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Chapter

A Review on Metal
Oxide-Graphene Derivative
Nano-Composite Thin Film
Gas Sensors
Arnab Hazra, Nagesh Samane and Sukumar Basu

Abstract

Most of the available commercial solid-state gas/vapor sensors are based on
metal oxide semiconductors. Metal oxides (MOs) change their conductivity while
exposed to gas or vapors ambient can be utilized as gas or vapor sensing materials.
In recent days, graphene has attracted tremendous attention owing to its two-
dimensional structure with an extremely high surface to volume ratio, electron
mobility, and thermal conductivity. However, intrinsic graphene is relatively inef-
ficient for the adsorption of gas/vapor molecules. In this regard, graphene oxide
(GO) and reduced graphene oxide (rGO), which are graphene species
functionalized with different oxygen groups that offer a higher amount of adsorp-
tion sites improving the sensitivity of the film. Up to now, many research groups
across the globe have reported the promising performance towards gas detection
using various GO/rGO-metal oxide nanocomposites. This chapter reviews the com-
posites of graphene oxide or reduced graphene oxide and metal oxides in nanoscale
dimensions (0-D, 1-D, 2-D, and 3-D) for gas sensing applications considering two
specific focus areas, that is, synthesis of nanocomposites and performance
assessment for gas/vapor sensing.

Keywords: nanoscale metal oxide, graphene derivatives, nanocomposites,
efficient gas sensing

1. Introduction

In today’s world, gas/vapor sensors have received significant attention because
of their important applications in numerous areas such as environmental monitor-
ing at industry and domestic area [1], disease diagnosis [2], agriculture [3], indus-
trial wastes [4], food quality monitoring, etc. The detection of gases like NO, NO2,
NH3, CO, CO2, SO2, H2S, etc. is essential in many fields especially in environmental
monitoring due to their toxicity and the related risk to the ecosystem [1–4]. Detec-
tion of volatile organic compounds (VOCs) is of great importance in environmental
safety, supervision of human health, and food quality monitoring [1–3]. The detec-
tion of frequently used VOCs like acetone [5], formaldehyde [6], methanol [7], etc.
is essential because they produce toxic effects, even in low concentrations, on
human health. Detection of ethanol in human breath is important to restrict the
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drunken driving-related issue [8]. Timely detection of released VOCs from stored
vegetables and fruits is important to monitor their quality and freshness [9]. So,
simple and reliable detections of gases and VOCs are important in everyday life.

Most of the existing commercial gas/vapor sensors are based on metal oxide
(MO) semiconductors and polymer materials. However, the limitations of these gas
sensors can be one or more as follows: costly, low sensitivity in lower ppm or ppb
level, poor selectivity, limited lifetime, poor repeatability, difficult to miniaturiza-
tion high power consumption [4, 10, 11], etc. As an alternative, nanostructured
material-based gas/vapor sensors have gained significant importance due to many
promising electrical, thermal, and optical characteristics combined with very high
effective surface area, high sensitivity, fast response and recovery, selectivity,
repeatability and stability [11], etc. Different carbon nanomaterials, such as
graphene, graphene oxide (GO), carbon nanotube (CNT), charcoal, etc. have been
shown to be promising gas/vapor sensing behavior due to the simple modifying
their sensitivity by easy chemical treatments [12–14].

The limitations of intrinsic graphene are: (i) difficult to synthesize in large scale,
(ii) it has almost no functional groups that can use for the adsorption of gas/vapor
molecules, and (iii) it has metallic behavior with almost zero band gap [4, 13]. The
prime performance enhancement methods in graphene-based sensors are found to
be suitable impurity doping, composite formation, functionalization, implementa-
tion in field-effect transistor (FET) structure, etc. In this situation, reduced
graphene oxide (rGO), which is graphene functionalized with different oxygen
groups that provide enhanced adsorption sites, is more favorable for improving
sensitivity. Besides very high thermal stability, the rGO sample contains many
dangling bonds which can act as adsorption sites for gas analytes [15, 16].

Although many literatures suggested that the gas sensing performance can be
improved by the structural and morphological variations, this is an insufficient
approach for the growing demands of the gas/vapor sensing device performance.
Single component transition metal oxide and carbon-based materials still suffer
from some limitations arising from their inadequate physical and chemical charac-
teristics that may hinder their large scale applications for high-performance
gas/vapor sensors. Owing to their variable chemical conformation, synergistic
properties, heterostructured nano-hybrids components, and nanocomposites are
expected to show more admirable gas/vapor sensing performance [15, 17].

Metal oxide nanostructures are frequently hybridized with (i) noble and transi-
tion metals like Pd, Pt, Au, Ag, Ni, Nb, and so on, (ii) other metal oxides,
(iii) carbon-based nanomaterials like CNT, graphene, and graphene-derivatives like
GO and rGO to improve the gas sensing performance. Among all these
functionalized materials, graphene and its derivatives attract tremendous attention
for hybridizing with nanostructured metal oxides for promising gas/vapor sensing
applications. Improvement of gas sensing properties of graphene/metal oxides
hybrids principally depends on the following four factors:

(i) graphene derivative like GO or rGO supplies more dangling bonds and active
interaction sites for gas/vapor molecule adsorption/reaction; (ii) its large effective
surface area also enhance the gas sensing performance [15, 16]; (iii) metal oxide
nanostructures have been extensively discovered as gas/vapor sensors due to the
relatively high sensitivity of their electrical conductance to the target adsorbents.
Thus the presence of rGO layers on metal oxide surface, electrical properties exhibit
large and fast changes in the occurrence of gases/vapors improving overall sensing
performance of the sensor; (iv) while GO and rGO show ambipolar behavior in the
electron and hole concentration, they show hole-dominant p-type conducting
properties owing to the adsorbed water and oxygen molecular species. Also, a
nanocomposite of p-type rGO with an n-type transition metal oxide form a p-n
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heterojunctions and the resulting complex nanostructure may exhibit better sensing
performances than those of the individual materials. Numerous research has
confirmed that the p-n heterojunction formed by p and n-type materials can play
a positive role in the sensing mechanism [18–20].

