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Chapter

Some Basic and Key Issues of
Switched-Reluctance Machine
Systems
Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou

and Kuan-Yu Chou

Abstract

Although switched-reluctance machine (SRM) possesses many structural
advantages and application potential, it is rather difficult to successfully control with
high performance being comparable to other machines. Many critical affairs must be
properly treated to obtain the improved operating characteristics. This chapter
presents the basic and key technologies of switched-reluctance machine in motor
and generator operations. The contents in this chapter include: (1) structures and
governing equations of SRM; (2) some commonly used SRM converters; (3) estima-
tion of key parameters and performance evaluation of SRM drive; (4) commutation
scheme, current control scheme, and speed control scheme of SRM drive; (5) some
commonly used front-end converters and their operation controls for SRM drive;
(6) reversible and regenerative braking operation controls for SRM drive; (7) some
tuning issues for SRM drive; (8) operation control and some tuning issues of
switched-reluctance generators; and (9) experimental application exploration for
SRM systems—(a) wind generator and microgrid and (b) EV SRM drive.

Keywords: switched-reluctance machine, motor drive, generator system,
modeling, current control, speed control, commutation shift, voltage boosting

1. Introduction

Although switched-reluctance machine (SRM) [1, 2] is not the mainstream
among the existing machines, it still possesses high potentials both in motor and
generator applications [3–6]. Basically, it has the following key features: (i) doubly
salient and singly excited with concentrated windings and (ii) without permanent
magnets and conductors on its rotor. Hence, it has rigid structure and is suited for
high-speed driving applications. In driving control, it possesses highly developed
torque and acceleration capabilities. The employed converter is simple topology and
has fault tolerance. However, the doubly salient structure of SRM makes it have
many inherent drawbacks, such as higher torque ripple, vibration, and acoustic
noise. In addition, the nonlinear winding inductance and non-ideal winding current
waveform render its dynamic modeling and high-performance control more diffi-
cult to achieve. Thus, many key affairs must be treated. The typical ones include
(i) motor design [7], (ii) power circuit design and switching control, (iii) proper
rotor position sensing and commutation setting, (iv) dynamic modeling, (v) current
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control [8, 9], (vi) speed control [10], (vii) commutation shift [11–13], (viii) volt-
age boosting [14–17], (ix) field weakening via commutation shifting [11–13], and
(x) torque ripple and vibration reductions. Under high speed and/or heavy load,
commutation shift with equivalent field-weakening effects is the effective way to
improve the SRM winding current waveforms and thus the torque generating
capability. As the speed is further increased, the voltage boosting approach must be
applied for enhancing the current tracking response. Some possible solutions will be
discussed in this chapter.

SRM can be operated as a generator by properly allocating winding current at
negative winding inductance slope region [18–20]. Owing to the rigid mechanical
structure and ease of starting for cogging torque-free nature, SRM is suited to be a
wind generator. However, the generation behaviors of SRG are also highly
influenced by many critical features, especially the effects of back electromotive
force (EMF), which is negative in generator mode to assist the current during
demagnetizing period. The key issues affecting the performance improvement of
SRG include (i) equipment of excitation source, (ii) commutation setting and
shifting [19], (iii) current switching control, (iv) voltage controls [19], and (v)
power maximization control [18], etc. To effectively counteract the negative effects
of back-EMF, the hysteresis current control PWM with hard freewheeling is nor-
mally adopted. From the exploration one can be aware that commutation instant
tuning is the most effective way in improving the developed power and ripple
characteristics of a SRG.

A suited converter for switched-reluctance machine generating quasi-square
winding current waveform is needed. The surveys for SRM converters can be found
in [21–24]. The asymmetric bridge converter with 2N (N = phase number) switches
possesses the most flexible winding current PWM switching control capability.
Therefore, it is normally adopted, especially the SRM drive with regenerative brak-
ing capability and the SRG.

2. Basics of switched-reluctance machines

2.1 Machine structures

The major features of an SRM are shown in Figure 1. Similar to variable-
reluctance stepping motor, SRM possesses doubly salient and singly excited struc-
ture. It has toothed stator and rotor. The rotor is not equipped with neither wind-
ings nor permanent magnets. Due to its rugged structure, highly developed torque
and acceleration capabilities, low cost, etc., it possesses high application potential,
especially driving at high speed in harsh environments.

