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Abstract

Living in a time when population is continuously ageing, the challenge and 
demand for assessing the age-related pathways, potential diseases and longevity have 
become of major interest. The pharmaceutical industry possesses huge resources in 
this field, mainly due to the recent discoveries of novel mechanisms of action of old-
established, classical drugs. Here we find metformin, a well-established antidiabetic 
medicine but with new potential benefits, as the most recent reports quote. We pres-
ent the main pathways of the possible implications of metformin in the modulation 
of ageing processes, evolution and diseases, focussing on its ageing counteraction, 
based on the latest scientifically based biochemical reports.
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1. Introduction

At present, metformin is the preferred first-line drug used for the treatment 
of type 2 diabetes mellitus (T2DM) [1–4]. However, the journey of metformin 
(1,1-dimethylbiguanide hydrochloride) has not been a simple one. Galega officinalis, 
also termed as French lilac, Italian fitch, or Spanish sainfoin, the herb metformin 
derives from, has been known as a traditional medicine since the seventeenth 
century and was recommended for the treatment of thirst and frequent urination 
(symptoms of diabetes) by John Hill in 1772. The identification of guanidine and of 
its related compounds within Galega officinalis, which proved to be able to reduce 
blood glucose in animals, led to the synthesis of metformin (dimethylbiguanide) 
in 1922. However, it was only in the 1950s that more information on metformin’s 
properties was published and when the name of Glucophage, meaning glucose eater, 
was suggested by Jean Sterne. Metformin was introduced as a treatment for T2DM in 
1958 in the UK and in other European countries, whereas in the USA it was approved 
only in 1994 and started to be used beginning in 1995 [5]. A milestone multicentre 
trial, the United Kingdom Prospective Diabetes Study (UKPDS) in 1998, showed 
that the newly T2DM diagnosed patients receiving metformin for more than a 
decade displayed significant reduction of the cardiovascular events and of diabetes-
related death and highlighted that these effects were independent of the glucose-
lowering efficacy. Moreover, the potentially beneficial effects of metformin on the 
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macro- and microvasculature have also been revealed [5–8]. Finally, in a 10-year 
posttrial analysis, metformin continues to offer cardiovascular benefits [9]. Based 
on these evidence data, in 2009, the American Diabetes Association (ADA) and the 
European Association for the Study of Diabetes (EASD) indicated metformin as the 
first-line therapy for T2DM [10]. Furthermore, metformin holds a significant role in 
the delay/prevention of T2DM onset, as shown by the randomised trial conducted 
in the USA, i.e. the Diabetes Prevention Program (DPP). The study highlighted that 
metformin reduces the incidence of T2DM by 31% compared to placebo in adults 
at high risk for T2DM (obese and with impaired glucose tolerance) [11–14]. Hence, 
metformin is also recommended as a pharmacologic tool for the prevention of T2DM 
in subjects with prediabetes, mainly for those with a BMI ≥ 35 kg/m [2], those aged 
<60 years, and in women with prior gestational diabetes mellitus [15–17].

Ageing continues to be an intruding topic and an area of great interest, constantly 
addressed by researchers worldwide. It encompasses a plethora of complex processes 
that have urged scientists to decipher its underlying mechanisms and to find the 
possible avenues to postpone its onset and that of its associated diseases [18]. Data 
from the literature have demonstrated a sustained ageing of the world’s population, 
estimating a total of around 21.8% of subjects over 60 years old in 2050 and 32.2% in 
2100 [19]. Installed as a result of the interaction between genetic, epigenetic, envi-
ronmental and stochastic factors, ageing involves a progressive decline of the body 
functions as a consequence of the gradual cellular impairment due to a failure of the 
repair mechanisms [20–23]. Age is a major risk factor for the onset of metabolic, 
cardiovascular, neurodegenerative, immune and malignant diseases [24]. Ageing 
has been reported to be conditioned by the genetic factor in a proportion of 25–30%, 
while the remaining 70–75% is ruled by the environmental factor, making it a pos-
sible target for therapeutic tools among which metformin has been found [25, 26].