However, a wide variety of nanostructured metal oxides and its composite with
GO and rGO have been reported for efficient gas/vapor sensing applications in last
one decade. In this chapter, we have categorized the graphene nanocomposites
based on the morphology of metal oxides, that is, zero-dimensional (0-D like
nanoparticles, quantum dots, etc.), one dimensional (1-D like nanorods, nanotubes,
nanofibers, etc.), two dimensional (2-D like nanosheets, nanoplates, etc.), and
three-dimensional (3-D like nanoflower, nanospheres, etc.). Synthesis, fabrication
of graphene/nanoscale metal oxides nanocomposites and their performance
assessment for gas/vapor sensing application are the main objective of the article.

2. Synthesis nanoscale metal oxides and graphene derivatives composite

In this section, the synthesis of graphene and its derivatives like graphene oxide
(GO) and reduced graphene oxides (rGO) is described in the first sub-section. Then
the synthesis of nanoscale metal oxides, as well as the nanohybrid formation, is
described in the next sub-section.

2.1 Synthesis of graphene and graphene-derivatives

Graphene is considered as the parent of all graphitic forms [21]. The purest form
of graphene is named as pristine graphene (with no heteroatomic contamination)
where ‘scotch tape method’ widely accepted for producing the highest quality of
graphene [22]. Graphene produced from micromechanical cleavage, that is, adhe-
sive tape method can isolate only a small amount of graphene, hence this method is
used to isolate graphene for research purposes. For large scale production of
graphene, various methods have been reported in the literature which can be
broadly classified into two categories: top-bottom approach and bottom-up
approach [23].

Top-bottom methods mainly involve breaking of the van derWaals bonds which
hold layers of graphene to form graphite [22]. Top-bottom approach involves elec-
trochemical exfoliation, exfoliation of graphite intercalation compounds (GIC),
micromechanical cleavage, solvent-based exfoliation of graphite oxide, arc dis-
charge, etc. [23]. Among these methods, exfoliation of graphite oxide has received
great attention as graphite oxide is easily produced by oxidation of graphite as
reported in the Hummers method. Graphite oxide is exfoliated to obtain graphene
oxide which is reduced to form reduced graphene oxide (rGO). Reduction process
can be thermal, chemical, or UV-based method [24]. Bottom-up approach involves
forming of large-area graphene sheet via growth over the substrates and one of the
most potential methods is chemical vapor deposition (CVD) [23].

Along with graphene, researchers have also worked on the synthesis of graphene
oxide (GO) as well as reduced graphene oxide (rGO) in recent years. rGO
nanoparticles was prepared by thermal reduction of GO which is again obtained
from Hummer’s method [25]. However, the required quality of graphene and
graphene derivatives (rGO, GO) depends on its applications and based on that the
methods of production are decided. Till date, CVD [26, 27] and modified Hummer’s
method [28–30] are most suitable for the synthesis of graphene and GO,
respectively, in context of the formation of metal oxide/graphene, metal
oxide/rGO, metal oxide/GO nanocomposite.
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2.2 Synthesis metal oxide nanostructures and graphene derivatives composites

Synthesis of hybrid graphene with different nanoscale metal oxides are classified
in four categories, that is, graphene/0-D metal oxides, graphene/1-D metal oxides,
graphene/2-D metal oxides, and graphene/3-D metal oxides.

2.2.1 Synthesis of graphene/0-D metal oxides composites

Synthesis of metal oxide nanoparticles (NPs) and GO/rGO composites which
was used for efficient gas sensing applications is described in this section. Among all
the metal oxides, SnO2 was reported mostly to synthesize nano composites with
graphene and its derivatives (GO and rGO). At the same time, nanoparticles of
metal oxides were preferred majorly to prepare the monohybrids with GO and rGO.
Different chemical synthesis techniques were followed to develop the
nanocomposites of metal oxide/rGO like hydrothermal, solvothermal, flame spray
pyrolysis, etc. [31, 32].

Hydrothermal is one of the commonly reported techniques for preparing metal
oxide nanoparticles-rGO composites. Among different metal oxides, SnO2

nanoparticles were reported extensively to prepare nano-hybrid with rGO for effi-
cient gas sensing application [33–42]. SnO2/rGO [33–35] nano-hybrid was prepared
by facile hydrothermal treatment where precursor was prepared with mixture of
SnCl4, HCl, H2O, and GO (or rGO). Heating temperatures were reported as 120°C
[33] and 180°C [34, 35] whereas the heating time was 12 h, consistent for all the
reports. Different weight% (0.5–5 wt.%) of Au was added in the SnO2/rGO
nanocomposite by using HAuCl4 salt to study the effect of Au concentration on the
sensitivity of SnO2/rGO gas sensors [34]. Scanning electron micrograph (SEM) of
SnO2/rGO films which was used for promising gas sensing application are
represented in Figure 1(a and b). Mishra et al. reported rGO/SnO2 nanocomposite
by surfactant-assisted hydrothermal method, in which hexamethyldisilazane
(HDMS) was used as a surfactant [36]. Ghosh et al. [37] reported SnO2 nanoparticle
synthesis by hydrothermal method and SnO2/rGO film synthesis by mixing of SnO2

nanoparticles with GO. The GO-SnO2 mixture was then ultrasonicated to obtain
uniform dispersion. Then the sample was drop cast on the platinum electrode and
heated at 160°C to reduce GO and get SnO2/rGO hybrid sensing layer [37]. The
hydrothermal method was also used for the synthesis of SnO2/rGO hybrid with

Figure 1.
SEM image of hydrothermally grown SnO2 nanoparticles and rGO composites reported by (a) Zhang et al. [33]
and (b) Peng et al. [41].
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a high concentration of oxygen vacancy [40, 42] and Pt-activated SnO2

nanoparticles-rGO hybrid [41]. Transmission electron micrograph (TEMs) of SnO2

quantum dot decorated on rGO surface is represented in Figure 2(a–c).
NiO/rGO nanohybrid [39] was prepared via two-step hydrothermal treatment.

NiO nanoparticles powder was prepared by hydrothermal method using
NiCl4�6H2O as the source of Ni and then calcined at 400°C. NiO nanoparticle
powder was then mixed with rGO solution and treated by hydrothermal method
with a various ratio of NiO/rGO as 2:1, 4:1, and 8:1 (Figure 3).

