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Chapter

Periodic Solution of Nonlinear
Conservative Systems
Akuro Big-Alabo and Chinwuba Victor Ossia

Abstract

Conservative systems represent a large number of naturally occurring and arti-
ficially designed scientific and engineering systems. A key consideration in the
theory and application of nonlinear conservative systems is the solution of the
governing nonlinear ordinary differential equation. This chapter surveys the recent
approximate analytical schemes for the periodic solution of nonlinear conservative
systems and presents a recently proposed approximate analytical algorithm called
continuous piecewise linearization method (CPLM). The advantage of the CPLM
over other analytical schemes is that it combines simplicity and accuracy for strong
nonlinear and large-amplitude oscillations irrespective of the complexity of the
nonlinear restoring force. Hence, CPLM solutions for typical nonlinear Hamiltonian
systems are presented and discussed. Also, the CPLM solution for an example of a
non-Hamiltonian conservative oscillator was presented. The chapter is aimed at
showcasing the potential and benefits of the CPLM as a reliable and easily
implementable scheme for the periodic solution of conservative systems.

Keywords: Hamiltonian system, conservative system, nonlinear vibration,
continuous piecewise linearization method, periodic solution, nonnatural system,
perturbation method

1. Introduction

1.1 Hamiltonian and non-Hamiltonian conservative systems

Conservative systems can be defined as oscillating or vibrating systems in which
the total energy content of the system remains constant. In order words, the total
energy in the system is conserved. Ideally, such a system will continue to be in
periodic oscillatory motion ad infinitum because the energy content of the system
does not diminish due to the absence of dissipative force or increase due to addi-
tional energy input. However, for real cases where dissipative mechanisms such as
friction or viscous damping cannot be completely eliminated, a conservative system
can be thought of as one in which the energy dissipated is negligible during the time
range under consideration. For example, the first few seconds of the oscillation of a
simple pendulum may be considered conservative since the effect of air friction is
negligible, but in the long run, the initial energy content is gradually dissipated until
the pendulum comes to a halt. Other examples of practical conservative systems
include mass-spring oscillator, structural elements (i.e., beams, plates, and shells),
slider-crank mechanism [1], human eardrum [2], relativistic oscillator [3],
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planetary orbits around the sun [3], and current-carrying conductor in the electric
field of an infinite rod [4]. Hence, a large number of oscillating physical systems can
be studied as conservative systems.

At any point in time, the energy of a conservative system is composed of kinetic
(T) and potential (V) energies except at critical points where the total energy may
be only kinetic (Tmax) or potential (Vmax). Generally, it is expected that T ¼ T q, _qð Þ
and V ¼ V q, _qð Þ, where q is the generalized displacement. Naturally, q and _q are not
expected to form a product in the function T q, _qð Þ, but in some cases, they do:
Therefore, two types of conservative systems are distinguished namely: natural and
nonnatural conservative systems. The natural conservative systems are those in
which the kinetic energy can be expressed as a pure quadratic function of velocity,
i.e., does not contain a product of the velocity and displacement. They are also
known as Hamiltonian systems because they admit a Hamiltonian function
(H q, _qð Þ ¼ T q, _qð Þ þ V q, _qð Þ) that is always constant at any point in time. While this
definition of Hamiltonian systems is a physical one, a mathematical definition has
been discussed by Jordan and Smith [3]. Examples of Hamiltonian systems include
mass-spring oscillator, simple pendulum, and a mass attached to the mid-point of
an elastic spring. On the other hand, there are conservative systems in which the
kinetic energy cannot be expressed as a pure quadratic function of the velocity
because the kinetic energy expression contains a product of velocity and displace-
ment. This second group of conservative systems is referred to as nonnatural
because their kinetic energy is not a pure quadratic function of velocity.
Although the total energy in such systems is conserved, their Hamiltonian function
(H q, _qð Þ) is not constant [4]. Hence, the nonnatural conservative systems may be
referred to as non-Hamiltonian conservative systems. Examples of this category of
conservative systems abound in artificial systems and include slider-crank mecha-
nism [1], particle sliding on a vertical rotating parabola [4], pendulum attached to
massless rolling wheel [4], rigid rod rocking on a circular surface without slip [4],
and circular sector oscillator [5]. An important quality of the non-Hamiltonian
conservative systems is that their vibration equation, which is normally derived by
the Lagrangian approach, does not conform to the standard representation of con-
servative systems that clearly shows the restoring force. Rather, the derived vibra-
tion equation has a quadratic velocity term, which represents a coordinate-
dependent parameter rather than a dissipative parameter.