Beyond its blood glucose-lowering effect, metformin has been described as 
a drug used for preventing or delaying several conditions associated with age-
ing [27]. As such, metformin has been proven useful in overweight and obesity 
[28, 29], hypertension [30], atherosclerosis [31], coronary artery disease [32], 
dementia [33] and cancer [34]. Moreover, in terms of mortality [35], it has been 
shown that patients with T2DM under metformin monotherapy had a longer 
survival than the matched, nondiabetic controls. However, the precise beneficial 
mechanisms by which metformin performs its non-glycaemic work are yet to be 
analysed. Hence, given the complex mechanisms of action of metformin, there is 
a growing interest in approaching and studying the potential anti-ageing effect 
of this drug. With regard to this interest, some large randomised clinical trials 
have been recently set up in order to evaluate the potential role of metformin in 
reducing the burden of age-related diseases. The Investigation of Metformin in 
Pre-Diabetes on Atherosclerotic Cardiovascular outcomes (VA-IMPACT) trial is a 
placebo-controlled study started in February 2019 and aimed at shedding light on 
the potential role of metformin in reducing mortality and cardiovascular morbid-
ity in patients with prediabetes and established atherosclerotic cardiovascular 
disease. More precisely, the primary outcomes include the time to death from any 
cause, nonfatal myocardial infarction, stroke, hospitalisation for unstable angina, 
or symptom-driven coronary revascularisation [27]. The other clinical trial, also 
a placebo-controlled trial, i.e. Targeting Ageing with Metformin (TAME), inves-
tigates subjects who have been diagnosed with one single age-associated disease 
and will provide insight on the ability of metformin to postpone and/or prevent 
the installation of a second pathology, such as cancer, CVD and dementia [13, 36]. 
Finally, more information is needed for a better understanding of the mechanistic 
targets and therapeutic implications of certain drugs (such as metformin) that 
might delay/alleviate the development of age-related diseases [37].
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Herein, we revisit the mechanisms involved in ageing and the mechanistic target 
of metformin as a potential anti-ageing drug, and we review the available data on 
the clinical and experimental results showing the ability of metformin to promote 
healthspan and longevity.

2. Epidemiological data on the anti-ageing effect of metformin

A large body of evidence has demonstrated that metformin could be consid-
ered a geroprotective agent in humans [23]. As explained, the protective role of 
metformin in survival has been largely demonstrated by the UKPDS multicentre 
trial in terms of cardiac and all-cause mortality, as compared with usual care [8, 9]. 
However, given its main role, that is to reduce hyperglycaemia, and knowing that 
a good control of diabetes correlates with an extended lifespan, the question arises 
whether metformin could be accounted as a tool to prolong longevity in patients 
that do not display T2DM. In keeping with this question, a recent systematic review 
by Campbell et al. [23] summarised the studies in which the effects of metformin 
on all-cause mortality or diseases of ageing have been compared to the nondiabetic 
or general population or to diabetics controlling the disease through other means. 
Overall, the meta-analysis revealed that subjects with T2DM under metformin 
treatment have a lower rate of all-cause mortality and longer survival than people 
free of T2DM not using metformin and the general population, suggesting that this 
drug could be an effective instrument to extend the lifespan of those not affected 
by T2DM [23, 35, 38–40]. Moreover, the meta-analysis revealed that subjects with 
T2DM taking metformin had lower rates of all-cause mortality than those following 
other therapies, such as insulin or sulphonylurea [23]. Given these results, it may 
be argued that the outcome is attained by the geroprotective role of metformin 
resulting in delaying or preventing diseases of ageing, such as cancer or cardiovas-
cular disturbances, which are the two most encountered ageing-related diseases 
[23, 41]. Firstly, in terms of malignancies, Campbell et al. [23] showed that people 
with T2DM taking metformin had a lower rate of developing any cancer compared 
with the general population. Moreover, the risk of developing colorectal, breast or 
lung cancer in individuals with T2DM on metformin treatment, as compared to 
those using other therapies, was lower. Secondly, subjects with T2DM following 
metformin therapy displayed a lower rate of any form of cardiovascular disease 
with respect to those managing their T2DM through any non-metformin therapy. 
In addition, although the incidence of stroke was also lower with metformin, for 
myocardial infarction the effect of the drug seems to be non-significant [23].

