
Conference; April 23-26, 2012;
Honolulu, HI

[25] Romero V, Dempsey JF,
Schroeder B, Lewis J, Breivik N,
Orient G, et al. Evaluation of a simple
UQ approach to compensate for sparse
stress-strain curve data in solid
mechanics applications. In: 19th AIAA
Non-Deterministic Approaches
Conference, Paper AIAA2017-0818,
AIAA SciTech 2017, Jan. 9-13,
Grapevine, TX

[26] Romero V, Bonney M, Schroeder B,
Weirs VG. Evaluation of a class of
simple and effective uncertainty
methods for sparse samples of random
variables and functions. Sandia National
Laboratories report SAND2017-12349.
November 2017

[27] Romero V, Schroeder B,
Dempsey JF, Breivik N, Orient G,
Antoun B, et al. Simple effective
conservative treatment of uncertainty
from sparse samples of random
variables and functions. ASCE-ASME
Journal of Uncertainty and Risk in
Engineering Systems: Part B.
Mechanical Engineering. 2018;4:
041006-1-041006-17. DOI: 10.1115/
1.4039558

31

Propagating Stress-Strain Curve Variability in Multi-Material Problems: Temperature…
DOI: http://dx.doi.org/10.5772/intechopen.90357



[28] Jamison R, Romero V, Stavig M,
Buchheit T, Newton C. Experimental
data uncertainty, calibration, and
validation of a viscoelastic potential
energy clock model for inorganic sealing
glasses. In: Sandia National Laboratories
Document SAND2016-4635C,
Albuquerque, NM, Presented at ASME
Verification & Validation Symposium;
Las Vegas, NV; May 18-20, 2016

[29] Romero V, Heaphy R, Rutherford B,
Lewis JR. Uncertainty quantification
and model validation for III-V SSICs in
annular core research reactor shots.
Sandia National Laboratories report
SAND2016-11772 (Official Use Only/
Export Controlled). 2016

[30] Romero V. Real-space model
validation and predictor-corrector
extrapolation applied to the sandia
cantilever beam end-to-end UQ
problem. In: Paper AIAA-2019-1488,
21st AIAA Non-Deterministic
Approaches Conference, AIAA SciTech
2019; Jan. 7-11; San Diego, CA

[31] Romero V, Mullins J, Swiler L,
Urbina A. A comparison of methods for
representing and aggregating
experimental uncertainties involving
sparse data—more results. SAE
International Journal of Materials and
Manufacturing. 2013;6(3):447-473.
DOI: 10.4271/2013-01-0946

[32] Romero V, Swiler L, Urbina A,
Mullins J. A comparison of methods for
representing sparsely sampled random
quantities. Sandia National Laboratories
report SAND2013-4561. September
2013

[33] Bhachu KS, Haftka RT, Kim NH.
Comparison of methods for calculating
B-basis crack growth life using limited
tests. AIAA Journal. 2016;54(4):
1287-1298

[34] Zaman K, McDonald M,
Rangavajhala S, Mahadevan S.
Representation and propagation of both

probabilistic and interval uncertainty.
In: Paper AIAA-2010-2853, 12th AIAA
Non-Deterministic Approaches
Conference; April 12–15, 2010;
Orlando, FL

[35] Pradlwarter HJ, Schuëller GI. The
use of kernel densities and confidence
intervals to cope with insufficient data
in validation experiments. Computer
Methods in Applied Mechanics and
Engineering. 2008;197(29-32):
2550-2560

[36] Sankararaman S, Mahadevan S.
Likelihood-based representation of
epistemic uncertainty due to sparse
point data and/or interval data.
Reliability Engineering and System
Safety. 2011;96(7):814-824

[37] Sankararaman S, Mahadevan S.
Distribution type uncertainty due to
sparse and imprecise data. Mechanical
Systems and Signal Processing. 2013;
37(1):182-198

[38]Hahn GJ, Meeker WQ. Statistical
Intervals—A Guide for Practitioners.
New York: Wiley & Sons; 1991

[39]Montgomery DC, Runger GC.
Applied Statistics and Probability for
Engineers. New York: Wiley & Sons;
1994

[40]Howe WG. Two-sided tolerance
limits for normal populations—Some
improvements. Journal of the American
Statistical Association. 1969;64:610-620

[41] Young DS. Tolerance: An R package
for estimating tolerance intervals.
Journal of Statistical Software. 2010;
36(50):1-39

[42]Winokur J, Romero V. Optimal
design of computer experiments for
uncertainty quantification with sparse
discrete sampling. Sandia National
Laboratories document
SAND2016-12608. 2016

32

Engineering Failure Analysis



[43] Romero V, Winokur J, Orient G,
Dempsey JF. Confirmation of discrete-
direct calibration and uncertainty
propagation approach for multi-
parameter plasticity model calibrated to
sparse random field data. In:
Presentation VVS2019-5172 in the
Archives of the ASME Verification &
Validation Symposium; May 15-17, 2019

[44] Conover WJ. On a better method
for selecting values of input variables
for computer codes. Unpublished 1975
manuscript recorded as Appendix A of
“Latin Hypercube Sampling and the
Propagation of Uncertainty Analysis of
Complex Systems,” Helton JC and Davis
FJ, Sandia National Laboratories report
SAND2001-0417 November 2002

[45]McKay MD, Beckman RJ,
Conover WJ. A comparison of three
methods for selecting values of input
variables in the analysis of output from a
computer code. Technometrics. 1979;
21(2):239-245

[46]Helton JC, Davis FJ. Latin
hypercube sampling and the
propagation of uncertainty in analyses
of complex systems. Reliability
Engineering and System Safety. 2003;
81(1):23-69

[47] Jekel C, Romero V. Bootstrapping
and jackknife resampling to improve
sparse-data UQ methods for tail
probability estimates with limited
samples. In: ASME Paper
VVS2019-5127, ASME 2019 Verification
and Validation Symposium VVS2019;
May 15-17, 2019; Las Vegas, NV

[48] Jekel C, Romero V. Improving tail
probability estimation from sparse-
sample UQ methods with bootstrapping
and jackknifing. ASME Journal
Verification, Validation and Uncertainty
Quantification. Sandia National
Laboratories document SAND2019-
10731 J

[49] Jekel C, Romero V. Conservative
estimation of tail probabilities from
limited sample data. Sandia National
Laboratories Report in Review. 2019

33

Propagating Stress-Strain Curve Variability in Multi-Material Problems: Temperature…
DOI: http://dx.doi.org/10.5772/intechopen.90357


