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Distributed Analytics Framework 
for Integrating Brownfield 
Systems to Establish Intelligent 
Manufacturing Architecture
Vigneashwara Pandiyan and Wahyu Caesarendra

Abstract

Intelligent manufacturing otherwise called as smart manufacturing concentrates 
upon optimising production and processes by making full use of data available. It 
is regarded as a new manufacturing model where the entire product life cycle can 
be simplified using various smart sensors, data-driven decision-making models, 
visualisation, intelligent devices, and data analytics. In the Industry 4.0 era, 
Industrial Internet of Things (IIoT) architecture platform is required to streamline 
and secure data transfer between machines, factories, etc. When certain manufac-
turing industry is equipped with this platform, an intelligent manufacturing model 
can be achieved. In today’s factories, most machines are brownfield systems and are 
not connected to any IoT platforms. Thus they cannot provide data or visibility into 
their performance, health, and optimal maintenance schedules, which would have 
improved their operational value. This paper attempts to bridge this gap by dem-
onstrating how brownfield equipment can be IIoT enabled and how data analytics 
can be performed at the edge as well as cloud using two simple use cases involving 
industrial robot on the abrasive finishing process. The focus of this paper is on how 
a scalable data analytics architecture can be built for brownfield machines at the 
edge as well as the cloud.

Keywords: deep learning, digital mechanical system, industry 4.0, machine learning, 
smart manufacturing

1. Introduction

The Industrial Internet of Things (IIoT) is set to change the face of manufactur-
ing. Many industries are already gaining from digitalisation journey and Internet 
of Things (IoT), and industrial manufacturing is leading the way [1–3]. The IIoT 
is considered to be a modern manufacturing concept under Industry 4.0 and has 
been evolving rapidly based on the industrial requirement. A typical IIoT platform 
should consist of cutting-edge information technology (IT) infrastructure for data 
acquisition and sharing [4]. The features of an intelligent manufacturing includes 
real-time data collection and sharing among various manufacturing resources such 
as machines, subsystems, operators, and materials [5].

The ability to “sensorize” all and extract data to offer insights and forecasts 
is a huge benefit for manufacturing [6]. The Internet of Things and data remain 
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Figure 1. 
Architecture of IIoT-based cyber-physical system for manufacturing [11].

inherently linked together. If a system goes down, for example, connected sensors 
can automatically localise the issue. This process is time-intensive when humans do 
it manually. Apart from sensorization, ubiquitous connectivity is the crucial pillar of 
IoT that assures to deliver the value by connecting numerous devices/assets that gen-
erate useful data. Acquiring accurate and reliable data from machines and their com-
ponents is the first step in developing an IIoT architecture. Sensors might directly 
measure the data, which can also be obtained from controllers. Data might also be 
acquired from enterprise manufacturing applications such as enterprise resource 
planner (ERP), manufacturing execution system (MES), supply chain management 
system (SCMS), etc. [7]. As far as data, two important factors have to be considered. 
Firstly, selecting proper sensors (type and specification) for the specific objective is 
critical. Secondly, a seamless and tether-free method to manage the acquisition and 
transfer data considering various data types to the central server is required.

The data generated from IoT devices turn out to be of value only if it gets 
subjected to analysis, which brings data-driven analytics into the architecture. 
Data analytics (DA) is defined as a process, which is used to examine big and small 
data sets with different data properties to extract meaningful conclusions and 
actionable insights. These conclusions of data analysis are usually in the form of 
trends, patterns, and statistics that aid in effective decision-making processes. Data 
analysis requires support such as hardware resources such as GPU and servers for 
computing. The frequency of using the results of analytics may vary from real-time 
problems such as anomaly detection and tool wear [8, 9] to long intervals, such as 
predicting remaining useful life  [10]. Depending on the requirement, analytics can 
be performed locally, i.e. edge or remotely, i.e. the cloud.

According to the aforementioned current problem statement, the IIoT-based 
cyber-physical system for manufacturing can fill this gap. One typical architecture 
of the IIoT-based cyber-physical system for manufacturing is shown in Figure 1. The 
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first IoT layer captures data from IoT devices such as geographic coordinates, RFIDs, 
sensor signals, or other unstructured data. With the help of advanced computer 
networks, such as cyber (or software), resources and tools can be integrated with the 
manufacturing equipment. Connectivity is what enables the three pillar devices, data, 
and analytics to work. Devices must be interconnected to transfer data. Data can-
not be sent or received without reliable high-bandwidth connectivity that supports 
real-time data flow from the many devices living on a network. Without connectivity, 
there would be no data to analyse and no analytics available to optimise systems and 
create efficiencies. IoT deployments would lack scalability. A standardised com-
munication protocol is always required for data exchange. Many IIoT protocols can 
be used for networking machines, such as the Message Queuing Telemetry Transport 
(MQTT) protocol and the Constrained Application Protocol (CoAP). However, 
connectivity also exposes industrial devices to security attacks which not only disrupt 
entire systems but can also pose safety risks. An IIoT platform must provide security 
to minimise risks and keep operations protected from physical breaches and cyberat-
tacks, by monitoring the behaviour of all data sources and alerting operators when 
anomalies are detected in the manufacturing environment. Securing end-to-end IIoT 
systems is critical in order to avoid unwanted financial and safety consequences.