Finally, apart from the cardiovascular diseases and cancer, there are also other 
age-related pathologies that could be targeted by metformin, such as cognitive 
dysfunction. However, the evidence in patients with T2DM is conflicting with some 
studies showing a protective role of metformin against cognitive decline, whereas 
others are arguing that metformin treatment could induce neurodegeneration as 
well as Parkinson’s and Alzheimer’s disease. Nevertheless, the interpretation of the 
data is difficult given the possible presence of other concomitant conditions that 
may contribute to this cognitive decline [42].

3. Mechanisms involved in ageing

Ageing is a complex process that occurs at the molecular, cellular, organ 
and organismal level that everyone faces in time [43]. It involves the loss of the 
body’s ability to overcome and respond to stress (homeostenosis) by repair and 
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regeneration, thus leading to various disturbances within the human body [24]. 
Overall, the ageing processes are of a heterogeneous and heterochronic nature. As 
a heterogeneous process, ageing can evolve at different rates in diverse organisms, 
while the heterochronic feature implies that cells and tissues within a single organ-
ism can age in an asynchronic manner, finally making chronological age different 
as compared to biological age [24, 43]. Growing body of evidence has shown that 
ageing involves multiple mechanisms that inter-relate with and modulate each 
other. In this respect, two elegant reviews have described nine hallmarks of ageing, 
which have been classified into primary hallmarks (genomic instability, telomere 
attrition, epigenetic alterations, and loss of proteostasis) as the main culprit of 
molecular damage, antagonistic hallmarks (deregulated nutrient sensing, mito-
chondrial dysfunction, and cellular senescence) with beneficial effects when at 
low levels, by protecting the human organism against damage, but with deleterious 
effects when at high levels, and finally, the integrative hallmarks (stem cell exhaus-
tion and altered intercellular communication) that arise when the accumulating 
damage cannot be balanced by homeostatic mechanisms, thus ultimately inducing 
ageing [22, 36].

Genomic instability has been revealed to be a major stochastic mechanism of age-
ing [44, 45]. Broadly, deoxyribonucleic acid (DNA) damage can be induced by both 
exogenous genotoxic factors, such as ionising radiation and ultraviolet irradiation 
as well as endogenous genotoxic agents, i.e. products of normal metabolism that 
lead to the formation of reactive oxygen species (ROS) and subsequently to oxida-
tive stress, that may finally result in deleterious effects on the cell. DNA lesions can 
cause mutations, block transcription and replication but can also trigger DNA dam-
age response (DDR), which implies mechanisms that intervene and arrest cell cycle 
progression, resulting in the repair of almost all the alterations that occur within the 
genome. However, when DNA damage is extensive and prevails over repair, DDR 
effectors trigger cell death (apoptosis) or cell senescence, contributing to ageing 
and age-related diseases [46, 47]. In fact, in ageing, DNA damage overtakes DNA 
repair, leading to genomic instability, a fact sustained by studies showing accumula-
tion of DNA alterations in old tissues [48]. On the other hand, genomic instability 
has been reported to be a driver of accelerated ageing, widely demonstrated by the 
presence of hypersensitivity to genotoxins and defects in genome maintenance in 
progeroid syndromes termed as diseases of accelerated ageing. Collectively, DNA 
damage as a culprit in ageing is highlighted by the accrual of sources of damage, 
i.e. oxidative stress (the oxidative stress theory of ageing) associated with the 
mitochondrial theory of ageing, as mitochondria is the primary source of ROS, 
increased activation of the DDR, mutations and presence of senescent cells along 
with a decreased capacity for DNA repair [47]. Among these factors oxidative stress 
is a well-known pathogenic mechanism and seems to be the most important one 
[49]. The overproduction of ROS along with a reduced antioxidant defence, i.e. 
oxidative stress, leads to DNA, protein and lipid damage [50, 51]. Also, ROS lead to 
age-related DNA lesions acting via nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) which controls cytokine and chemokine expression and 
regulates adhesion molecules [45, 52, 53].