For speed drive applications, the stroke angle of an SRM is generally larger than
a stepping motor. Generally, the four-phase 8/6, three-phase 6/4, and three-phase
12/8 SRMs are the most popularly adopted. The stroke angle θs and stroke rate Rs of
SRM can be derived to be.

θs ¼
360°

ns
�
360°

nr

�

�

�

�

�

�

�

�

¼ Ps � Prj j, Rs ¼
360°

θs
strokes=revð Þ (1)

where ns is the stator tooth number, nr is the rotor tooth number, Ps is the stator
tooth pitch, and Pr is the rotor tooth pitch.

The stroke frequency f st of an SRM with θs at the speed n (rpm) can be
derived as
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f st ¼
nR

60
¼

6n

θs
(2)

2.2 Governing equations

Figure 2 shows the configuration and phase equivalent circuit of a four-phase 8/
6 SRM. A simplified model of the SRM is obtained on the basis of the following
assumptions: (a) no mutual flux linkage between phase windings and (b) the
magnetic circuit is linear.

2.2.1 Voltage equation

The per-phase voltage equation of an SRM can be expressed as.

v ¼ iRþ
dλ i, θrð Þ

dt
¼ iRþ

dL i, θrð Þ

dt
¼ iRþ L i, θrð Þ

di

dt
þ iωr

∂L i, θrð Þ

∂θr

¼ iRþ L i, θrð Þ
di

dt
þ e i,ωr, θrð Þ (3)

where v is the winding terminal voltage, i is the winding current, R is the
winding resistance, L i, θrð Þ � L i, θrð Þ Δ ∂λ i, θrð Þ=∂i is the incremental winding

inductance, θr is the rotor angle, ωr is the rotor speed, and e i,ωr, θrð Þ Δ

∂L i, θrð Þ=∂θr½ �iωr is the back electromagnetic force (EMF).

Figure 1.
Key features of switched-reluctance machines.
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2.2.2 Torque equation

The developed torque Tei of an SRM can be derived using energy or coenergy as

Tei ¼
∂Wc i, θrð Þ

∂θr

�

�

�

�

i¼constant

¼
1

2
i2i
∂L i, θrð Þ

∂θr
Δ kti

2
i (4)

where kt Δ 0:5∂L i, θrð Þ=∂θr: Accordingly, the composite electromagnetic devel-

oped torque and the mechanical equation of a N-phase SRM drive can be written as

Te ¼
X

N

i¼1

Tei ¼
1

2

X

N

i¼1

i2i
∂L i, θrð Þ

∂θr
¼ TL þ Bωr þ J

dωr

dt
(5)

where Te is the total electromagnetic torque, N is the phase number, TL is the
load torque, J is the total moment of inertia, and B is the total damping ratio.

2.2.2.1 Switched-reluctance generator

In contrast to SRM drive, SRG converts mechanical input power Pi into electrical
output power Pg as

Te ¼ Ti � Bωr � J
dωr

dt
, Pe ¼ Teωr, Pg ¼ Pe � Pc � Pcu (6)

where Ti is the input shaft torque, Pe is the electromagnetic developed power,
Pcu is the SRM copper loss, and Pc is the SRM core loss.

Comments: From the above governing voltage and torque equations, one can be
aware of the following facts: (i) the SRM back-EMF is dependent on winding
inductance slope, current, and rotor speed; (ii) the current response and the devel-
oped torque performance are affected by the back-EMF, especially under higher
speed and/or heavier load; (iii) tuning the commutation shift angle properly can
improve the winding current tracking performance. As the speed is further
increased, the DC-link voltage boosting approach must be applied instead; (iv) Tei

is proportional to the square of current. Therefore, it possesses highly developed
torque like a series DC motor; (v) for operating as SRG, the generating characteris-
tics are more sensitive to winding current waveform and commutation instant
setting for the negative back-EMF; and (vi) the observed torque can be obtained
from Eq. (5) for achieving direct torque control.

Figure 2.
Configuration of a four-phase SRM and its phase equivalent circuit.
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2.3 Motor and generator operation modes

The phase winding inductance profile versus rotor position and current wave-
forms under motor mode and generator mode are sketched in Figure 3. According
to Eq. (4), arranging the excitation under the region with positive or negative slope
of winding inductance, an SRM can be operated as a motor or a generator.