Undoped and Ni-doped SnO2 nanoparticle and graphene composites were
developed by flame spray pyrolysis (FSP) method as reported in references
[32, 43], respectively. About 0.1�2 wt.% Ni-doped SnO2 nanoparticles were syn-
thesized by FSP technique and graphene was produced from graphite by the elec-
trolytic exfoliation technique. Then, a paste was prepared by mixing Ni-doped SnO2

and graphene powder and finally spin coating method was used to deposit a film for
gas sensing application. Bright field (BF) TEM images of 0.5 wt.% SnO2 NPs loaded
graphene composites and 2 wt.% Ni doped SnO2 NPs loaded graphene composites
are represented in Figure 4(a) and (b), respectively.

ZnO/rGO composite was prepared by the solvothermal method for low-
temperature acetylene sensing as reported by Iftekhar Uddin et al. [44, 45]. ZnO
powder was prepared through the solvothermal method by using Zn(NO3)2 and
NaOH in ethanol at 120°C. Ag-loaded ZnO/GO hybrid was synthesized by chemical
route. AgNO3 was added to the ZnO/GO solution with 2:1 ratio, then stirred con-
tinuously for 30 min. Hydrazine hydrate was then added to the mixer to reduce GO

Figure 2.
TEM images of hydrothermally grown SnO2 nanoparticles and rGO composites (a) SnO2 quantum dot on rGO
film surface [36], (b) high resolution (HR) TEM image of SnO2 NPs on rGO [40], and (c) dense SnO2 NPs on
rGO [42].

Figure 3.
SEM of hydrothermally grown (a) NiO NPs and (b) NiO/rGO nanocomposites with 2:1 ratio [39].
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at 110°C for 8 h [44]. Morphology of ZnO NPs and rGO nanocomposite is shown in
Figure 5(a and b).

ZnO quantum dots (QDs) decorated on graphene nanosheets were synthesized
by facile solution-processed method (Figure 6(a)). ZnO QDs were nucleated and
grown on the surface of graphene by controlling the distribution density by reaction
time and precursor concentration [46]. ZnO-rGO hybrid was prepared by wet
chemical method followed by deposition of Au using HAuCl4, which was added to
the ZnO-rGO dispersion. Finally, the addition of NaBH4 through sonication process
completed the formation of ZnO QD [47]. To understand the impact of particle size
on gas sensing performance, Tung et al. [48] prepared rGO-Fe3O4 nanoparticle
hybrid with different particle sizes (5, 10, and 20 nm) via in situ chemical reduction
of GO in presence of poly-ionic liquid (PIL) (Figure 6(b)). Kamal [49] prepared
graphene-NiO nanoparticles composites by decomposition of nickel benzoate
dihydrazinate complex used for hydrogen sensing application.

Graphene oxide was synthesized from natural graphite flakes by Hummers’
method which was further used to prepare rGO-CuFe2O4 nanocomposite by com-
bustion method [50]. In this process, sonicated GO was dissolved with 1:2 ratio of

Figure 4.
BF TEM images of 0.5 wt.% SnO2 NPs loaded graphene composites and 2 wt.% Ni-doped SnO2 NPs loaded
graphene composites. Inset: Corresponding selected area electron diffraction (SAED) pattern [32, 43].

Figure 5.
Plane-view FESEM micrographs of (a) pure ZnO nanoparticles and (b) ZnO nanoparticle rGO hybrids [44].
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Cu2+ to Fe3+ salts and distilled water. The resulting mixture was stirred at 100°C to
get a viscous solution which was further heated around 450°C in a muffle furnace.
Finally, the mixture was frothed and it gave a foamy powder of nanocomposite
(Figure 6(c)). The one-pot microwave-assisted non-aqueous sol-gel method was
used to synthesize pure SnO2 nanoparticles and SnO2/rGO nanocomposite
(Figure 6(d)) [51]. Kim et al. [52] reported the microwave-assisted the formation
of SnO2/graphene nanocomposite in which mixture of SnO2 nanopowder and
graphene flakes dispersed in ethanol, the resulting solution was dried. The dried
powder mixture was treated in the commercial microwave heater for heating pro-
cess. Microwave-treated powder was again dispersed in ethanol and then the solu-
tion was spray-coated on SiO2 substrate placed on a hot plate. Along with
SnO2/graphene nanocomposite, a small amount of secondary SnOx (x < 2)
nanoparticles were also deposited on the surface. Secondary SnOx nanoparticles
tend to increase as the microwave heating time is increased [52].

2.2.2 Synthesis of graphene/1-D metal oxides composites

One dimensional (1-D) nanostructures of the metal oxide like nanotubes,
nanorods, nanofibers, nanowires, etc. are considered as most promising for the
detection of analytes in gaseous phases [53, 54]. Owing to its large surface-to-
volume ratio, large open porosity and most importantly one of its dimension is

Figure 6.
SEM images of (a) ZnO QDs/graphene nanocomposites [46], (b) rGO-Fe3O4 nanoparticles [48] synthesized
by facile solution-processed method. TEM images of (c) rGO-CuFe2O4 by combustion method [50] and (d)
microwave assisted rGO-SnO2 nanparticles composites [51].
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comparable to the Debye length which enhances the gas sensitivity significantly.
Gas sensing performance is improved further in 1-D materials by using as a
nanocomposite with graphene, GO and rGO. Here, we reviewed different methods
used for the synthesis of 1-D metal oxide nanostructure and its composite with
graphene and graphene derivatives.

ZnO nanowires (NW) and graphene hybrid architecture were reported by Yi
et al. [55] where graphene sheets covered with thin metal layers were used as top
electrodes for ZnO where graphene sheets coated with thin metal layers were
employed as top electrodes for ZnO vertical-NW channels. The ZnO NWs-
graphene/metal hybrid architectures maintained sufficient spaces between the
NWs for easy and fast gas transport. However, ZnO nanorods (NRs) were synthe-
sized by using hydrothermal reaction and graphene sheets were synthesized by the
CVD method and transferred to the top of the ZnO NRs by PMMA treatment. The
scanning electron micrograph of ZnO NRs-graphene/metal hybrid architectures are
represented in Figure 7(a). Single crystalline WO3 nanorods on the surface of
graphene were synthesized through a one-step hydrothermal method [56]. WO3

nanorods with 3.5 wt.% graphene composites improved gas sensitivity of 25 times
showing good selectivity towards NO2. SEM image of WO3 nanorods and graphene
hybrids is shown in Figure 7(b).