Telomeres are chromosomal end structures that play important roles in the 
protection of DNA from degradation [54]. In each cell division, 20–200 base pairs 
are lost within the telomeres, and telomerase is in charge of repairing telomeres 
after cell division. However, when they reach a certain critical length, i.e. shorten-
ing or attrition, the cells stop replicating and die [43]. The shortening process, as 
the telomerase fails to replicate completely the terminal ends of the DNA molecules, 
has been reported in ageing [55, 56]. Moreover, in humans, damaged telomerase can 
cause degenerative defects associated with ageing [57, 58].
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Epigenetics meaning “above the genes” is termed as the inheritance of changes 
in gene function with no modifications in the nucleotide sequence of DNA [43, 59]. 
Epigenetic changes that comprise alterations in DNA itself as DNA methylation and 
modifications of histones (acetylation and methylation) as well as of other chroma-
tin-associated proteins and chromatin remodelling can also be involved in ageing 
[22]. Sirtuins, a family of NAD-dependent deacetylases that act on Lys16 of histone 
H4, are emerging as a link between cellular transformation and lifespan [59]. Of 
note, epigenetic alterations seem to be reversible, underpinning the anti-ageing 
interventions [60]. Moreover, Greer et al. [61] showed transgenerational epigenetic 
inheritance of longevity in Caenorhabditis elegans suggesting that manipulation 
of specific chromatin modifiers in parents can induce an epigenetic memory of 
longevity in descendants.

Proteostasis or protein stability is an important feature of the cells and involves 
a complex network that coordinates protein synthesis with polypeptide folding, 
conservation of protein conformation and protein degradation [62, 63]. When 
damaged, as a consequence of various external and endogenous stress factors, it 
leads to the accumulation of protein aggregates holding proteotoxic effects and 
becomes a contributor to ageing and to age-related diseases [63–65]. In fact, it has 
been demonstrated that with age, proteostasis becomes compromised, leading to 
proteotoxicity [43, 62, 66]. More precisely, intracellular damaged protein deposi-
tion has been described in age-related diseases such as Alzheimer’s and Parkinson’s 
[62, 63, 67]. Finally, evidence data have revealed a double-sense link between DNA 
damage and proteostasis, which jointly induce an increased cellular lesion [63].

Deregulated nutrient sensing represents another important hallmark of ageing 
[22, 68]. Nutrient sensing is mediated by specific molecular pathways, such as 
insulin and insulin-like growth factor 1 (IGF-1 informs the cells about the presence 
of glucose and has the same intracellular signalling pathway as insulin), termed as 
“insulin and/IGF1-signalling” pathway (IIS) as well as the mechanistic target of 
rapamycin (mTOR) that senses nutrients, whereas AMP-activated protein kinase 
(AMPK) and sirtuins detect the energy levels [22, 43]. All these systems named as 
“nutrient sensing” pathways regulate metabolism and influence ageing [43]. More 
precisely, current data show that anabolic signalling induces accelerated ageing, 
while decreased nutrient signalling (attained through caloric restriction) promotes 
a healthy span and extends longevity [69, 70].

The “insulin and/IGF1-signalling” pathway (IIS) operates on the forkhead box 
proteins or FOXO family of transcription factors and on the mTOR complexes and 
has been reported to be the most conserved ageing-controlling pathway. Indeed, 
mutations that reduce the functions of insulin and IGF-1 receptor or downregu-
late the intracellular effectors, i.e. AKT, mTOR and FOXO, result in increased 
lifespan [22, 69, 71].

The mTOR kinase is part of two complex proteins and is sensitive to high levels 
of amino acids controlling a wide range of cellular functions, mostly anabolic 
metabolism [72]. It is noteworthy that mTOR is a target of rapamycin (an mTOR 
inhibitor), an antibiotic that exerts anti-proliferative effects by acting through this 
specific pathway. Several studies have shown that mTOR manipulation by inducing 
downregulation is involved in extending longevity [22, 43].