2.4 Dynamic models

The dynamic modeling and dynamic control affairs can be referred to [2, 10, 25].
The standard SRM drive control belongs to cascade structure consisting inner
current-loop and outer speed-loop. Figure 4(a) shows the hypothesized control
block of an SRM drive under PWM control, wherein the related variables are
defined as phase current command i ∗i  Δ IcSi, IcΔ current command magnitude, and

Si � i-th phase switching function and ii Δ Hi •ð Þ i ∗i is assumed with Hi •ð Þ being the

i-th phase closed-loop current tracking transfer function.
Figure 4(b) shows the detailed phase winding control block, wherein denotes the

current sensing factor. Obviously, the winding current tracking control is significantly
affected by the back-EMF and nonlinear winding inductance. Figure 4(c) illustrates

the speed-loop control block, wherein kt denotes the average torque generating con-
stant. By assuming ideal current control with ii ≈ Ic, the dynamic torque generating
constant is found from Eq. (5) by linearization process at an operation point (ii ≈ Ic0) as

Te0 ¼
1

2

∂L Ic0, θrð Þ

∂θr
I2c0 (7)

Figure 3.
Idealized phase winding inductance L1 θrð Þ and currents of an SRM in motor mode and generator mode.
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Te ¼
1

2

∂L Ic, θrð Þ

∂θr
I2c ¼

1

2

∂L Ic0 þ ΔIcð Þ, θrð Þ

∂θr
Ic0 þ ΔIcð Þ2 (8)

ΔTe ¼ Te � Te0 ≈
∂L Ic0, θrð Þ

∂θr
Ic0ΔIc Δ ktΔIc (9)

with the dynamic torque generating constant being

kt Δ 
∂L Ic0, θrð Þ

∂θr
Ic0 (10)

Obviously, the torque generating constant is not a constant, but rather it is
varied with the changing operating conditions. The robust controls are needed to
yield better performance.

And the dynamic model depicted in Figure 4(c) can be represented from
Eq. (5) as

Hp sð Þ ¼
Kω

Jsþ B
 Δ 

b

sþ a
, a Δ 

B

J
, b Δ 

Kω

J
(11)

where Kω denotes the speed sensing factor.

2.5 SRM converters

There already have many existing converters for SRM drive [22–24]. Among
these ones, the asymmetric bridge converter shown in Figure 5(a) has the most
flexible PWM switching capability, and it is also the most generally adopted one for
SRM drive and SRG. Two diodes and two switches are required in one phase. For
each phase, the lower switch conducts commutation switching, while the upper
switch is in charge of PWM switching.

Figure 5(b) sketches the typical winding current waveforms of SRM and SRG.
Figure 5(c)–(e), respectively, shows the schematics and current paths of three
operation modes: (i) mode-1, excitation mode; (ii) mode-2, soft freewheeling mode;

Figure 4.
Control blocks of an SRM drive with current-controlled PWM scheme: (a) hypothesized control block diagram;
(b) per-phase inner current control loop; (c) outer speed control loop.
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and (iii) mode-3, demagnetization mode or hard freewheeling mode. For a current-
controlled PWM (CCPWM) scheme, hard freewheeling operation will cause the
faster demagnetization owing to the negative demagnetizing voltage rather than
zero voltage being applied. For a SRG, the hysteresis CCPWM scheme with hard
freewheeling (mode-3) is normally applied to counteract the effects of back-EMF
on the winding current response.

2.6 Equivalent circuit parameter estimation and performance test of SRM drive

Figure 6 shows the suggested test facilities for establishing an SRM drive:
(a) stationery test equipment for measuring the key motor parameters and variables,
(b) the SRM drive running characteristics test environment using eddy current
brake, and (c) the alternative SRM drive running characteristics test using load
SPMSG as dynamic load. Since the accurate eddy current brake and torque meter
are not available, this alternative of loading test is worth of adopting. However, the
surface-mounted permanent-magnet synchronous generator (SPMSG) must be
properly set, and it should be noted that the motor efficiency is both speed and load
dependent.

2.6.1 DC test

Powering the stator winding with different values of the DC voltage leads to
various corresponding values of the current. By calculating the sets of readings and
averaging their results, a value of stator winding resistance R is reasonably obtained.