Large-scale sandwich-like heterostructures of ZnO nanorod arrays with reduced
graphene oxide sheets were reported by Zou et al. [30] as shown in Figure 7(c).
Highly dense ZnO nanorods were grown by hydrothermal method and double sides
coverage of reduced graphene sheets by ZnO NRs formed a sandwich like
heterostructures of ZnO/graphene/ZnO for efficient ethanol detection.

Electrospinning is a potential and well-reported technique for the synthesis of
nanofibers (NFs) network of metal oxides. N,N-dimethylformamide (DMF) and
polyvinyl pyrrolidone (PVP) are mixed with target metal oxide precursor and the
whole mixture is poured into a syringe having a suitable needle attached. A high
voltage (a few kV, DC) is applied between the needle and the collector plate to get
the NFs of the target metal oxides. In electrospinning method, composites of metal
oxide NFs and graphene derivatives are synthesized by two different routes, that is,
(i) GO or rGO solutions are added into the base mixture before electrospinning and
(ii) synthesized NFs are decorated with GO or rGO solutions. rGO/Co3O4 NFs [57]
and rGO/ZnONFs composites [54] were synthesized where rGO was added into the
precursor before electrospinning and both the nanohybrids were tested towards
different gases and vapors like NH3, ethanol, etc. rGO/Co3O4 NFs [58], rGO/SnO2

NFs [53], and rGO/WO3 NFs composites [59] were synthesized where Co3O4, SnO2,

and WO3 nanofibers were synthesized by electrospinning method first and then
functionalized with rGO solution. All three composites were used to detect acetone
in the selective route. Figure 8(a) and (b) represents the TEM and SEM images of

Figure 7.
SEM images of 1-D metal oxides and graphene nanocomposites synthesized by hydrothermal route (a) ZnO
NRs-Gr/M hybrid architectures [55], (b) WO3 nanorods/graphene composites [56], and (c) ZnO/G array
structures [30].
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rGO/Co3O4 NFs [57] and rGO/ZnONFs composite [54], respectively. Here, rGO
film was almost invisible due to the mixing of rGO in solution before
electrospinning. rGO film was clearly visible in rGO/Co3O4 NFs [58] and rGO/SnO2

NFs [53] composites in SEM images shown in Figure 8(c) and (d) as the rGO
functionalization was carried out after electrospinning.

Synthesis of TiO2 nanotubes array was done by electrochemical anodization of
metallic titanium films [60] and rGO/TiO2 nanotubes composite was synthesized
by electrodeposition of rGO on TiO2 nanotubes [61, 62]. Electrodeposition method
was also used to synthesize ZnO nanorods and selective electrochemical etching
of those nanorods to synthesized ZnO nanotubes. rGO/ZnO nanotubes hybrid
structure was synthesized by dip-coating technique for efficient alcohol sensing
application [63].

One step colloidal synthesis was employed for rGO/SnO2 quantum wire
nanocomposite for room temperature H2S sensing [25]. Single crystal SnO2 nanowire
was directly grown on the platinum electrode by thermal evaporation and compos-
ites was formed by using CVD grown graphene layer for efficient NO2 sensing [26].
Hydrolysis method was used in absence as well as in presence of GO to form ZnO
nano-seed and GO supported ZnO nano-seed, respectively, and ultrathin ZnO
nanorod/rGO mesoporous nanocomposites were synthesized for NO2 sensing [29].

2.2.3 Synthesis of graphene/2-D metal oxides composites

Metal oxides nano-sheets and nameplates were functionalized with graphene
and its derivatives for efficient gas sensing behavior. Ni-doped ZnO nanosheets

Figure 8.
(a) TEM images of rGO/Co3O4 NFs [57], (b) SEM image of rGO/ZnO NFs composite [54], SEM image of (c)
rGO/Co3O4 NFs composites [58], and (d) rGO/SnO2 NFs composites [53].
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were deposited on a p-Si substrate by using radio frequency (RF) sputtering tech-
niques. GO was synthesized by Hummer’s method and reduced thermally at high
temperature (600°C). rGO flakes were then decorated on Ni-doped ZnO
nanosheets by drop-casting method. rGO/Ni-doped ZnO nanosheets were used for
low ppm hydrogen detection [64]. Highly wrinkled SnO2/rGO composite was syn-
thesized by one-time hydrothermal technique and used for the detection of ethanol
at 250°C (Figure 9(a)) [65]. Nanocomposites of ZnO nanosheets and GO were
synthesized for highly efficient acetone sensing. The nanocomposites sensor was
flexible, high effective surface area and enhanced functional groups due to GO
which were in favor of gas adsorption (Figure 9(b)) [66]. rGO/hexagonal
WO3nanosheets hybrid materials were fabricated through the hydrothermal
method and post-annealing treatment. 2-D porous WO3nanosheets were attached
on rGO. The sensor based on 3.8 wt.% rGO/hexagonal-WO3composites offered
promising sensing performance to H2S [67].

2.2.4 Synthesis of graphene/3-D metal oxides composites

3-D metal oxides like nanoflower and nanosphere were used to synthesize
nanocomposites with graphene and its derivatives by the hydrothermal and sol-gel
method [15, 68–70].