The data are then stored and managed in the edge layer by IIoT platform. 
Like said before, it is the processing of the data acquired and stored that makes 
the factory realise the importance of digitalization. Data processing ranges from 
simple visualisation in the dashboard screen to complex cutting-edge data-driven 
algorithm output. High-end server or industrial PCs are generally used in this 
layer. Because of the cloud’s ability to house large amounts of data, they are a key 
pillar in IIoT architecture. Today, the potential of using cloud technologies for 
advanced manufacturing is very high. Cloud computing can be viewed as a model 
for enabling ubiquitous, convenient, on-demand network access to a shared pool 
of configurable computing resources including networks, storage, services, and 
servers. Cloud computing, as well as IoT, works towards increasing the efficiency of 
everyday tasks, and both have a complementary relationship [12]. On the one hand, 
IoT generates lots of data, while on the other hand, cloud computing paves the way 
for this data to travel [13]. Many cloud providers take advantage of this to provide a 
pay-as-you-use model where customers pay for the specific resources used.

In today’s factories, most of machines/systems are not connected (brownfield) 
and thus cannot provide data or visibility. Multinetwork environments that include 
ageing machines of different types and software do not speak on common con-
nectivity language. These two pose significant challenges for many IIoT solutions 
and hinder the implementation of data analytics. A thorough assessment, planning, 
scoping, and later execution are required for implementing and performing analyt-
ics for such machines to be a part of IIoT architecture, which will be demonstrated 
in this research work with two use case studies.

The paper is organised as follows. A brief introduction to IIoT architecture is 
described in Section 1, followed by a brief overview on online quality measurement 
for manufacturing industries in Section 2. The experimental setup and IIoT archi-
tectural design for data analytics are presented in Sections 3 and 4. The results are 
described in Section 5, followed by conclusions in Section 6.

2. Output quality measurement in manufacturing process

In recent years, the development and optimization of advanced manufacturing 
processes have been continuously pushed to fulfil the higher demand for performance 
specification of the components produced. Due to a need for more consistent products 
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quality, product variability and product complexity, there is an increase in the manu-
facturing cycle and product quality measurement time. The reduction of process 
quality measurement requires decision making by Artificial Intelligence (AI) algo-
rithms for which a data transfer framework for connecting between sensors, robots 
and devices is required. In other words, the human intervention in manufacturing line 
will be decreased with the development of connected intelligent manufacturing floors 
allowing them to concentrate more over the processes optimization, newer product 
designs and even maintenance. By applying an intelligent architecture to take more 
control over the manufacturing processes, human inconsistency and measurement 
time can be reduced and at the same time production capacity can be increased. These 
architectures will also reduce the scrap materials and enable a cleaner environment. In 
this paper, two case studies of the evolution of manufacturing processes from the con-
ventional manufacturing line to smart IoT- enabled manufacturing line is presented. 
The processes used in our case study are deburring and belt grinding.

At present, the manufacturing industries, especially aerospace, are equipped 
with the industrial robots to perform manufacturing processes such as deburring 
and belt grinding for surface finishing. However, the output quality monitoring 
of surface finishing processes such as deburring and belt grinding is accomplished 
through conventional manual measurement. In high-volume productions, a manual 
measurement can lead to inconsistency from operator to operator and result in 
variations in product quality measurement such as thickness and surface roughness. 
Figure 2 describes the deburring process cycle which involves conventional output 
quality measurement. As shown in Figure 2, which starts from the work coupon, 
the cycle only pauses at output quality measurement once the deburring or belt 
grinding process is executed. During the pause, the robot controller retracts the 
industrial robot to its home position. After which, an operator starts the measure-
ment process. After the measurement is done, the cycle continues if the surface 
finish quality measured or required material removal is not achieved.