Figure 5.
Asymmetric bridge converter: (a) schematic; (b) SRM and SRG typical winding current waveforms;
(c) excitation mode; (d) soft freewheeling mode; (e) demagnetization mode (or hard freewheeling mode).
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2.6.2 Blocked rotor test

2.6.2.1 AC test

With the rotor being blocked at a specific position, the back-EMF is zero from
Eq. (3). Hence the equivalent circuit of SRM phase winding under blocked rotor can
be expressed in Figure 6(a). The phase winding is excited with a variable-voltage
variable-frequency AC source. At each frequency with fixed current level, the input
power P, frequency f , and RMS values of the input voltage Vd and current Id are
recorded. Similarly, readings are taken at different constant currents. The same
procedure is repeated with an increment of rotor position for the next rotor position
till one rotor pole pitch is covered, namely, from the aligned to unaligned position
of the rotor with respect to the excited stator. From the above sets of readings, the
phase winding inductance at a specified excitation current, frequency, and rotor
position is obtained following the well-known AC estimation approach.

With the measured P, f , Vd, and Id, the phase winding inductance can be
obtained from Figure 6(a) as

L ¼ 2πf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Id=Vð Þ2 � 1=Rcð Þ2
q

� ��1

(12)

where

Figure 6.
Test facilities for SRM drive: (a) stationery test equipment and the equivalent circuit of SRM phase winding
under blocked rotor; (b) SRM drive running characteristics test using eddy current brake; (c) SRM drive
running characteristics test using load SPMSG as dynamic load.
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V ¼ Vd � IdR (13)

Pc ¼ P� I2dR, Rc ¼ V2=Pc (14)

with Vd � Vd∠0
∘, Id � Id∠ϕ, V � V∠δ, Pc, and Rc being the core loss and its

equivalent resistance.

2.6.2.2 LCR meter test

For simplicity, the above measurement procedure is conducted using LCR meter
at various rotor positions under different frequencies. However, the current-
dependent characteristics of winding inductance cannot be obtained, since the LCR
meter is small-signal excitation.

Measured example: The measured three-phase winding inductance profiles of a
three-phase SRM (12/8, 380 V, 2000 rpm, 2.2 kW) using the LCR meter (HIOKI
3532-50 LCR HiTESTER) at 42 Hz and 267 Hz corresponding the speed of 315 rpm
and 2000 rpm are shown in Figure 7. From Figure 7, one can observe that the three
winding inductances are slightly unsymmetrical and have frequency-dependent
characteristic. The winding DC resistance is measured using DC excitation method
as R ¼ 1:43Ω.

2.6.3 No-load test

2.6.3.1 AC test

The SRM is run forcibly at a constant speed. By exciting the SRM phase winding
with AC voltage (or current), one can measure the Hall signal and rotor position
modulated voltage (or current) to observe the adequacy of Hall sensor installation.

2.6.3.2 Constant current injection test

From Eq. (3) one can find that the back-EMF of a SRM is zero at no load. The
constant current injection method is proposed to measure its back-EMF. The con-
stant current source is produced by voltage-to-current converter using the power
operational amplifier OPA 548 shown in Figure 8. The load PMSG coupled to the
test SRM (4-phase, 8/6, 48 V/2.3 kW, 6000 rpm, DENSEI Company, Japan) is
powered by the commercial inverter and turned at a constant speed. The measured

Figure 7.
Measured winding inductance profiles of an example three-phase SRM.
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winding terminal voltage v and quadrature Hall signals by the constant current
injection at i ¼ 0:979A and ωr ¼ 3000rpm are also plotted in Figure 8. The mea-
sured voltage v is approximately equal to the back-EMF for the negligibly small
winding resistance drop. From the measured results, one can be aware of the
correctness of Hall sensor installation of this example SRM.

Comments: If the driven device for the test SRM is not available, one can turn a
rope wound on the motor shaft.

3. Possible front-end converters

3.1 DC/DC front-end converters

The typical system configuration of a battery-powered SRM drive with DC/DC
front-end converter is shown in Figure 9. The equipped DC/DC converter may
possess some merits: (i) the selection of battery voltage is more flexible; (ii) the
boostable and well-regulated DC-link voltage can enhance the motor driving
performance, especially in high speed and/or heavy load. If the regenerative braking
with energy recovery battery charging is desired, the bidirectional DC/DC con-
verter must be employed. Figure 10(a) and (b) shows two bidirectional front-end
DC/DC converters. For the latter, the DC-link voltage can be made smaller or

Figure 8.
Measured winding terminal voltage v and Hall signals of an example SRM by constant current injection at
0.979A and 3000 rpm.
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higher than the battery voltage. The motor drive may possess better performance
over wider speed range.