Hybrids with flower-like hierarchical ZnO and rGO were synthesized by the
facile and mild solution-processed method. Compared with the pristine flower-like
ZnO, NO2 sensing was increased significantly in case of hierarchical rGO/ZnO
hybrids [15]. A facile one-pot hydrothermal method was used to synthesize rGO/
In2O3 composites. The flower-like hierarchical structure of In2O3 showed high
effective surface area enhancing the active interaction sites. In the composite, rGO
formed local p-n heterojunctions enhancing the gas sensing performance signifi-
cantly. The rGO/In2O3 composite exhibited an excellent selectivity towards NO2 in
the wide concentration range from 10 ppb to 1 ppm [68]. α-Fe2O3/rGO
nanocomposites with nanosphere-like α-Fe2O3 structure were synthesized by a
hydrothermal route at 120°C. α-Fe2O3 nanosphere was 40–50 nm in diameter and
constructed by a few nanometer-sized nanoparticles where rGO was intercalated
single sheets. These nanocomposites showed excellent response and selectivity
towards NO2 at room temperature [69]. Graphene-WO3 nanostructure with

Figure 9.
SEM images of rGO/2-D metal oxide nanocomposites (a) wrinkled SnO2/rGO composite [65]
and (b) GO/ZnO nano-sheets [66].
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gauze-like graphene nanosheets wrapping up spherical WO3 nanoparticles was
synthesized by a facile sol-gel method. Graphene-wrapped WO3 nanocomposites
offered uniform nanospheres with 200–400 nm diameter. Graphene/WO3 nano-
composites showed good sensitivity and selectivity to low concentrations of NO2 gas
at room temperature when pure WO3 and graphene-based sensors did not show any
response towards NO2 at room temperature [70]. Scanning electron micrograph of
3-D metal oxides and graphene nanocomposites is shown in Figure 10(a–d).

3. Assessments of gas/vapor sensing performances

3.1 Sensing performance of graphene/0-D metal oxides composites

Gas/vapor sensing performance of metal oxide nanoparticles (0-D)
functionalized with graphene or graphene derivatives (GO, rGO) is represented in
Table 1 where 37 references are considered for performance assessment of
graphene/0-D metal oxide oxides composites sensors.

Graphene/metal oxide NPs (0-D) composites and its gas sensing performance
were explored extensively in case of SnO2 where hydrothermal method was com-
monly used as the synthesis technique. The gas sensing performance of rGO/SnO2

NPs was further improved by functionalization with Pd, Au, Pt, and Ag
nanoparticles [31, 34, 41, 78]. ZnO nanoparticles occupied the second position to
use as a nanocomposite with graphene and its derivatives other metal oxide

Figure 10.
SEM images of (a) rGO/flower-like hierarchical ZnO composites [15], (b) rGO/In2O3 nanoflower composite
[68], (c) rGO/α-Fe2O3 nanosphere [69], and (d) graphene-wrapped WO3 nanosphere [70].
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Composite

material

Target

gas/

vapor

Operating

temperature

(range) (°C)

Concentration

and range

(ppm)

Response

magnitude

Response/

recovery

time (s)

Ref.

Graphene-SnO2

nanoparticles

NO2 150 (30–190) 5 (1–5) Rgas/Rair = 72.6 129/107 [52]

rGO/SnO2

nanoparticles

Acetone Room

temperature

2000 (10–

2000)

Rair � Rgas/Rair =

9.72%

95/141 [33]

Graphene

aerogel-SnO2

nanoparticle

NO2 Room

temperature

200 (10–200) Rgas � Rair/Rair =

�12%

190/224 [71]

Graphene-SnO2

nanoparticles

H2 50 100 (1–100) Igas/Iair = 6 1.1/1.1 [72]

rGO-SnO2

quantum dots

H2 200 500 Rair � Rgas/Rair =

89.3%

�50/�155 [36]

LPG 250 500 Rair � Rgas/Rair =

92.4%

�80/�155

rGO/SnO2

nanoparticles

NH3 200 (100–200) 1000 (25–

2800)

— — [37]

rGO/SnO2

nanoparticles

C2H2 180 (100–300) 50 (0.5–500) Rair/Rgas = 12.4 54/23 [38]

rGO-SnO2

nanoparticles

NO2 30 (30–100) 1 (0.05–2) Rair/Rgas = 3.8 14/190 [40]

rGO-SnO2

nanoparticles

NO2 Room

temperature

5 (1–20) Iair � Igas/Iair =

65.5%

12/17 [42]

Graphene/SnO2

nanoparticles

NO2 150 (25–350) 5 Rgas/Rair = 26342 13/— [43]

rGO/SnO2

nanoparticles

NO2 50 (30–60) 5 (0.5–500) Rair/Rgas = 3.31

(25% RH)

135/200 [35]

rGO/SnO2

nanoparticles

SO2 60 (22–220) 500 (10–500) Rair � Rgas/Rgas

= �22

144/210 [73]

Graphene/SnO2

nanoparticles

NO2 Room

temperature

100 (0.3–100) Gg � Go/Go =

�11

— [74]

Graphene/SnO2

nanoparticles

Ethanol 350 (150–350) 1000 (50–

1000)

965 1.8/�120 [76]

Graphene/SnO2

nanoparticles

NO2 60 (25–120) 4 (1–4) Rg – Ra/Ra = �22 — [75]

rGO/SnO2

nanoparticles

CO Room

temperature

1600 (50–

1600)

Rg – Ra/Ra =

9.5%

�60/�60 [76]

Sulfonated

graphene/SnO2

nanoparticles

NO2 Room

temperature

5 (1–50) Rair � Rgas/Rgas

= 1.203

40/357 [77]

Graphene-SnO2

nanoparticle with

doped Ni

Acetone 350 (150–350) 200 (1–50) Rair/Rgas = 169.7 5.4/150 [32]

Graphene-

Pd/SnO2

nanoparticles

H2

Ethanol

Room

temperature

20,000

200 (25–200)

Ro � Rgas/Ro =

11%(H2), 14.8%

(ethanol)

34/27 [31]

rGO/SnO2

nanoparticles

decorated

Au NPs

NO2 50 (30–60) 50 (5–100) Rgas/Rair = 2.68 19/20 [34]
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nanoparticles like NiO, CuO, WO3, Fe3O4, CeO2, etc. were reported as promising
gas/vapor sensing composite materials with graphene and its derivatives. However,
among all the target gases and vapors, NO2 was the mostly explored gas and
detected successfully by graphene/metal oxide nanocomposite sensors [79]. Other
gases like H2, NH3, CO, C2H2, CH4, SO2, and organic vapors like acetone, ethanol,

Composite

material

Target

gas/

vapor

Operating

temperature

(range) (°C)

Concentration

and range

(ppm)

Response

magnitude

Response/

recovery

time (s)

Ref.

rGO-SnO2

nanoparticles

(activated by Pt)

Methanol 110 (20–180) 500 (10–500) Rair/Rgas = 203 6/21 [41]

rGO/SnO2

nanoparticles

(with Ag NPs)