Figure 2. 
Deburring/belt grinding cycle in manufacturing.
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3. Introduction to cloud computing for smart manufacturing

In cloud computing, there are three categories of services to select from, namely, 
the Infrastructures a Service (IaaS), Platform as a Service (PaaS), and Software as a 
Service (SaaS). The sequence of these three in terms of development foundation can 
be described in Figure 3. PaaS is one layer above IaaS as platform is built on infra-
structure and SaaS is one layer above PaaS as software is built on platform. The IaaS 
provides infrastructure consisting of computer resources and servers with network 
connectivity and cloud capability. Users have direct access to their servers and 
storage usually via application programming interface (API). The PaaS is built on a 
physical server infrastructure and provides a platform where users can build their 
software on. Meanwhile, SaaS provides ready-to-use software for users that can be 
accessed anywhere remotely as long as there is Internet connection. The SaaS, for 
example, are Google Apps, Microsoft Office 365, and Adobe Creative Cloud. Before 
proceeding further, the category of service has to be selected according to the 
requirement needed.

In building the Internet of Things (IoT) application, Software as a Service is 
not a relevant choice to select, unless if there is third-party software found to be 
useful for the application required. Thus, the selection is between IaaS and PaaS. 
Table 1 lists the differences between IaaS and PaaS in the context of manufacturing 
application.

After considering these differences, a conclusion can be drawn. Over the 
consideration of long-term commitment, IaaS would be suitable for the scalability 
to integrate different process-specific applications into one main application. 
However, the scale of this application is an enterprise-level of application. A 
research work explains the study of IaaS architecture in more detail which can be 
used a useful reference for the IaaS level of implementation [14]. Meanwhile, for 
project level, PaaS is most suitable to build the application on. It is because in PaaS, 
there is no need to consider infrastructure development. Instead, the focus can be 
directed towards application development.

In addition to this, what cloud services are available in the market currently? 
In 2009 a performance comparison of several popular cloud services platform 
has been done [15]. The selection of cloud services should be adjusted to the 
time of implementation as cloud services features are always updated and have 
different advantages for different cloud services provider. The implementation 
of algorithm conversion to the cloud services provider is much easier to be done 
now as research platforms such as Python and LabVIEW are currently available. 
In addition to this difference, it is important to understand the architectural 
difference between the categories as explained in Figure 4. Hence, as PaaS is 
concerned, the development required to bring deburring into Industry 4.0 is on 
the applications and data.

The data flow of deburring and belt grinding process that includes the cloud 
services can be explained in Figure 5. In Figure 5, Storage Cloud Service (SCS) is 

Figure 3. 
Cloud services hierarchy.
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Figure 4. 
Architecture difference in cloud services.

Figure 5. 
Deburring and belt grinding data flow conversion from offline to online platform.

Criteria IaaS PaaS

Developer main focus Storage, networking, computing Building application

Platform flexibility to 
build software

Flexible as developer builds the software 
on a platform that is on a common 
infrastructure

Non-flexible as developer builds 
the software on a platform specific 
to the provider

Learning curve Higher learning curve as developer has to 
build both the platform and the software

Lower learning curve as developer 
only has to focus on the software

Scalability Allow more flexibility Has certain limit of scalability

Intercommunication 
between software

Allow software of different platforms 
to communicate easily on the same 
infrastructures

Software of different platforms 
must communicate to each other 
from different infrastructures

Table 1. 
Difference between IaaS and PaaS.
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the storage service to store the sensor data and the result in the cloud. Meanwhile, 
the computing cloud service (CCS) is the computing capacity to process the data. 
Thus, the machine learning is adapted to the cloud through CCS. This architecture 
provides API output for display or other applications when required. In addition, 
the data in SCS is also tapped into offline server or display when required.

The difference in implementation between offline and online data analysis 
through the same machine learning model is described in Table 2, assuming the use 
of cloud services by third party.

4. Experimental setup (case study)

The robot-assisted manufacturing processes are gaining popularity in industries 
that move towards automation. Integration of the processes on the robot helps in 
easing the axis of motion and also ensures that the force applied and repeatability 
is maintained [16, 17]. Abrasive belt grinding and deburring processes are typically 
combined with an industrial robot in the manufacturing industry for achieving the 
desired surface finish and tolerance. In this paper, we will be demonstrating how 
these two brownfield manufacturing systems can be IoT enabled, and analytics 
can be performed at two different levels, i.e. cloud and edge. The process data from 
deburring will be used for edge analytics, and data from belt grinding will be used 
to perform machine vision analytics at the cloud.