3.2 AC/DC front-end converters

For AC power (utility power)-fed SRM drive as indicated in Figure 9, one
can replace the DC/DC converter with a suited type of boost switch-mode
rectifier (SMR). The SMRs can provide boosted and well-regulated DC-link
voltage to enhance the motor drive driving characteristics with good line drawn
power quality. Figure 11(a) and (b) shows a boost unidirectional SMR and a
boost/buck bidirectional SMR. The latter possesses higher flexibility in voltage
transfer ratios.

Figure 9.
A SRM drive with front-end DC/DC converter or SMR.

Figure 10.
Two typical bidirectional interface DC/DC converters: (a) one-leg boost/buck converter; (b) H-bridge
four-quadrant converter.

Figure 11.
Two boost type SMRs: (a) unidirectional SMR; (b) bidirectional SMR.
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4. Some key issues of SRM and SRG

Some key issues affecting the operating characteristics of an SRM drive and an
SRG system are depicted in Figures 12 and 13. From Eqs. (3) and (5), one can be
aware that commutation angle setting and shifting are the critical factors affecting
the SRM and SRG winding current tracking characteristics. Under higher speed
and/or heavier load, the DC-link voltage boosting must be adopted. This task can be

Figure 12.
Key issues affecting the performance of an SRM drive.

Figure 13.
Key issues affecting the performance of an SRG system.
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fulfilled by adding a proper front-end DC/DC converter for battery-powered drive
or SMR for utility-powered cases.

To comprehend the effectiveness of voltage boosting approach, a battery
(48 V)-powered SRM drive [26] is equipped with a one-leg boost/buck interface
converter as shown in Figure 10(a). Figure 14(a) and (b), respectively, shows the
measured DC-link voltage Vd, boost switching signal, phase-1 winding current i1,
and its command i ∗1 at (ωr ¼ 6000 rpm, RL ¼ 6:3Ω, RL denotes the load resistance
of the lad PMSG) under (Vb ¼ 45 V, Vd ¼ 45 V) and (Vb ¼ 40 V, Vd ¼ 64 V). Sig-
nificant improved winding current response by boosting the DC-link voltage can be
observed from the results.

5. Example SRG system: a grid-connected SRG-based microgrid

5.1 System configuration

Figure 15 shows the circuit of the grid-connected SRG-based microgrid with
bidirectional 1P3W isolated inverter [27]. The wind SRG is followed by an inter-
leaved DC/DC boost converter to establish the 400 V microgrid common DC bus.

Figure 14.
Measured DC-link voltage Vd, boost switching signal Sb, phase-1 winding current i1, and its command i ∗1 at
(ωr ¼ 6000 rpm, RL ¼ 6:3 Ω): (a) Vb ¼ 45 V, Vd ¼ 45 V (fixed); (b) Vb ¼ 40 V, Vd ¼ 64 V.

Figure 15.
Schematics of the grid-connected SRG-based microgrid with bidirectional 1P3W isolated inverter.
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The bidirectional isolated 1P3W load inverter with 60 Hz 110 V/220 V AC output
voltages is served as a test load. A supercapacitor (SC) placed at the SRG output
provides improved voltage regulation caused by fluctuated wind speed. The other
energy storage devices and other constituted parts are neglected due to the limit of
scope.

The major features of the established SRG system are summarized as (1) SRG:
four-phase, 8/6, 48 V, 6000 rpm, 2.32 kW (DENSEI company, Japan); (2) asym-
metric bridge converter: constructed using MOSFET IRLB4030PBF (100 V/180A
(continuous), 730A (peak)); (3) SC: 48 V/66F; and (4) excitation source:
Ve ¼ 12 V.

The control scheme of wind SRG is shown in Figure 16. It consists of an outer-
loop voltage controller and an inner-loop HCCPWM scheme. In addition, the
dynamic shift controller (DSC) is designed to automatically make the commutation
shift according to the average voltage tracking error εv. On the other hand, since the
back-EMF of SRG is proportional to the rotor speed and winding current, the
voltage command v ∗

d is determined according to rotor speed ωr and winding current
command.

5.2 Some experimental results

5.2.1 SRG-based microgrid

The established wind SRG-powered DC microgrid is evaluated first. Figure 17
(a) shows the measured microgrid DC-link voltage vd, current command i ∗1 , and
phase-1 winding current i1 of the SRG under (ωr ¼ 6000 rpm, Rdc ¼ 200 Ω). And
Figure 17(b) plots the measured output voltage vdc, DC-link current id, and induc-
tor currents (iL1, iL2) of the interleaved converter. As the results, the interleaved
DC/DC boost interface converter can establish the microgrid common DC bus
voltage (400 V) from the SRG output (48 V) successfully.

