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Abstract

Anxiety is one of the most common psychopathologies in the general popula-
tion that often begin early in life; however, research on this disorder during early 
developmental stages has been poorly explored compared to adults. A better under-
standing of the anxiety disorder through childhood is essential to develop more 
effective treatments. This chapter provides a general overview of the usefulness of 
animal models of childhood anxiety and its neurobiological bases to discuss how the 
studies on animals meet the several criteria of validity to discover pathophysiologi-
cal mechanisms of human disorders and new treatments for these conditions. The 
research methodology for this chapter consisted in using a thesaurus system such 
as Medical Subject Headings (MeSH) terms of the National Library of Medicine 
to find original articles in databases as PubMed or Web of Science about preclini-
cal findings related to the neuropharmacology of anxiety before adulthood. The 
contribution of this chapter is to provide data from preclinical studies which are 
encouraged to a better comprehension of anxiety at young age.

Keywords: adolescent, anxiety, anxiolytics, animal model, child, rats

1. Introduction

Anxiety is a disorder that can be developed in offspring as a result of aversive 
life conditions. Some factors in the childhood and adolescence that predispose the 
development of anxiety disorders include sexual abuse [1], social isolation [2], 
maternal separation [3], physical abuse, emotional abuse, negligence, and exposure 
to partner violence [4]. In addition, children who experience multiple types of 
abuse can suffer exacerbate symptoms of anxiety and comorbidity with depression 
compared to those who are only exposed to one type of abuse [1, 5, 6].

Although researchers have tried to probe the heritability of anxiety with studies 
of twin pairs, first-degree relatives, or big samples of anxiety-diagnosed patients, 
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findings are inconsistent and could not be replicated [7–9], so there is no clear 
evidence to suggest a genetic component in the development of anxiety.

The assessment and treatment of childhood disorders are challenging because 
this population should not be compared to adults. Children and adolescent have 
their own features (e.g., difficulty to concentrate in school tasks, decreased aca-
demic or athletic performance, avoidance, “clinging” behavior, and tantrum [10]) 
which are in complex interaction with social and physiological environment.

In the similar way in young rats, anxiety has particular characteristics, and 
manifestation differs with age, e.g., in the elevated plus maze, young rodents (males 
and females) have high anxiety levels that increase with age [11]. However, adoles-
cent females with food deprivation have lower anxiety level compared to adult rats 
[12]; these findings suggest that infantile and juvenile stages constitute a period of 
transition toward adulthood.

Therefore, the objective of this chapter is to review preclinical findings of 
experimental anxiety with pharmacological manipulations in young rats. This 
chapter will provide data from preclinical studies which are encouraged to a better 
comprehension of anxiety before adulthood.

2. Neurobiology of anxiety

Anxiety is a disorder of complex etiology, which includes stressful, environmen-
tal, epigenetic, social, and psychological factors that modify neurotransmission 
systems such as serotonergic, noradrenergic, dopaminergic, and glutamatergic 
[13–16]. The most studied neurobiological mechanism is the monoaminergic 
hypothesis, since clinically effective anxiolytic drugs have their place of action on 
various monoamines, such as serotonin (5-HT), noradrenaline (NE), and dopamine 
(DA), neurotransmitters involved in the pathogenesis of anxiety [13, 17]. However, 
in recent years attention has focused on alterations of the hypothalamic-pituitary-
adrenal axis (HPA), neuroplasticity, neurogenesis, and inflammatory response [18], 
opening a new paradigm for the study of the biological bases of anxiety.

The amygdala is the main brain region involved in the processing of fear 
information by integrating prior learning and incoming sensory information from 
cortical and subcortical regions [19]. In anxiety disorders it is common to observe 
a decreased inhibitory neurotransmission mediated by gamma-aminobutyric acid 
(GABA), an increase in excitatory neurotransmission mediated by glutamate [20], 
as well as the interruption of fight-or-flight response mechanism regulated by the 
HPA axis with participation of emotional processing structures including the amyg-
dala, hypothalamus, periaqueductal gray substance, and hippocampus and chemi-
cal mediators such as corticotropin-releasing factor, glutamate, and neuropeptides 
(substance P, neuropeptide Y, oxytocin, orexin, and galanin) [18, 20].

Unpredictable chronic mild stress increases glutamatergic neurotransmission 
and decreases prefrontal cortex (PFC) function in rats which display anxiety-like 
behavior [20], and the imbalance between neuronal excitation and inhibition in the 
medial prefrontal cortex, hippocampus, and amygdala contributes to the develop-
ment of emotional disorders such as anxiety [21]. Chronic dexamethasone produces 
deficient learning and decreased pyramidal neurons in CA3 of the hippocampus in 
rats [22]. These findings lead to improper process of the cognitive responses to face 
aversive situations.