Finally, the AMPK pathway and sirtuins that sense changes in energy levels, 
i.e. low levels of ATP, act in the opposite direction as compared to IIS and mTOR, 
their activation leading to increased energy production and decreased ATP utilisa-
tion [22, 43]. In fact, caloric restriction seems to activate the AMPK pathway [73]. 
Finally, upregulation of both AMPK and sirtuins favours healthy ageing [74].

Mitochondrial dysfunction is a feature of ageing that refers to reduced respiratory 
chain efficiency, resulting in electron leak and diminished ATP production [75]. The 
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consequence of mitochondrial dysfunction, installed across ageing, is the formation 
of ROS, and the theory of free radicals as a mechanism inducing ageing has been 
widely discussed [76]. However, this theory has been re-analysed and reconsidered 
as emerging data show that oxidative stress up to a specific threshold has, in fact, a 
beneficial effect in prolonging lifespan [77, 78]. More specifically, it seems that ROS 
in a certain amount may play a role as a trigger of compensatory homeostatic reac-
tions as a response to the ongoing and increasing stress factors that come along with 
ageing, resulting in facing damage and maintaining survival [79]. Still, when over 
the specific threshold, ROS change their purpose and induce deleterious age-related 
effects [77, 80, 81].

Apart from the ROS theory, accumulating data have revealed that impaired 
mitochondrial function may contribute to ageing through other mechanisms, 
such as the increase of permeability in response to stress that triggers inflamma-
tory reactions, the damaged interface between the outer mitochondrial membrane 
and the endoplasmic reticulum as well as reduced biogenesis of mitochondria 
[22]. Furthermore, it seems that both endurance training and alternate-day fast-
ing have the ability to improve healthspan through mitochondrial degeneration 
avoidance [82, 83].

Finally, the mitochondrial dysfunction seems to be related to the hormesis which 
is deemed as an adaptive response of the organism to low doses of a toxic agent or 
physical condition, such as ROS, that induces the ability of the organism to tolerate 
higher doses of the same toxic agent [63]. Hence, although severe mitochondrial 
dysfunction is deleterious, mild respiratory damage may increase lifespan, possibly 
subsequently to a hormetic response [84]. In fact, data from the literature have 
shown that metformin could be considered a mild mitochondrial “toxic agent” as it 
induces a low energy state and activates AMPK [85]. In this respect, Anisimov et al. 
[74] showed that when administrated early in life, metformin treatment increases 
life span in mice.

Senescence is an age hallmark that stands out as a response triggered by genomic 
instability and telomere attrition resulting in growth arrest, thus limiting the 
proliferation of aged and damaged cells [22, 46, 47, 86]. A second important 
feature of senescent cells is the development of a peculiar secretome, termed as the 
senescence-associated secretory phenotype (SASP), which encompasses cytokines, 
chemokines and proteases, resulting in a pro-inflammatory state [87, 88]. Under 
normal conditions the SASP is involved in the recruitment of macrophages, neutro-
phils and natural killer (NK) cells, thus holding a beneficial effect in eliminating the 
senescent cells. However, across the ageing process, the senescence cells accumulate 
resulting in increased cytokine production and recruitment of more immune cells, 
which jointly contribute to the onset of the inflammageing state, a true driver of 
ageing [36, 87]. Moreover, a declined activity of the immune system, termed as 
immunosenescence, is installed in aged people, thus impairing the clearance of 
senescent cells and, in turn, increasing even more the chronic inflammation state. 
Collectively, senescence, inflammageing and immunosenescence promote age-
ing and operate together, rendering aged people more susceptible to age-related 
diseases [87, 89]. Finally, interestingly, mitochondrial dysfunction can also trigger 
cellular senescence, a process termed as “mitochondrial dysfunction-associated 
senescence” (MiDAS). MiDAS support the existence of a strong inter-relation 
between cellular senescence and metabolic dysfunction, highlighting that targeting 
metabolism may be a proper way to extend lifespan in humans [36].

Stem cell exhaustion, i.e. the progressive decline in the regenerative potential 
of the stem cells needed for tissue repair, is another characteristic of ageing. As 
explained, ageing is accompanied by immunosenescence, a condition that results 
from reduced haematopoiesis and that has several deleterious consequences [22].