1.2 Recent advances in solution schemes for nonlinear conservative oscillators

Exact analytical solutions for the nonlinear vibration models of conservative
systems can be derived only in very few situations, and the solutions are usually
derived in terms of special functions. Alternatively, highly accurate numerical
solutions can be obtained for the nonlinear vibration model of any conservative
system. However, as it is well recognized among the nonlinear science community,
numerical solutions often have the limitations of lack of physical insight and
convergence issues. Furthermore, there is the possibility of obtaining inaccurate
convergent solutions for a nonlinear ordinary differential equation (ODE) [6], thus
necessitating the independent verification of the convergent numerical solution by
another numerical or analytical method. These limitations have driven the search
for approximate analytical schemes capable of providing periodic solutions to
nonlinear conservative oscillators. It can be rightly concluded that this search
has been very fruitful considering the many approximate analytical schemes that
now appear in the nonlinear science literature. The purpose of this section is to
provide a brief survey of some of the notable achievements in the development of
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approximate analytical schemes for the periodic solution of nonlinear conservative
oscillators. It should be noted that an approximate analytic method for nonlinear
oscillators is considered adequate if it gives accurate predictions for the frequency-
amplitude response and the oscillation history as well [7, 8].

Approximate analytical techniques to solve the nonlinear ODE governing the
oscillations of a conservative system have been formulated for at least 100 years and
can be classified as perturbation and nonperturbation methods. The first attempts
were based on perturbation theory and are referred to as classical perturbation
methods. The perturbation methods are formulated based on the concept that an
unknown nonlinear system can be studied by introducing a small disturbance to a
known linear system in equilibrium. For this reason, the classical perturbation
methods (see Nayfeh [9] for a comprehensive treatment of classical perturbation
methods) depend on the assumption of a small parameter. The problem with the
small parameter assumption is that it has a small range of validity and only produces
reliable solutions for cases of small-amplitude oscillations and weak nonlinearity.
Nevertheless, the classical perturbation methods are still very relevant today for
introducing and investigating various nonlinear concepts.

More recently, in the last four decades, a number of approximate analytical
schemes have been proposed. Most of these recent schemes are nonperturbation
methods, but some recent perturbation methods that attempt to improve on their
classical counterparts have been formulated too. The recent perturbation methods
include δ-method [10], Homotopy perturbation method [11] and its variants [12–17],
modified Lindstedt-Poincare method [18–21], book-keeping parameter method [22],
iteration perturbation method [23], parameterized perturbation method [24], per-
turbation incremental method [25], and linearized perturbation method [26]. A
review article on some of the recent perturbation methods has been published by He
[27]. The main point of the recent perturbation methods is to deal with the issue of
the small parameter in order to formulate solutions that are applicable to small- and
large-amplitude oscillations and also weak and strong nonlinear oscillations. Although
the higher order approximations of the recent perturbation methods have been very
successful in producing accurate estimates of the frequency-amplitude response, the
same cannot be said of their estimation of the oscillation history. Studies [7, 28] have
shown that the higher order approximations of the recent perturbation methods
produce large unbounded errors in the oscillation history during large-amplitude
oscillations and are, therefore, not better than the classical perturbation methods in
this regard. A plausible explanation for this observation is that it occurs because
perturbation methods are based on asymptotic series that are inherently divergent
for amplitudes greater than unity [28]. Therefore, it may not be possible to formulate
perturbation schemes that would correctly predict the oscillation history of large-
amplitude vibrations.