To evaluate the performance of the microgrid under changed SRG driving speed,
at v ∗

d ¼ 48 V and v ∗

dc ¼ 400 V, the measured ω0
r, vd, and vdc under varying driven

speed ωr ¼ 6000 ! 5000 ! 6000 rpm at Rdc ¼ 320 Ω are shown in Figure 18.
From the results, one can deduce that the developed DC microgrid owns well-
regulated common DC bus voltage under varied SRG-driven speed.

Figure 16.
Control scheme of the wind SRG.
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5.2.2 Wind SRG-powered DC microgrid with bidirectional 1P3W inverter

5.2.2.1 Microgrid-to-home (M2H) mode

The 1P3W inverter is operated under autonomous M2H mode, and SRG is
driven at 6000 rpm. The measured DC-link voltage vd and the phase-1 winding
current i1 using PR controller are shown in Figure 19(a). And Figure 19(b) shows
the DC-link current id, the inductor currents (iL1, iL2), and the common DC bus
voltage vdc of the interleaved boost converter. Well-regulated common DC bus
voltage vdc (400 V) is established by the designed interleaved boost converter.

Figure 17.
Measured results of the developed SRG-based DC microgrid at (ωr ¼ 6000 rpm, Rdc ¼ 200 Ω): (a) vd, i

∗

1
and i1 of the SRG stage; (b) vdc, id, iL1, and iL2 of the interleaved boost interface converter.

Figure 18.
Measured ω0

r, vd, and vdc of the established SRG-based DC microgrid under varying driven speed ωr ¼ 6000 !
5000 ! 6000 rpm at Rdc ¼ 320 Ω.
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Figure 19(c) shows the measured secondary-side voltage vdi, the primary-side
resonant capacitor voltage vcp, and the primary-side resonant current ip of the
bidirectional LLC resonant converter. And the measured steady-state waveforms
vAB, vAN, and vNB at ZA ¼ 132:25 Ω, ZB ¼ 132:25 Ω, and ZAB ¼ 484 Ω are shown in
Figure 19(d). The results show that normal M2H operation is achieved.

Figure 19.
Measured results of the established DC microgrid with 1P3W load inverter at ωr ¼ 6000 rpm and the loads
(ZA ¼ 132:25 Ω, ZB ¼ 132:25 Ω, ZAB ¼ 484 Ω): (a) (vd, i1); (b) vdc, id, iL1, iL2ð Þ; (c) vdi, ip, vcp

� �

;
(d) vAB, vAN , vNBð Þ.

Figure 20.
Measured results of the established DC microgrid with 1P3W load inverter in M2G mode at the power
command P ∗

u ¼ �800 W
� �

under the loads ZA ¼ ZB ¼ ZAB ¼ ∞ð Þ: (a) (vd, i1); (b) (vdc, id, iL1, iL2);

(c) vdi, ip, vcp
� �

; (d) vAB, io1, iuAð Þ.
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5.2.2.2 Microgrid-to-grid (M2G) mode

In M2G mode, the SRG is driven at 6000 rpm and the isolated 1P3W inverter is
employed. The discharging power command is set as P ∗

u ¼ �800 W; Figure 20
(a)–(d) shows the measured steady-state waveforms of vd, i1ð Þ, vdc, id, iL1, iL2ð Þ,
vdi, ip, vcp
� �

, vAB, io1, iuAð Þ of the SRG stage, the interleaved boost converter, the
bilateral LLC resonant converter, and the 1P3W inverter under the loads
(ZA ¼ ZB ¼ ZAB ¼ ∞). According to the experimental results, the M2G operation is
achieved with low distortion.

5.2.2.3 Grid-to-microgrid (G2M) mode

The DC bus voltage vdc ¼ 400 V is established by the bidirectional 1P3W
isolated inverter from the mains. And a test load resistor Rdc is placed across the DC
bus. The measured vdc, is, vcsð Þ and vdi, vab, io1ð Þ at Rdc ¼ 200 Ω are shown in
Figure 21(a) and (b). The normal G2M operation can also be observed from the
results.

6. Example SRM drive: a battery-/SC-powered EV SRM drive

6.1 System configuration

The power circuit of the established EV SRM drive is shown in Figure 22(a)
[28]. It consists of a battery bank and a SC bank with their bidirectional DC/DC
converters, a SRM drive, a test load, and a dynamic brake leg. Figure 22(b) shows
the control scheme of the SRM drive, whereas the control schemes of battery, SC,
and dynamic brake are neglected here.