NO2 Room

temperature

5 (0.5–500) Rair/Rgas = 2.17

(25% RH)

49/339 [78]

Graphene-ZnO

quantum dots

HCHO Room

temperature

100 (25–100) Gg � Go/Go = 1.1 30/40 [46]

Graphene/ZnO

nanoparticles

C2H2 250 (25–350) 100 (30–1000) Rair/Rgas = 143 100/24 [45]

rGO/ZnO

nanoparticles

NO2 50 (25–140) 50 (5–275) Rg � Ra/Ra =

32%

96/1552 [74]

rGO/ZnO

nanoparticles

NO2 Room

temperature

5 (1–25) Rg – Ra/Ra =

25.6%

165/499 [80]

3-D rGO/ZnO

nanoparticle

CO 200 1000 (1–1000) Rg – Ra/Ra =

85.2%

7/9 [81]

rGO-ZnO/Ag

nanoparticles

C2H2 150 (25–250) 100 (1–1000) Rair/Rgas =21.2 25/80 [44]

rGO/ZnO-Au

nanoparticles

NO2 80 (60–90) 100 (20–100) Rair � Rgas/Rair =

32.55

27/86 [47]

Graphene-NiO

nanoparticles

H2 250 (100–350) 2000 (400–

2000)

Rg – Ra/Ra =

52.4%

NA [49]

rGO/NiO

nanoparticles

CH4 260 (20–400) 1000 (100–

1000)

Rair � Rgas/Rgas

= 15.2

16/20 [39]

rGO/NiO NP

with SnO2

nanoplates

NO2 Room

temperature

60 (5–60) Gg � Go/Go =

62.28

220/835 [82]

rGO/CuO

nanohybrid

NO2 135 (25–225) 75 (1–75) Igas � Iair/Iair =

51.7

50/105 [83]

rGO/CuFe2O4

nanoparticles

NH3 110 200 (5–200) Rg – Ra/Ra =

24.41

3/6 [50]

rGO/Fe3O4

nanoparticles

Ethanol Room

temperature

1 Rair � Rgas/Rgas

= 1.86

— [48]

NO2 200 (250–450) 2.5 (1–5) Rair � Rgas/Rgas

= 4.68

—

Graphene/WO3

nanoparticle

NO2 250 (200–300) 5 (1–20) Rgas/Rair = 133 �25/— [84]

Graphene-CeO2

nanoparticles

NO2 — (10–200 ppm) — — [85]

Table 1.
Summary of the performance of sensors fabricated by using the nanocomposites of metal oxide nanoparticles
(0-D) and graphene or graphene derivatives (GO, rGO).
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methanol, and formaldehyde were detected successfully by using graphene/NP
metal oxide hybrids. Sensors were tested at different temperature range varying
from room temperature �25°C to 400°C. The average operating temperature of
graphene/NP metal oxide nanocomposites was recorded below 150°C. Among the
37 research articles, room temperature sensing was reported by 13 groups of
researchers mentioned in the literature. The detailed transient behavior of
graphene/metal oxide NPs sensors is shown in Figure 11(a–f) where all the sensing
was reported at room temperature. So, overall study confirms the lowering of gas
sensing the temperature of metal oxide nanoparticles due to the formation of
composites with graphene, GO, and rGO. Most of the article showed a lower
detection limit of gases and vapors (<100 ppm). Depending on the surface mor-
phology, sensing temperature and device structures the detection range varied from
ppb to ppm level as shown in Table 1. Finally, the response magnitude and
response/recovery time were fully dependent on the operating temperature and
concentration range of the analyte. However, all the sensors showed adequate
response magnitude towards the target gas/vapors. Response/recovery time
increased and decreased with decrease and increase of operating temperature,
respectively. Response time and recovery time varied from 1 s to 220 s and 1 s to
1552 s, respectively, as shown in Table 1. Wang et al. confirmed that the uniform
distribution of SnO2 nanoparticles on rGO sheets is an effective factor for enhanced
NO2 sensing performances [42]. The p-n junction existed in the interface of nano-
particle and rGO contributed to good room temperature NO2 sensing properties
which is associated with the valid electron flow from SnO2 nanoparticle to rGO.

3.2 Sensing performance of graphene/1-D metal oxides composites

One dimensional (1-D) metal oxide like nanorods, nanotubes, nanowires,
nanofibers, quantum nanowires, etc. functionalized by graphene, GO, and rGO

Figure 11.
Room temperature sensing of graphene (GO, rGO)/metal oxide nanoparticles composites. (a) NO2 sensing by
graphene aerogel/SnO2 nanoparticle [71], (b) CO sensing by rGO/SnO2 nanoparticles [76], (c) NO2 sensing
by sulfonated graphene/SnO2 nanoparticles [77], (d) NO2 sensing by rGO/SnO2 nanoparticles with Ag NPs
[78], (e) formaldehyde sensing by graphene-ZnO quantum dots [46], and (f) NO2 sensing by rGO/ZnO
nanoparticles [80].
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Composite

material

Target

gas/

vapor

Operating

temperature

(range) (°C)

Concentration

and range

(ppm)

Response

magnitude

Response/

recovery

time (s)

Ref.

rGO/ZnO

nanorods

NO2 Room

temperature

1 (0.120–1) Rgas � Rair/

Rair = 50%

120/320 [86]

Functionalized

graphene/ZnO

nanorods

Ethanol 340 (200–370) 100 Rair � Rgas/

Rair = 93.5%

5/20 [28]

rGO/ZnO

nanofibers

NO2 400 (300–400) 5 (1–5) Rgas/Rair =

119

143/259 [54]

CO 400 (300–400) 5 (1–5) Rair/Rgas =

22.6

—

Non-oxidized

graphene/ZnO

nanofibers

Acetone 350 (250–450) 5 (1–5) Rair/Rgas =

18.5

12.8/— [59]

rGO/ZnO

nanotubes

Ethanol 125 (27–150) 100 (1–800) 79.14% 41.1/98.32 [63]

rGO/ZnO

nanorods

Ethanol 260 50 (5–50) Rair/Rgas =

�27

<10/<10 [30]

rGO/ZnO

nanorods

NO2 Room

temperature

1 (1–10) Rair � Rgas/

Rgas = 1.19

75/132 [29]