In contrast to the perturbation methods, the nonperturbation methods do not
use any small or artificial parameter. Examples include Adomian decomposition
method [29], Homotopy analysis method [30], Variational iteration method [31],
Energy balance method [2] and its modifications [32–34], He Chengtian’s interpo-
lation method [27] also called max-min approach, amplitude-frequency formulation
[35], Hamiltonian approach [36], global error minimization method [37], Harmonic
balance method [4] and its modifications [38–42], cubication methods [43–46],
variational methods [47–49], differential transform method [50], and continuous
piecewise linearization method [8]. Nonperturbation methods also have various
limitations. For instance, a study [51] showed that the Adomian decomposition
method does not converge to the correct solution in some cases, and the study
proposed an optimal convergence acceleration parameter to deal with this issue.
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Also, methods that rely on a simple harmonic approximation of the oscillation
history, such as the energy balance method, amplitude-frequency formulation,
Hamiltonian approach, max-min approach, and variational methods, can only give
reliable estimate of the frequency-amplitude response. Sometimes these methods
perform poorly in predicting the oscillation history during large-amplitude and/or
strong nonlinear vibrations. Other methods that usually require high-order approx-
imations, such as Adomian decomposition method, harmonic balance method, and
variational iteration method, present algebraic complexities in their determination
of higher order solutions and may be impractical for oscillators with highly complex
nonlinearities such as the slider-crank mechanism [1] and the bifilar pendulum [52].
Furthermore, it has been observed that higher order estimates do not always
improve the solution of the oscillation history [27]. Finally, some nonperturbation
methods are heuristic in nature (e.g., energy balance method and variational
methods) and require experience to choose the initial trial function and the
condition for error minimization [8].

The continuous piecewise linearization method (CPLM) is an iterative analytic
algorithm that was formulated to overcome most of the above challenges by pro-
viding simple and accurate solutions for the oscillation history and frequency-
amplitude response of Duffing-type oscillators. In another study [53], the CPLM
was modified in order to generalize it so that it can handle more complicated
nonlinear conservative oscillators. Interestingly, the CPLM does not require higher
order approximations or any small, artificial, or embedded parameter. Also, the
algorithm is inherently stable, straightforward, and based on closed-form analytical
approximations. This chapter is aimed at presenting the generalized CPLM algo-
rithm as a veritable approach for accurate periodic solution of Hamiltonian and
non-Hamiltonian conservative oscillators with complex nonlinearity. As is shown
later, the CPLM retains the same simplicity in its implementation irrespective of
the complexity of the nonlinear conservative system.

2. Continuous piecewise linearization method

2.1 Concept of the continuous piecewise linearization method

The main idea of the CPLM is based on the piecewise linearization of the
nonlinear restoring force of a conservative oscillator. The linearization technique
used by the CPLM was first applied in another algorithm [6, 54] for the solution of
half-space impact models called force indentation linearization method (FILM).
The FILM has been applied to formulate theoretical solutions for rigid body motions
and local compliance response during nonlinear elastoplastic impact of dissimilar
spheres [55]. However, because the FILM is limited to impact excitations that are
nonoscillatory, it cannot be applied to nonlinear conservative oscillators. Hence, the
CPLM applies the piecewise linearization technique of the FILM to provide a peri-
odic solution for nonlinear conservative oscillators.

Essentially, the linearization technique of the CPLM involves n equal
discretization of the nonlinear restoring force with respect to displacement
(Figure 1) and formulating a linear restoring force for each discretization. There-
fore, a linear ODE can be derived for each discretization. The solution of the linear
ODE approximates the solution of the original nonlinear oscillator for a time-range
that is automatically determined by the CPLM and updated continuously from one
discretization to the next. Details on the discretization and linearization technique
of the CPLM can be found in the following references [6, 8, 54], while the applica-
tions of the CPLM to nonlinear conservative systems are presented in [8, 56].
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2.2 Mathematical formulation of the continuous piecewise linearization
method

The standard form for representation of a nonlinear conservative oscillator
moving in the u-direction is given as:

€uþ f uð Þ ¼ 0, (1)

where f uð Þ is the nonlinear restoring force as shown in Figure 1. In Figure 1, the
numbering on the horizontal axis represents the boundary points of the

discretization. The sth discretization represents a general discretization with start
point at r and endpoint at s ¼ rþ 1. Figure 1 shows that for each discretization, the
slope of the linear approximation of the restoring force can either be positive or

negative. To account for this possibility, the linearized force for the sth discretization
can be expressed as:

Frs uð Þ ¼ � Krsj j u� urð Þ þ Fr, (2)

where Krs ¼ f usð Þ � f urð Þ½ �= us � urð Þ is the linear slope of Frs uð Þ and Fr ¼ f urð Þ.
Since Frs uð Þ is an approximation of f uð Þ for the sth discretization, then substitut-

ing Eq. (2) in (1) gives the approximate equation of motion for each discretization
as follows:

€u� Krsj ju ¼ � Krsj jur � Fr: (3)

Eq. (10) is a nonhomogeneous linear ODE and its solution depends on whether
the sign is positive or negative.