Glucocorticoids like corticosterone in rats can also alter the functional brain 
connections responsible for the emotional processing; for example, chronic stress 
decreases cognitive function due to loss of projections from the basolateral amyg-
dala to the medial prefrontal cortex [23]. These data together indicate that if the 
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organism remains in a state that deteriorates its homeostasis with alterations in the 
functionality of the HPA axis, responsible for regulating the response to stress, it 
leads to the development of diseases such as anxiety [21]. Thus, the secretion of 
hormones, such as glucocorticoids, catecholamines, growth hormone, and prolac-
tin, promotes adaptive responses, but physiopathological processes are triggered 
when the response is excessive [24, 25].

On the other hand, glutamate is an excitatory neurotransmitter that acts 
through different types of N-methyl-D-aspartate (NMDA) and non-NMDA recep-
tors. This neurotransmitter has been associated with anxiety since the increase of 
brain glutamate/glutamine levels induced by monosodium glutamate produces 
anxiety-like behavior measured in two models of anxiety, the open field test and 
the elevated plus maze [26]. In consistency the antagonism of NMDA receptors 
promotes anxiolytic-like behavior in experimental animal models of open field and 
marble burying [16].

3. Anxiety animal models

Animal models help to understand the physiopathology of some human dis-
eases, the development of new therapeutic options, as well as the evaluation of 
the existing ones to identify other relevant effects [27]. Additionally, animals are 
relatively easy to obtain, maintain, and manipulate. They have broad reproducibil-
ity and involve less investment compared with clinical studies.

Our interest is situated in animal models of mental disorders associated to 
altered emotions. In the book The Expression of the Emotions in Man and Animals, 
Darwin makes it clear that through behavioral patterns, animals have the capac-
ity to express their emotions [28]. Based on this capacity, a wide range of animal 
models have been developed, which allow us to understand some aspects of vari-
ous psychiatric disorders as anxiety. Although it is not possible to fully model the 
complexity of human psychopathology, the physiological, anatomical, and genetic 
similarities allow us to understand, with limitations, the neurobiological basis of 
human diseases, as anxiety.

Animal models are very useful approaches at preclinical research to study anxi-
ety and the closest possible to the anxiety disorders described in the DSM-5 which 
could occur at childhood and adolescence and not only in adults. Table 1 shows 
some human anxiety disorders that can be studied in laboratory rats.

The animal models mentioned in Table 1 are used to study anxiety disorders 
and the effectiveness of several pharmacological treatments. These models evaluate 
conditioned or unconditioned responses to novel or stressful stimuli, measuring 

Human condition Rodent model Reference

Generalized anxiety, posttraumatic 
stress

Elevated plus maze, defensive burying test, 
marble burying, open field test, T-maze

[29–33]

Specific phobia: Photophobia, Social 
phobia, Agoraphobia

Light–dark box, social interaction test, hole 
board

[33]

Separation anxiety disorder Maternal separation [34]

Panic disorder T-maze [31–33]

Selective mutism Social interaction test (with measure of pup 
ultrasound vocalizations during the test)

[35, 36]

Table 1. 
Anxiety disorders and their experimental model used at young age.
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behavioral or physiological responses in accordance to international laws that 
regulate the use of laboratory animals, with the aim of minimizing their use, pain, 
and stress [37].

Animal models are accepted as useful tools for studying human pathologies 
if they meet the criteria proposed by Willner [38] which include (i) predictive 
validity consisting of the similarity in the production of alterations of the human 
pathological state with the model and based on the sensitivity and specificity of 
the drugs used to reverse them; (ii) nominal or appearance validity, consisting of 
the similarity between the phenomena observed in the modeled and the human 
disorder; and (iii) construct validity which is the evaluation of the theoretical state 
in the condition under study, which should resemble the theoretical symptomatol-
ogy of the human disorder in the animal model used for its study [38, 39]. These 
criteria continue evolving to have a more relevant approach to the human condition; 
Table 2 summarizes the proposal of Belzung and Lemoine [40] that reformulates 
the classical criteria.

The young age for the purpose of this chapter means the first period of life, 
from 0 to 8 weeks in rats, since offspring depends from the dams to get nutrition 
and physical, intellectual, and social growth. While in humans there are already six 
age stages of development (neonatal, infant, childhood, juvenile, adulthood, and 
elderly), similarly the same can be identified in laboratory rats to research clinical 
conditions at preclinical level. In consistency with the validity criteria to study 
anxiety in childhood and adolescence at preclinical level, researchers should employ 
animal subjects at similar stages of development that can be observed in Table 3.