The major features of the developed EV SRM drive are (1) SRM: 3-phase, 12/8,
550 V, 1500 rpm, 2.2 kW; and (2) asymmetric bridge converter—it is constructed
using two three-phase IGBT modules CM100RL-12NF (Mitsubishi Company). The
switches (Q1, Q5, Q9) are in charge of PWM switching control, and (Q4, Q8, Q12)
are commutation switches.

The proposed control scheme of the developed SRM drive shown in Figure 22
(b) consists of the outer speed-loop, the inner current-loop, and a dynamic com-
mutation tuning (DCT) scheme. In the proposed control scheme, the basic feedback
controller is augmented with an observed back-EMF current feed-forward control-
ler (CFFC) and a robust current tracking error cancelation controller (RCECC) with

Figure 21.
Measured results of the HF-isolated single-phase three-wire load inverter in G2M charging mode with
Rdc ¼ 200Ω: (a) vdc, is, vcsð Þ; (b) vdi, vab, io1ð Þ.
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the robust weighting factorW i sð Þ ¼ W i= 1þ τisð Þ, W i ¼ 0:4, τi ¼ 2:6525� 10�4s.
The DCT scheme is proposed here to conduct the commutation shift automatically.
As shown in Figure 23, in order to let the winding current be the commanded value
within the advanced shift angle in the minimum and constant inductance region,
from the voltage equation listed in Eq. (3), one can obtain

vdc ¼ Riþ e i,ωr, θrð Þ þ L i, θrð Þ
di

dt
ffi Lmin

Ic
ΔTβ

(15)

where ΔTβ denotes the advanced shifting time interval within which the wind-
ing current being linearly risen to Ic, where R ffi 0, ∂L i, θrð Þ=θr ¼ 0, e i,ωr, θrð Þ ¼ 0,
and L i, θrð Þ ¼ Lmin are assumed. Thus, the required dynamic commutation
advanced shift angle βd can be derived from Eq. (15):

βd ¼ ΔTβωr ¼
Lmin

vdc
Icωr (16)

Figure 22.
The EV SRM drive: (a) schematic; (b) SRM drive control scheme.

Figure 23.
The proposed dynamic commutation tuning mechanism.
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6.2 Some experimental results

6.2.1 Winding current responses

Figure 24(a)–(c) shows the measured (i ∗1 , i1) at (Vdc ¼ 550 V, Rm ¼ 320 Ω,
ωr ¼ 1000 rpm) by the PI control augmented with the back-EMF CFFC and the
RCECC, respectively. Obviously, the effectiveness of the proposed current control
methods can be observed from the results. Figure 25(a) and (b) shows the mea-

sured i ∗1 , i1
� �

by all controls at Vdc ¼ 550 V, Rm ¼ 37:33 Ω,ð ωr ¼ 2000 rpmÞ

without and with DCT. One can observe that applying DCT can let the winding
current tracking control be improved.

6.2.2 Regenerative braking

By exciting the winding under the negative winding inductance slope region, the
SRM will be operated as an SRG. The SRM is initially driven to 2000 rpm under
(Vdc ¼ 550 V,ωr ¼ 2000 rpm, Rm ¼ 61:3 Ω). Then the speed command is set from
ω ∗

r ¼ 2000 rpm to 0 rpm with 600 rpm/s decelerating rate. The measured speed
command ω ∗

r , speed ω0
r, winding current command Ic, and DC-link voltage vdc are

shown in Figure 26(a). Figure 26(b) confirms the successful SRG operation during
regenerative braking from the winding current waveform.

Figure 24.
Measured i ∗1 , i1

� �

of phase-1 winding at Vdc ¼ 550 V, Rm ¼ 320 Ω,ωr ¼ 1000 rpmð Þ: (a) PI only;
(b) PI and back-EMF CFFC; (c) PI, back-EMF CFFC, and RCECC.
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6.2.3 Performance evaluation of the established EV SRM drive

6.2.3.1 Battery only

First, let the SRM drive be powered by battery only; the measured
ω0
r,ω

∗

r , vb, ib, vdc
� �

at Vb ¼ 156 V, Vdc ¼ 550 V, Rm ¼ 455 Ωð ) due to the speed
command setting of ω ∗

r ¼ 0 rpm ! 2000 rpm ! 1500 rpm ! 2000 rpm !
1000 rpm ! 2000 rpm ! 0 rpm with rising rate and falling rate both 300 rpm/s
are shown in Figure 27. Normal speed tracking and battery discharging/charging
characteristics are seen from the results.