Graphene/ZnO

nanorod doped by

Au/Ti

Ethanol 300 50 (10–50) Rair/Rgas =

�90

— [55]

Au/Pd

functionalized

rGO/ZnO

nanofiber

CO 400 (300–450) 5 (1–5) Rair/Rgas =

35.8

191.3/82.1 [87]

C6H6 400 (300–450) 5 (1–5) Rair/Rgas =

22.8

110.3/318.2

rGO/SnO2

nanofibers

H2S 200 5 (1–5) Rair/Rgas =

33.7

<198/<114 [53]

Acetone 350 (150–400) 5 (1–5) Rair/Rgas =

10.4

<198/<114

Graphene/SnO2

nanowires

NO2 150 (100–250) 0.1 (0.01–0.1) Rair/Rgas = 11 43/37 [26]

Graphene/SnO2

nanorods

H2S 260 50 (1–50) Rair/Rgas =

130

5/10 [27]

rGO/SnO2

quantum wires

H2S Room

temperature

50 (10–100) Rair/Rgas = 33 2/292 [25]

Nanoporous

graphene hybrid-

SnO2 nanorods

CH4 150 (100–200) 1000 |Rgas – Rair|/

Rair = 24.9 %

369/

519.8217.9/

242

[88]

rGO/TiO2

nanotubes

H2 200 (100–300) 480 (120–480) |Ggas � Go|/

Go = 37.6

1110/<300 [60]

rGO/TiO2

nanotubes

Methanol Room

temperature

800 (10–800) Rair � Rgas/

Rair = 96.93%

18/61 [61]

GO/Co3O4

nanofibers

Acetone 300 (200–350) 5 (1–5) Rgas/Rair =

2.29

— [58]

rGO/Co3O4

nanowires

NH3 Room

temperature

50 (5–100) ΔR/Rair =

53.6%

4/300 [57]
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were reported as the promising gas sensing materials. A total of 21 reports on
graphene/1-D metal oxide nanocomposites have been summarized in Table 2 and
compared in terms of target gas/vapors and its concentration, operating tempera-
ture, response magnitude, and response/recovery time. In the case of 1-D
nanomaterials, ZnO was most explored metal oxide used to synthesize
nanocomposites with rGO in the form of nanorods, nanotubes, and nanofibers.
Other metal oxides are SnO2 nanofibers/nanorods, TiO2 nanotubes, Co3O4

nanofibers, WO3nanorods, αFe2O3 nanofibers, etc. reported for nanocomposites
with graphene for gas sensing application. NO2 and ethanol were the mostly
explored target gas and vapor in case of graphene/1-D metal oxide nanocomposites.
Other selective gases and vapors are CO, H2S, CH4, H2, NH3, acetone, benzene,
methanol, etc. Though the operating temperature range was in-between room tem-
perature �25°C and 450°C, average sensing temperature was slightly high (�200°
C) in case of 1-D compared with 0-D metal oxide nanocomposites with graphene.
However, the detection range of gases/vapors was quite small in case of graphene/1-
D metal oxide nanocomposites where 1 ppm and below 1 ppm detection were
reported frequently. Quite a high response magnitude and moderate response/
recovery time were recorded in case of graphene/1-D metal oxide nanocomposites.

Figure 12(a) represents very efficient H2S sensing for rGO/SnO2 quantum wires
sensor for the concentration range of 10–100 ppm at room temperature. Being a
room temperature sensing, the sensor showed a very fast response of 2 s only [25].
Highly selective NH3 sensing was reported for rGO/Co3O4 nanowires at room
temperature as shown in Figure 12(b) where response time was only 4 s [57].
Improvised NO2 sensing was observed for rGO/Cu2O nanowires compared with the
pure Cu2O nanowires and pure rGO in the concentration range of 0.4–2 ppm at
room temperature (Figure 12(c)) [89]. However, the overall study envisages the
potential gas sensing of 1-D metal oxides functionalized by graphene, GO, and rGO.

Composite

material

Target

gas/

vapor

Operating

temperature

(range) (°C)

Concentration

and range

(ppm)

Response

magnitude

Response/

recovery

time (s)

Ref.

rGO/Cu2O

nanowires

NO2 Room

temperature

2 (0.4–2) Igas � Iair/Iair
= 67.8%

— [89]

Graphene/WO3

nanorods

NO2 300 20 (0.025–20) Rgas/Rair =

202

— [56]

rGO/αFe2O3

nanofibers

Acetone 375 (250–400) 100 (0.05–2) Rair/Rgas =

8.9

3/9 [18]

Table 2.
Summary of the performance of the sensor fabricated by using the nanocomposites of 1-D metal oxides and
graphene or graphene derivatives (GO, rGO).

Figure 12.
Room temperature transient response of graphene/1-D metal oxide nanocomposites sensors. (a) H2S detection
by for rGO/SnO2 quantum wires [25], (b) selective NH3 sensing by rGO/Co3O4 nanowires [57], and (c) NO2

sensing was observed for rGO/Cu2O nanowires [89].
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The 1-dimensional structure of TiO2 nanotubes (NTs) in its hybrid with rGO pro-
vided large amount of gas interaction sites which lead to high response magnitude
of the sensor [61].

3.3 Sensing performance of graphene/2-D metal oxides composites

Table 3 shows gas sensing performance of 2-D metal oxides and GO (or rGO)
nanocomposites where ZnO, SnO2, and WO3 nanosheets were used as 2-D mate-
rials. Relatively high operating temperature was reported for graphene/2-D metal
oxide nano composites. Average sensing temperature was more than 200°C. Mod-
erate response magnitude, response/recovery time were recorded for graphene/2-D
metal oxide nano composites. Transient behavior of GO/ZnO nanosheets in the
exposure of 100 ppm acetone at 240°C and rGO/hexagonal WO3nanosheets in the
exposure of 40 ppm H2S at 350°C are shown in Figure 13(a) and (b) [66, 67].