Behavioral and physiological responses activated by stress are similar in animals 
and humans. Thus, stress as a predisposing factor of anxiety can be experienced 
in several forms and produce nonadaptative responses depending on duration and 
intensity in animals. It is well-known that adverse experiences during sensitive 
developmental periods such as childhood and adolescence increase the predisposi-
tion to the development of neuropsychiatric disorders at the same age and later in 
adulthood [44]. In this sense, the preclinical study of anxiety involves experimental 

Kind of validity Aspect of validity Object of validity (animal/human similarity of...)

Homological 
validity

Species validity Species

Strain validity Strain

Pathogenic 
validity

Ontopathogenic 
validity

Interaction transforming an initial organism into a 
vulnerable organism

Triggering validity Interaction transforming an initial or a vulnerable 
organism into a pathological organism

Mechanistic 
validity

Theoretical cognitive or neurobiological mechanisms 
producing the observable effects of the disease

Face validity Ethological validity Behavioral symptoms of the disease

Biomarker validity Biomarkers associated with the disease

Predictive validity Induction validity Relation between the triggering factor and the 
observable effects of the disease

Remission validity Relation between the therapeutic agent and the 
observable effects of the disease

Source: Belzung and Lemoine [40].

Table 2. 
Update of validity criteria for animal models.
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manipulations that generate stress responses during human childhood- and adoles-
cence-like ages and allow us to observe some features of the disorders.

Some stressors used in infant and juvenile rats are chronic and unpredictable 
mild stress, space restriction, forced swimming, and maternal separation, among 
others. For example, 60 min of space restriction stress in rats at 30, 45, and 60 
postnatal days (PND) increases plasma corticosterone levels and c-Fos protein 
expression in the amygdala and brain stem, suggesting a greater predisposition to 
the development of anxiety disorders [45]. Social stress in juvenile rats produces 
anorexic-like behavior in female mice [46].

Rats of 28 PND display behavioral responses suggestive of anxiety in defensive 
burying test (increase in burying time), an effect that is reversed by the administra-
tion of 1 mg/kg diazepam [30]. Stress by swimming produces a state of anxiety in 
21 PND rats evaluated in the elevated plus maze (lower time spent in open arms and 
higher anxiety index) which is reversed by half of the adult effective dose (0.5 mg/
kg diazepam), further suggesting that the infant rats are seemingly more sensitive to 
low dose of diazepam than adult rats, which is relevant for clinical applications [29].

The underlying mechanisms of anxiety disorders associated with the disruption 
of the mother-child relations at early stages are still unknown, but animal models of 
maternal separation can help to reproduce the molecular changes at the central ner-
vous system responsible for anxiety-like behavior. For example, maternal separation 
in rodents has been shown to induce hyperactivity of the HPA increasing plasma 
corticosterone concentrations [47], where maternal deprivation for 15 and 180 min 
from 2 to 14 PND alters the mRNA mineralocorticoid and glucocorticoid receptors 
in the dentate gyrus of the hippocampus which is accompanied by hypersecretion of 
adrenocorticotropic hormone and corticosterone in plasma [48]. This is important 
because at least in animal models, an increase in plasma corticosterone concentra-
tions is related to anxiety-like behaviors [49–51].

Thus, dysregulation of the HPA axis may be a marker of vulnerability to anxiety 
[48], where the HPA axis may be affected by the postnatal adversity induced by 
maternal separation [52]. Furthermore, 4–8 h maternal separation from 2 to 21 
PND in male C57BL/6 mice increases anxiety-like behaviors in social preference test 
and in the elevated plus maze (reduction of time spent into open arms), which was 
related to an increase in IL-1β in the hippocampus, PFC, and serum [53]. Therefore, 
the inflammatory process induced by maternal separation affects two brain struc-
tures related to the pathophysiology of anxiety, i.e., the hippocampus and prefron-
tal cortex [53].

Maternal deprivation can also affect the brain development of rats, because 24 h 
of maternal deprivation increases the rate of cell death by labeling the 3′ end of 
DNA fragments using terminal transferase in the cerebral cortex and hippocampus 
in 12 PND rats, in addition to an increase in apoptosis-related proteins such as Bax 
and Blc-x in the frontal cortex. However, at 20 PND cell death is not as marked as 

Human age Rat age Development stage

0–24 months 0–28 days Neonatal, lactating, infant

2–11 years — Childhood

12–18 years 29–55 days Peripuberal, juvenile, adolescent

19–64 years 56 days–10 months Adulthood

65 years 11 months Older adult, elderly, aged

Table 3. 
Comparison of the developmental stages between human and rat [41–43].
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in PND 12; therefore, maternal deprivation exerts a greater effect on immature 
neurons which are more vulnerable [47].