6.2.3.2 Battery and supercapacitor

The measured ω0
r,ω

∗

r , vb, ib, vsc, isc, vdc, idb
� �

of the battery/SC hybrid energy-

powered EV SRM drive at (Vb ¼ 156 V, VSC ¼ 100 V, Vdc ¼ 550 V, Rm ¼ 455 Ω)
due to the speed command setting of ω ∗

r ¼ 0 rpm ! 2000 rpm ! 1500 rpm !
2000 rpm ! 1000 rpm ! 2000 rpm ! 0 rpm with rising rate and falling rate both
300 rpm/s are shown in Figure 28. Compared to Figure 27, much smaller battery
discharging currents are yielded thanks to the assistance of SC.

Figure 25.
Measured i ∗1 , i1

� �

of phase-1 winding at Vdc ¼ 550 V, Rm ¼ 37:33 Ω,ωr ¼ 2000 rpmð Þ by all controls
without and with dynamic commutation tuning: (a) without DCT, β ¼ 0∘; (b) with DCT, β ¼ 1:73∘.

Figure 26.
Measured results during braking by letting the speed command be changed from ω ∗

r ¼ 2000 rpm to 0 rpm with
600 rpm/s falling rate: (a) speed command ω ∗

r , speed ω0
r, winding current command Ic, and DC-link voltage

vdc; (b) trigger signal and phase-1 winding current i1.
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6.2.3.3 Varied DC-link voltage

The DC-link voltage setting approaches used for comparison are shown in
Figure 29, which are listed below:

1.Fixed DC-link voltage: Vdc ¼ 550 V (0≤ωr ≤ 2000 rpm)

2.Varied DC-link voltage:

Figure 27.
The EV SRM drive powered by battery only at Vb ¼ 156 V, Vdc ¼ 550 V, Rm ¼ 455 Ω.

Figure 28.
The EV SRM drive powered by battery and SC at Vb ¼ 156 V, VSC ¼ 100 V, Vdc ¼ 550 V, Rm ¼ 455 Ω.
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i. Boosted DC-link voltage: Vb ¼ 156 V, Vdc ¼ 156 V 0≤ωr ≤ 500 rpmð Þ;
156<Vdc ≤ 550 V (500<ωr ≤ 2000 rpm)

ii. Lowered and boosted DC-link voltage: Vb ¼ 156 V, Vdc ¼ 100 V
0≤ωr ≤ 500 rpmð Þ; 100<Vdc ≤ 550V (500<ωr ≤ 2000rpm)

Figure 30(a)–(c) shows the measured results of the developed EV SRM drive
under three DC-link voltage setting approaches. And the energies of battery are

Figure 29.
Voltage profiles of DC-link versus motor speed.

Figure 30.
Measured results of the SRM drive powered by the battery due to ramp speed command change with changing
rate of 80 rpm/s at (Rm ¼ 322 Ω) and (ωr ¼ 0 rpm ! 2000 rpm ! 0 rpm): (a) fixed voltage
(Vdc ¼ 550 V); (b) boosted voltage (Vb ≤Vdc); (c) with lowered/boosted voltage Vb ≥Vdc or Vb ≤Vdcð Þ.

Figure 31.
Measured energies of battery of the developed standard SRM drive powered by battery with three DC-link
voltage setting approaches due to ramp speed command change with changing rate of 80 rpm/s at
(Rm ¼ 322 Ω) and (ωr ¼ 0 rpm ! 2000 rpm ! 0 rpm).
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compared in Figure 31. From Figure 31, the effectiveness in energy saving by
applying the lowered/boosted DC-link voltage over the boosted and the fixed ones
can be observed.

7. Conclusions

Compared to other machines, SRM is more difficult to control for yielding
satisfactory operating characteristics. This chapter has presented some basic and
key issues for SRM operated as motor and generator. These include structural
features, governing equations and dynamic model, SRM converter, some front-end
DC/DC converters and SMRs, some key motor parameters estimation and experi-
mental performance evaluation of an SRM drive, commutation scheme, dynamic
controls, reversible and regenerative braking operation controls, operation control
and tuning issues of SRM and SRG, etc. Finally, two example SRM plants are
presented to demonstrate the affairs being described, including a wind SRM-based
microgrid and an EV SRM drive.
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