3.4 Sensing performance of graphene/2-D metal oxides composites

The gas sensing performance of nanocomposites developed by 3-D metal oxide
and graphene derivatives are shown in Table 4. Nanoflowers and nanosphere
structures were reported here. Interestingly, all the nanocomposites showed their

Composite

material

Target

gas/

vapor

Operating

temperature

(range) (°C)

Concentration

and range

(ppm)

Response

magnitude

Response/

recovery

time (s)

Ref.

rGO/Ni-doped

ZnO nanoplates

H2 150 100 (1–100) |Rair – Rgas|/

Rair = 63.8%

28/— [64]

GO/ZnO

nanosheets

Acetone 240 100 (50–500) Rair/Rgas =

35.8%

13/7 [66]

rGO

nanosheets/

wrinkled SnO2

Ethanol 250 (150–300) 100 (5–5000) Rair/Rgas =

80%

9/457 [65]

rGO/hexagonal

WO3

nanosheets

H2S 350 (50–400) 40 (0.01–40) |Rgas – Rair|/

Rair =

168.58%

7/55 [67]

Table 3.
Summary of the performance of a sensor fabricated by using the nanocomposites of 2-D metal oxides and
graphene or graphene derivatives (GO, rGO).

Figure 13.
Response behavior of (a) GO/ZnOnanosheets in the exposure of 100 ppm acetone at 240°C [66] and
(b) rGO/hexagonal WO3nanosheets in the exposure of 40 ppm H2S at 350°C [67].
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selective behavior towards NO2. Operating temperature of the sensor was quite low
and most of the cases room temperature sensing was reported. The detection range
was quite high where lower and higher detection limit varied from a few ppb to
1000 ppm. Very high response magnitude was reported in case of graphene/3-D
metal oxide nanocomposites. Reported response time and recovery time were quite
high in the case of 3-D metal oxide composites compared with 0-D and 1-D metal
oxide nanocomposites. Highly selective NO2 sensing was reported for rGO/ZnO
nanoflower (1.7% rGO in ZnO) as shown in Figure 14(a). Promising NO2 sensing
was observed for rGO/In2O3 nanoflower where the response was poor for pure
In2O3nanoflower as shown in Figure 14(b). The nanoflower-shaped CuO nano-
structure in its nanocomposite with rGO is effective to prevent the aggregation of
rGO sheets and form porous structure with rGO, which greatly facilitate the
adsorption and diffusion of gas molecules [92].

Composite

material

Target

gas/

vapor

Operating

temperature

(range) (°C)

Concentration

and range

(ppm)

Response

magnitude

Response/

recovery

time (s)

Ref.

rGO/ZnO

nanoflower

NO2 100 (50–150) 0.5 (0.005–0.5) Rgas/Rair = 12 258/288 [15]

rGO/In2O3

nanoflower

NO2 74 (25–110) 1 (0.01–1) Rgas/Rair =

1337

208/39 [68]

rGO/Fe2O3

nanosphere

NO2 Room temperature 90 (0.18–90) Rair � Rgas/

Rgas =

150.63%

80/1648 [69]

rGO/CuO

nanoflower

NO2 Room temperature 1000 (0.25–

1000)

|Rgas – Rair|/

Rair = 6.61 %

76/232 [90]

Graphene/

WO3

nanosphere

NO2 Room temperature 56 (7–56) Igas – Iair/Iair
= 40.8%

— [70]

rGO/WO3

porous

nanoflakes

NO2 90 (20–200) 10 (5–200) Rgas/Rair =

5%

4.1/5.8 [91]

Table 4.
Summary of the performance of sensor fabricated by using the nanocomposites of 3-D metal oxides and
graphene or graphene derivatives (GO, rGO).

Figure 14.
NO2 response of (a) rGO/ZnO nanoflower (1.7% rGO in ZnO) at 100°C [15] and (b) rGO/In2O3nanoflower
at 74°C [68].
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4. Conclusion

Hybrids of graphene/nanoscale metal oxides have been extensively discussed in
this chapter where the major focused area was synthesis/fabrication of monohybrid
and its performance assessment for gas/vapor sensing applications. Detailed litera-
ture survey confirmed that metal oxide nanoparticle (0-D) are the most reported
nanostructure used for the synthesis of nanocomposites with graphene (and GO
and rGO) for potential gas sensing application while 1-D metal oxides like
nanorods, nanotubes, nanowires, etc. were in the second place. Use of 2-D and 3-D
metal oxides were relatively less to form composites with graphene. In chemical
synthesis, GO/rGO functionalization was carried out in two routes, that is, (i)
mixing of GO/rGO in precursor before synthesizing a nanostructure and (ii)
functionalization by GO/rGO after synthesis of nanostructures. Hydrothermal was
the most popular method followed by solvothermal, sol-gel, spray pyrolysis, etc.
reported to synthesize a composite of 0-D metal oxides. Hydrothermal,
electrospinning, electrochemical anodization, etc. were used for the synthesis of
graphene/1-D metal oxide composites. Most of the 2-D and 3-D nanocomposites
were grown by low-cost chemical methods. Therefore, the graphene/nanoscale
metal oxide composites can synthesize via a cost-effective way.

Among all the metal oxides, SnO2 was mostly reported materials in 0-D struc-
ture used in composites with graphene. Other popular metal oxides are ZnO, WO3

and TiO2 mostly used for 1-D metal oxide hybrid. A large number of the report
showed NO2 selective behavior of rGO/metal oxide nanocomposite gas sensors
especially for 3-D and 0-D metal oxide hybrids. Other reported gases/vapors are H2,
NH3, CO, H2S, C2H2, ethanol, methanol, acetone, benzene, etc. A significant varia-
tion was observed in case of operating temperature of the sensors in case of differ-
ent nanoscale metal oxides. The average sensing temperature was highest in case of
2-D nanocomposites and decreased from 1-D, 0-D and 3-D. However, the overall
study confirmed the relatively low-temperature detection of gases and vapors after
the formation of composites of graphene and nanoscale metal oxides. The detection
range was varying from lower ppb to higher ppm level but most of the report was
confined near a low ppm range (1–100 ppm). A significant improvement was also
observed in case of response magnitude and response time/recovery time.

Finally, we would like to conclude with the comment that gas/vapor sensing
performance was improved significantly due to the formation of nanohybrid of
nanoscale metal oxides and graphene derivatives like GO and rGO. Further study
may be necessary with these nano thin-film sensors to encourage the performance
in terms of high selectivity and long-term stability. Then these hybrid sensors to
make these nanocomposite sensors more suitable for practical applications.
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