Similarly, in male Sprague Dawley rat pups, maternal separation from 2 to 
21 PND for 3 h each day affects the serotonergic system, decreasing the number 
of positive cells to the expression of tryptophan hydroxylase (TPH) and 5-HT, 
identified with immunohistochemistry in the dorsal raphe nucleus, in addition to 
increasing pro-apoptotic proteins (cytochrome c, Bax, and caspase-3) and reactive 
oxygen species (H2O2) in the same brain nucleus, where these changes were again 
related to an increase in anxiety-like behaviors in the elevated plus maze and the 
open field test [54].

It should be noted that the dorsal raphe nucleus is a structure that participates 
in stress processes and mood disorders [55] and the induction of adverse effects in 
early life could indirectly generate a malfunction of the dorsal raphe nucleus and 
the serotonergic system which in the long term induces anxiety-like behaviors. 
Thus, maternal deprivation during critical periods of development will alter 
the functioning and brain wiring of infants exerting a risk factor for psychiatric 
disorders.

Social isolation is another factor of adversity in early stage of development that 
has been studied in basic research. Six hours of social isolation each day from 21 
to 30 PND or from 21 to 40 PND in Wistar Kyoto rats reduced time and open arm 
entries and increased anxiety index in the elevated plus maze with respect to the 
subjects that remained in a group [56]. These findings could be related to a reduc-
tion of neurotrophic factors (BDNF, NGF, Arc), neurogenesis markers (Ki-67, 
BrdU), and the loss of density of dendritic spines in the hippocampus of the rat 
exposed to social isolation from 21 to 49 PND which can be reversed after the 
resocialization of experimental subjects [57]. The above shows how social isolation 
can affect neurotrophic processes and therefore impact the neuronal plasticity of 
the hippocampus, which could be indirectly generating negative effects on mood.

4. Experimental pharmacology of anxiety

Anxiety disorders in children and adolescents include symptoms which are 
similar to adults such as headache, fatigue, muscle tension, shortness of breath, 
and gastrointestinal problems, among others, as well as typical manifestations of 
the scholar child such as difficulty to concentrate in school tasks and decreased 
academic or athletic performance, accompanied by fear, avoidance, “clinging” 
behavior, and tantrum [10].

Research about the treatment of anxiety disorders during the first 18 years of 
life continues growing. The pharmacological approach to reverse anxiety disorders 
includes the selective serotonin reuptake inhibitors (SSRIs) like fluoxetine, fluvox-
amine, and sertraline and serotonin norepinephrine reuptake inhibitors (SNRIs) 
like duloxetine as first-line treatment [58, 59], tricyclic antidepressants like clomip-
ramine as second option [58], alpha-2A-adrenergic receptor agonist like guanfacine 
[60, 61], and benzodiazepines like diazepam as alternative treatment lines [62], 
drugs that have been evaluated with the support of animal models. Table 4 resumes 
the results of some studies that evaluate the anxiolytic potential of substances 
evaluated using animal models of experimental anxiety at young age submitted to 
some stressors.

Interesting findings show that the pharmacological approaches in infant and 
adolescent rats are different from those of adults. The result is that specific adjust-
ments should be applied if hypothesis are made to prove in young rats. Finally, 
all the attempts to increase the literature of anxiety in young subjects are useful 
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to extend the comprehension of this clinical condition in order to dedicate higher 
attention to stress factors associated with it.

5. Discussion

Anxiety disorders can appear from early life stages and have its own character-
istics, so diagnosis and treatment require the same particularity. Despite this, the 
scientific literature on anxiety disorders at young stages of life is less abundant than 
studies in adults. Infant and juvenile population is heterogeneous and complex, so 
the experimental characteristics under which the studies are developed are determi-
nants for the results obtained. Naturally, young experimental subjects show anxiety 
levels that could increase with age, regardless of gender [11]. Some examples of the 
lower anxiety observed in young rats compared to adults are observed in adolescent 
animals with food deprivation which display lower levels of anxiety than adults 
evaluated in the elevated plus maze [12]. Juvenile male and female rats coming from 
pregnant dams exposed to unescapable low-intensity foot electric shocks remained 
more time in the open arms and in the elevated plus maze compared to their adult 
age [67], while adolescent rats exposed to maternal separation have higher levels of 
exploration in a novel environment and lower levels of corticosterone after expo-
sure to that environment, showing lower levels of anxiety, while these effects are 
not observed in rats evaluated in the adult stage [68].