7

Metformin Modulates the Mechanisms of Ageing
DOI: http://dx.doi.org/10.5772/intechopen.89431

Finally, apart from cellular damage, ageing also implies altered intercellular com-
munication. Inflammation is an ageing-associated damage in intercellular commu-
nication termed as “inflammageing,” as previously described. Inflammageing may 
result from multiple causes, such as the accumulation of tissue damage, the reduced 
ability of the immune system to remove pathogens, the increase of senescent cells 
that produce pro-inflammatory cytokines, immunosenescence that fails to remove 
the senescent cells, the activation of the NFkB transcription factor, as well as the 
onset of a dysfunctional autophagic response [22]. Noteworthy, that inflammation 
is involved in the pathogenesis of obesity and T2DM, diseases that contribute to the 
onset of ageing [71]. Apart from inflammation, the intercellular communication has 
been revealed by the bystander effect referring to senescent cells inducing senes-
cence in neighbouring cells via gap-junction-mediated cell–cell cross talk [90].

Given the aforementioned complex hallmarks of ageing, researchers world-
wide have searched for proper tools to obtain the delay of ageing and the avoid-
ance of age-related diseases. Here we find metformin, a drug that has been 
reported to be useful in modulating some of the age-related features. In fact, 
in cellular and animal models, metformin has been shown to influence and to 
hold beneficial effects on the following age related hallmarks [91]: (1) genomic 
instability [92, 93], (2) telomere attrition [94], (3) epigenetic changes [95], (4) 
proteostasis [96, 97], (5) nutrient-sensing pathways [98, 99], (6) mitochondrial 
function [100], (7) cellular senescence [101, 102], (8) stem cell function [103], 
and (9) low-grade inflammation [104].

4. Experimental evidence on the anti-ageing effect of metformin

Evidence-based data have revealed that metformin holds an important role 
in extending survival and delaying the onset of age-related diseases in nematode 
Caenorhabditis elegans [105, 106] and mice [107], but not in Drosophila melanogaster 
[108, 109]. In this respect, metformin supplementation was shown to increase 
mean lifespan and to prolong the healthspan of nematode Caenorhabditis elegans 
(an experimental model often used to study ageing and anti-ageing therapies) via 
AMPK [106]. Moreover, other authors have shown that metformin has the ability 
to retard ageing in Caenorhabditis elegans by metabolic alteration of its trophic 
microbial partner, E. coli. In brief, metformin disrupts the bacterial folate cycle, 
which reduces the levels of methionine in the worm. Finally, this results in postpon-
ing ageing by triggering a metabolic dietary restriction phenomenon and AMPK 
activation [105, 110]. Based on these results, we might argue another important role 
of metformin, that of modulating human microbiota, i.e. an increased abundance 
of E. coli, resulting in an increased production of short-chain fatty acids, such as 
butyrate and propionate, by which metformin might induce significant positive 
results in T2DM and might interfere with longevity [36, 111, 112].

In a very recent study, Song et al. [113] used the silkworm, a popular experimen-
tal model, to investigate the impact of metformin on lifespan and the underlying 
molecular pathways. They found that metformin prolonged lifespan without reduc-
ing body weight, which suggests that it can increase lifespan by remodelling the 
animal’s energy distribution strategy. Also, metformin increased fasting tolerance 
and levels of the antioxidant glutathione and activated APMK. Finally, these results 
suggest that activity in this pathway may contribute to metformin-induced lifespan 
extension in silkworm by increasing stress resistance and anti-oxidative capacity, 
while reducing energy output for silk product [113].