4.1 Deburring

The fundamental of Industry 4.0 is the data communication. In deburring, 
the main data communication path happens between (1) the sensors to the DAQ 
(National instrument – Compact RIO) controller, (2) the DAQ controller to the 
robot controller, (3) robot controller to the ABB robot, and (4) DAQ controller to 
the server and cloud. The data communication is done through digital and analog 
input/output with the maximum analog transfer rate at 4 MS/s per module four 
16-bit (64 kb) analog input. This translates to maximum of 256 Mb/s data transfer 
rate per module if the module is fully utilised to its capacity.

Figure 6 explains the data flow in the deburring process. The data transfer occurs 
locally from the sensors and DAQ controller initially. DAQ controller preprocesses 
the sensor data and arrives at a decision based on the trained AI model. The DAQ 
controller feeds the decision output back to the robot controller via its digital-
analogue I/O. In the branch of this local control loop, the preprocessed data is sent to 
the cloud in a suitable protocol with data encryption.

Differences Offline data analysis Online data analysis

Memory storage and 
compute capacity

Machine learning performance 
limited by the built-in storage 
capacity and memory capacity in the 
controller

Machine learning performance limited 
only by the storage and compute quota 
purchased under the predefined budget

Scalability Hardware and software scale-up 
requirement is time-consuming

Only software scale-up requirement is 
time-consuming

Data resource usage 
and compatibility

Local data analysis using predefined 
development environment (e.g. 
LabVIEW)

Cloud data analysis using more 
development environment options (e.g. 
TensorFlow, Kaffe2, Keras)

Table 2. 
Implementation difference between offline and online data analysis.
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The implementation of data analysis to the cloud requires conversion of the 
machine learning algorithm to the cloud. Before moving into this, some fundamen-
tals of the cloud services for Industry 4.0 implementation are explained to under-
stand which platform is suitable for certain application.

4.2 Belt grinding

The current industrial practice of removing weld seam in manufacturing indus-
try involves skilled operator using a belt sander. The component, when removed 
from the production for such operation, poses delay to the production cycle; 
fixturing, clamping, and unclamping cause a loss to the production volume. As an 
alternative, the belt grinder is integrated with the robot (in our case ABB6640). The 
tool path is programmed in the robot controller in such a way that weld seam and 
surrounding areas are blended. Machine vision-based solution is opted to analyse 
the state of the weld seam. If the weld seam is yet to be removed, the controller 
is triggered via flag setting through input/output pin. If the weld is removed, the 
controller is not triggered, and the completion message is sent.

After completion of each pass, the IP camera is triggered to capture the image of 
the component. The edge Pc that triggers image capturing knows the state of tool 
path as it is the constant communication with the robot controller via TCP/IP. The 
image acquired is then passed through a secured network on MQTT protocol to a 
MATLAB instance running on a virtual machine inside Azure cloud services. The 
MATLAB instance has the deep learning model-based encoder-decoder architecture 
on predicting the pixel-wise state of the weld seam. The result is sent back to the 
edge PC, which initiates the tool path again. The cycle continues as long as the 
weld seam is completely blended with the surrounding surface. The deep learning 
algorithm is trained using four different weld seam states. The edge PC triggers the 
robot controller to execute the tool path unless weld seam state four is reached, i.e. 
where the weld seam is wholly removed. The schematic flow of data connectivity 
and decision-making is shown in Figure 7.

Figure 6. 
Data path loop and DAQ to robot communication in deburring.
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5. Results and discussion (case study)

5.1 Deburring

In order to establish data collection and analysis through machine learning 
to predict the deburred surface quality, several equipment have to be prepared. 
Table 3 lists the systems used in this paper. Meanwhile, the system configuration for 
deburring is described in Figure 8. In Figure 8, it can be seen that the controller is 
the core equipment whose functions are to collect the sensor data, analyse, control 
robot action, and upload the data to the server and cloud. Thus, DAQ controller 
specification is crucial to determine the performance of this framework adaptation 
for deburring in the production line.

After understanding the data collection, the next step is to understand how to 
implement machine learning model into deburring process. A schematic is made to 
understand how the machine learning model processes the sensor data in deburring 
and predicts the physical features such as chamfer length and surface finish.

Figure 9 is the training phase to generate a model that correlates the input 
sensor data in deburring to the physical features measured on deburring work 
coupon as output. After the trained model satisfies the accuracy and repeatability 
required, the trained model is again implemented between the input and output. In 
the author’s previous journal paper, an example is discussed for the use of Welch’s 
estimate to compute power spectral density (PSD) to classify the number of passes 
and classify the vibration signal generated by the spindle based on adaptive neuro-
fuzzy inference system (ANFIS) [18]. Meanwhile, in the second journal publication 
of this topic, the authors presented the results of fuzzy inference system (FIS) 
machine learning method to obtain the corresponding output as predicted surface 
finish quality of boss hole chamfer length and also the stage classification of deburr-
ing process [19]. A detailed result on feature extraction and machine learning 

Figure 7. 
Data analytics for the IIoT architecture in the cloud for weld seam prediction.