Stressor Result Drug Reference

Ethanol acute 
administration at 7–30 
PND

Open field test: hyperlocomotion 
at 14 PND and reduced time spent 
in the center of the open field, 
suggesting a state of anxiety, both 
effects reversed with omega 3

Omega-3 (720 mg/kg) [63]

Maternal separation at 
0–27 PND

Elevated plus maze: probiotic 
treatment increased time spent in 
open arms
Light–dark box: probiotics reduced 
latency to lighted compartment

Lactobacillus rhamnosus 
strain R0011 (95%) and 
Lactobacillus helveticus 
R0052 (5%)

[64]

Single stress session 
of forced swim for 
15 min at 21 PND

Elevated plus maze: stress reduced 
open arm time spent and increased 
anxiety index, reversed with 
diazepam

Diazepam (0.5 mg/kg) [29]

Open spaces and 
height; low-intensity 
electric shock at 28 
PND

Elevated plus maze: A fatty acid 
mixture (FAM) increased time, 
entries, and percentage in open 
arms and reduced the anxiety 
index similar to diazepam
Defensive burying test: FAM 
reduced burying time

Diazepam 1 mg/kg; 
FAM 1 ml/rat

[65]

Open spaces and 
height at 28 PND

Elevated plus maze: diazepam but 
no oleic acid increased time spent 
on open arms and reduced the 
anxiety index

Oleic acid (10, 20, 40, 
60, and 80 μg/rat)
Diazepam (1 mg/kg)

[66]

Low-intensity electric 
shock at 21 PND

Defensive burying test: diazepam 
produced the anxiolytic effect only 
in a modified smaller round device

Diazepam (1 mg/kg) [30]

Table 4. 
Effects of anxiolytic drugs evaluated in young animal subjected to behavioral test.
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Regarding the response to pharmacological treatments, our group reported 
that the minimum anxiolytic effective dose of diazepam for animals of 21 PND 
is 0.5 mg/kg, being half of the minimum effective dose for adults [29]. While the 
use of selective serotonin reuptake inhibitors (SSRIs) like fluoxetine (first-line 
treatment in clinical practice [62]) shows diverse results, ranging from the absence 
of anxiolytic effects of fluoxetine with acute and chronic treatment [69] until 
paradoxical anxiogenic effects [70], possible explanation for diverse unexpected 
fluoxetine effects on infant and juvenile anxiety is based on mechanism of action 
of fluoxetine and the treatment duration. At first, on acute treatment fluoxetine 
increases extracellular serotonin levels for inhibition of reuptake, and the neu-
rotransmitter remains free to stimulate postsynaptic receptors explaining the tran-
sitory increase in anxiety levels when fluoxetine treatment begins [71]. Later with 
chronic fluoxetine, high concentrations of serotonin inhibit serotonergic neurons in 
the dorsal raphe nucleus, reducing serotonin production and anxiety [71].

Some limitations that researchers face are the differences in experimental condi-
tions, age, and even strains, which can explain the variability of the results obtained 
by diverse research groups. Of course the transition of preclinical findings to human 
condition should be modest and responsible, so generalizations should be avoided. 
With this brief review, it is clear that the expression of anxiety depends on age and 
represents a challenge but also an opportunity to generate knowledge that increases 
the scope of preclinical research. The advantages to study preclinical anxiety may 
consist in the opportunity to know the neurobiology of the developing brain under 
stress and pharmacological conditions. These manipulations on an organ with a 
great plasticity at early stages would lead to better results with potential reversible 
effects before reaching adulthood. Future studies must be encouraged to extend 
literature of infant and juvenile anxiety from preclinical to clinical approach, which 
could prevent adult high incidence of this clinical and disabling condition.

6. Conclusion

Based on preclinical findings, stressors produce human-like alterations before 
adulthood. The consequences are brain changes that impact behavioral performance 
generating anxiety. These effects are studied in the field of the experimental anxiety 
to probe pharmacological substances in order to extend knowledge of mechanism 
of action of new molecules or their combination with other drugs. This chapter 
described some aspects of brain function during early postnatal development 
which involves a critical period of vulnerability to psychiatric conditions. Child and 
adolescent anxiety preclinical research must be extended in order to improve the 
knowledge of this clinical condition.
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