Studies on ageing and lifespan have also been performed on mice,  highlighting 
the potential anti-ageing effect of metformin, resulting in an extended 
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lifespan [114–116]. Anisimov et al. [116] demonstrated that chronic treatment of 
female mice with metformin significantly increased mean and maximum lifespan, 
even without cancer prevention in that model. In a further study, the authors 
showed that in female mice, metformin increased lifespan and postponed tumours 
when started at young and middle, but not at the old age [74]. Besides the increase 
of lifespan in mice, Martin-Montalvo et al. [107] pointed out that metformin seems 
to mimic some of the benefits of calorie restriction and leads to improved glucose-
tolerance test, increased insulin sensitivity and reduced low-density lipoprotein 
and cholesterol levels without a decrease in the caloric intake. With respect to the 
mechanisms of action, metformin seems to increase the antioxidant activity, result-
ing in reductions in both oxidative stress and chronic inflammation [107].

Finally, as previously mentioned, not all experimental models confirm the anti-
ageing role of metformin. It is the case of Drosophila fruit fly, another animal model 
where the authors showed that metformin induced a robust activation of AMPK 
and reduced lipid stores, but did not increase lifespan. Moreover, they found that 
when administered in high concentrations, metformin is toxic to flies. Finally, it 
seems that metformin appears to have evolutionarily conserved effects on metabo-
lism but not on fecundity or lifespan [108].

5.  Mechanisms of metformin action: A focus on molecular 
pathways that modulate ageing

The main universally accepted role of metformin is to alleviate hyperglycaemia. 
This outcome is obtained through the inhibition of hepatic gluconeogenesis  
[117, 118]. Metformin holds an insulin-sensitising action and insulin-induced sup-
pression of endogenous glucose production [119]. Although other organs have been 
discussed as a target for metformin, such as the gut [120], liver remains the main 
ground of action, as reduced hepatic uptake of metformin prevents the lower-
ing blood glucose effect [91]. There are several mechanisms by which metformin 
downregulates gluconeogenesis. Firstly, metformin induces alterations in cellular 
energetics [117], i.e. by decreasing cellular respiration through inhibition of the 
complex I mitochondrial respiratory chain [121, 122]. The result of this inhibition is 
the increase of the ADP:ATP and AMP:ATP ratios, which subsequently activate the 
cellular energy state sensor AMP-activated protein kinase (AMPK) [91, 110, 123], 
the key player of metformin. Once activated, AMPK leads to an increase in ATP 
production and a decrease in ATP consumption [42]. Noteworthy, AMPK is one of 
the molecular pathways that can modify the rate of ageing [43]. The importance of 
the activation of AMPK in obtaining the reduction in hepatic glucose production 
was investigated by Hawley et al. [85] who showed that an AMPK mutant does not 
respond to metformin treatment. On the other hand, Foretz et al. [124] showed 
that in AMPK knockout mice, the inhibition of gluconeogenesis is still present and 
associated with a reduction in energy state, but this happens in response to higher 
concentrations of metformin as compared to standard treatment. With regard to 
therapeutic concentrations of metformin, it seems that AMPK activation is manda-
tory for the suppression of gluconeogenesis [117, 125]. Finally, we have to mention 
that the activation of AMPK via inhibition of the complex I mitochondrial respira-
tory chain has been recently debated [126] as physiological/low concentration of 
metformin, which cannot induce AMP/ATP change, can still activate AMPK [125].

Another effect mediated by AMPK activation by metformin refers to the inhibi-
tory phosphorylation of acetyl-CoA carboxylase (ACC), which leads to increased 
fatty acid uptake and β-oxidation and hence to improved lipid metabolism and 
subsequently to improved insulin sensitivity [127]. Furthermore, activated AMPK 
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decreases glucagon-stimulated cyclic AMP (cAMP) accumulation, cAMP-depen-
dent protein kinase (PKA) activity and downstream PKA target phosphorylation 
and increases cyclic nucleotide phosphodiesterase 4B (PDE4B). The authors pro-
vided a new mechanism by which AMPK antagonises hepatic glucagon signalling 
via phosphorylation-induced PDE4B activation [128]. Moreover, the decreased PKA 
activity promotes glucose consumption and inhibits glucose output [129]. Finally, 
metformin inhibits hepatic gluconeogenesis through AMPK-dependent regulation 
of the orphan nuclear receptor small heterodimer partner (SHP) [130].