Equipment Function

ABB robot Robot for machining

DAQ Controller Sensor data acquisition, analysis, and data transmission to the Internet

Sensors Collecting the variables required from the process for analysis

Display Displaying the sensors data, analysis process, and result

Table 3. 
System for industry 4.0 implementation.
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Figure 8. 
Deburring equipment configuration and data path.

Figure 9. 
Fuzzy inference system analysis model training on deburring.

method using ANFIS and FIS can be obtained from previous publications [18, 19]. 
A preliminary study of cloud computing to predict the output quality of deburring 
is presented in [19].

5.2 Belt grinding

An IP camera is introduced to capture the images of various stages of the weld 
seam. The IP camera is incorporated with the help of a tripod stand adjacent to 
the belt grinder. Surface images are captured at the end of every pass of robot arm 
across the weld seam (Figure 10). The camera system is capable of capturing and 
storing the surface images at a resolution of 1240 × 960 pixels. The images are 
subsequently labelled and sent to the Azure cloud with MATLAB Environment 
where the actual model training takes place. The variable grinding parameter used 
to remove weld seam is shown in Table 4.

Azure’s in-built architecture incorporates best practices for creating a full 
MATLAB desktop experience on Azure. This includes connecting to Azure from 
your local desktop using Remote Desktop Protocol (RDP). It sets up a single 
virtual machine containing MATLAB, a private virtual network with an Internet 
gateway, a private subnet, and a security group that opens the appropriate ports 
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Figure 10. 
Analyse data in the Azure cloud with MATLAB [20].

Parameter Description

Belt grinding speed 5000–1100 RPM

Contact wheel diameter 10 mm, 24 mm

Hardness of contact wheel (polyurethane) Shore A Hardness 30, 60, 90

Lubrication Dry condition

Feed 10–40 mm

Belt finishing duration Variable time

Operational mode Position control

Table 4. 
Parameters used in the belt grinding experimental trials.

Figure 11. 
General description of the proposed methodology to train and deploy the model in azure cloud.
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for SSH and RDP access. For training and deploying, we will be using Azure cloud 
service as IaaS.

Figure 11 shows in detail the implementation of encoder-decoder-based deep 
learning model in the cloud. In total, 2000 images taken using the IP vision system 
are labelled offline and stored in the cloud. The MATLAB instance is created in 
the cloud, and required resources for computing are generally chosen before the 
creation of VM on which the MATLAB instance runs. The deep learning model 
is defined to identify four weld seam states. The VGG-16 network is retrained to 
identify the weld seam states. Pixel label layer of the default VGG-16 network is 
replaced by the customised label layer that would identify the weld seam state and 
background of an image. Distribution of pixel count for four different belt states 
and background is identified, and the corresponding weight is redefined on the 
final layer of the VGG-16 network. The weld state identification was performed 
in MATLAB deep learning toolbox. The augmented training image set is used for 
training, and it is ensured that the training accuracy increases and training loss 
decreases with the iteration count. The training is terminated once the parametric 
conditions are met. Once the model is ready for deployment, IP camera sends the 
image frame at an interval of the 1-second interval through secure MQTT to the 
cloud during the actual belt grinding trials. The script in the cloud passes the image 
into the developed model to make the pixel-wise classification. It is to be noted that 
the transfer speed of images from edge to cloud depends on the network traffic. The 
pixels’ classified image is sent back to the edge PC for visualisation through MQTT 
secure network.

6. Conclusions

Two case studies related to the machine learning, deep learning, and cloud 
computing application towards smart manufacturing has been presented in this 
work. A methodology for integrating brownfield systems into IIoT framework to 
facilitate industry 4.0 adaptation is demonstrated. A simple data flow pipeline has 
been established between the edge and cloud framework via MQTT protocol. Cloud 
framework based on IaaS is used to deploy the deep learning model. However, it is 
to be noted that other protocols similar to MQTT can also be used for data transfer. 
The deployment of a robust analytical architectural framework cannot be just 
restricted to putting data processing and analysis software in place at cloud and 
edge. As a plant expands, the analytical framework and supporting hardware need 
to evolve organically. The framework should also support repeated installations 
and setup procedures being carried out simultaneously for brownfield equipment 
as well as systems with in-built IoT. Caution should also be exercised while amal-
gamating the analytical solution in cloud for existing legacy systems, in order to 
preserve their security and integrity.
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