Secondly, AMPK-independent mechanisms by which metformin inhibits hepatic 
gluconeogenesis have been reported [117]. In this respect, Miller et al. [131] point 
towards the ability of the drug to inhibit adenylate cyclase, reduce levels of cAMP 
and PKA activity, abrogate phosphorylation of critical protein targets of PKA, and 
block glucagon-dependent glucose output from hepatocytes through accumulation 
of AMP and related nucleotides independently of AMPK [131]. In addition, met-
formin inhibits the mitochondrial glycerophosphate dehydrogenase, resulting in 
an altered hepatocellular redox state, reduced conversion of lactate and glycerol to 
glucose and hence decreased hepatic gluconeogenesis [132].

Taken together, given the important role of metformin in inhibiting hepatic 
gluconeogenesis and therefore in reducing hyperglycaemia and subsequently 
hyperinsulinemia, jointly, important accelerators of ageing, several studies regard 
metformin as a potential anti-ageing drug [42, 117]. Metformin works through 
complex mechanisms that have been demonstrated to be similar to those associated 
with caloric restriction, a well-known model that underpins extended lifespan and 
healthspan. More precisely, it seems that both metformin and caloric restriction 
induce the same gene expression profile [107, 117, 133].

Another important target involved in changing the rate of ageing is mTOR [117]. 
TOR responds to insulin, amino acids and hormones and is involved in controlling 
a wide range of cellular functions, such as glucose metabolism, lipid and protein 
synthesis, inflammation and mitochondrial function [72]. Metformin has been 
demonstrated to downregulate mTOR in both a AMPK-dependent and AMPK-
independent manner [98, 134–136]. Through stimulation of AMPK, metformin 
induces suppression of ATP consumption by inhibiting energy needing processes, 
such as protein synthesis via mTOR [42, 137]. In addition, through downregulation 
of mTOR signalling and of insulin-like growth factor 1 (IGF-1), metformin influ-
ences cell growth, proliferation and autophagy [42].

NF-kB pathway is another key mediator of ageing. As previously described, it is 
activated by genotoxic, oxidative and inflammatory stress and regulates the expres-
sion of cytokines, inflammation, growth factors and genes that regulate apoptosis 
[45]. Metformin has been demonstrated to inhibit NF-kB resulting in suppressing 
the inflammatory response via AMPK-dependent and independent pathways [138]. 
Also, metformin seems to hold the ability to reduce the endogenous ROS production 
[93] by acting at a mitochondrial level through blockage of the reverse electron flow 
at the respiratory chain complex 1 [139].

Finally, a very recent pathway has been described by Chen et al. [140]. The 
authors showed through genetic manipulation that metformin extends the 
Caenorhabditis elegans lifespan and attenuates age-related fitness decline via a 
mechanism that requires v-ATPase-Ragulator-AXIN/LKB1 of the lysosomal path-
way [140].

In toto, the possible molecular mechanisms by which metformin exerts anti-
ageing effects are [13, 91]: (1) inhibition of mitochondrial complex 1 in the electron 
transport chain and decrease of ROS production [139, 141], (2) activation of AMPK 
[106, 124, 140, 142–144], (3) inhibition of mTOR [106, 134, 135, 140], (4) NF-ĸB 
inhibition [101], and (5) reduced IGF-1 signalling [145].
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6. Conclusions

Ageing encompasses a cluster of processes that induce a gradual decline of the 
human body functions, a condition that everyone faces in time. Also, ageing is a 
risk factor for a gamut of disturbances such as cancer, T2DM and cardiovascular 
and neurodegenerative diseases. Therefore, researchers worldwide strive to find the 
adequate tools in order to delay/avoid the onset of age-related diseases and hence 
promote healthspan. In keeping with this aim, metformin emerges as a drug that, 
beyond its main role to reduce hyperglycaemia, has antitumor effects and works 
as a protector against cardiovascular and neurodegenerative diseases making it a 
potential anti-ageing medicine. Importantly, metformin seems to possess positive 
effects even in nondiabetic subjects. However, the exact mechanisms of action and 
the molecular pathways involved in ageing that are modulated by metformin are not 
fully explained, and further studies are warranted for a better understanding of the 
beneficial effects of this drug.
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