2.2.1 Solution for positive linearized stiffness

If Krs >0, the solution for the displacement and velocity can be expressed as:

u tð Þ ¼ Rrs sin ωrstþΦrsð Þ þ Crs (4a)

_u tð Þ ¼ ωrsRrs cos ωrstþΦrsð Þ, (4b)

Figure 1.
Discretization of the restoring force of a typical nonlinear oscillator.
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where ωrs ¼
ffiffiffiffiffiffiffi

Krs

p
, Crs ¼ ur � Fr=Krs, and Rrs ¼ ur � Crsð Þ2 þ _ur=ωrsð Þ2

h i1=2
. The

initial conditions and other parameters are determined based on the oscillation
stage. For the oscillation stage that moves from þA to �A, the initial conditions for

each discretization are ur ¼ ur 0ð Þ ¼ A� r∆u and _ur ¼ _ur 0ð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Ð ur
A � f uð Þdu

�

�

�

�

q

,

where ∆u ¼ A=n, and the other parameters are calculated as:

Φrs ¼
0:5π _ur ¼ 0

π þ tan �1 ωrs ur � Crsð Þ= _ur½ � _ur <0

�

(5a)

∆t ¼
0:5π �Φrsð Þ=ωrs us � Crsð Þ≥Rrs

0:5π þ cos �1 us � Crsð Þ=Rrs½ � �Φrsð Þ=ωrs us � Crsð Þ<Rrs

(

: (5b)

For the oscillation stage that moves from �A to þA, the initial conditions are

ur ¼ ur 0ð Þ ¼ �Aþ r∆u and _ur ¼ _ur 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Ð ur
A � f uð Þdu

�

�

�

�

q

; the other parameters

are calculated as:

Φrs ¼
�0:5π _ur ¼ 0

tan �1 ωrs ur � Crsð Þ= _ur½ � _ur <0

�

(6a)

∆t ¼
0:5π �Φrsð Þ=ωrs us � Crsð Þ≥Rrs

0:5π � cos �1 us � Crsð Þ=Rrs½ � �Φrsð Þ=ωrs us � Crsð Þ<Rrs

�

: (6b)

The time at the end of each discretization is ts ¼ tr þ ∆t, and the end conditions
us and _us are calculated by replacing r with s in the formulae for the initial
conditions.

2.2.2 Solution for negative linearized stiffness

If Krs <0, the solution for the displacement and velocity can be expressed as
follows:

u tð Þ ¼ Arse
ωrst þ Brse

�ωrst þ Crs (7a)

_u tð Þ ¼ ωrs Arse
ωrst � Brse

�ωrstð Þ, (7b)

whereωrs ¼
ffiffiffiffiffiffiffiffiffi

Krsj j
p

;Crs ¼ ur þ Fr= Krsj j. Applying the initial conditions to Eqs. (7a)
and (7b) gives:Ars ¼ 1

2 ur þ _ur=ωrs � Crsð Þ; Brs ¼ 1
2 ur � _ur=ωrs � Crsð Þ. The initial and

end conditions are determined in the same way as for Krs >0 above. The end condi-
tions are applied in Eq. (7a) to get the time interval for each discretization as:

∆t ¼

1

ωrs
log e

us � Crsð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

us � Crsð Þ2 � 4ArsBrs

q

2Ars

2

4

3

5 us � Crsð Þ> 2
ffiffiffiffiffiffiffiffiffiffiffiffi

ArsBrs

p

1

ωrs
log e

us � Crs

2Ars

� �

us � Crsð Þ≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffi

ArsBrs

p

8

>

>

>

>

>

<

>

>

>

>

>

:

:

(8)

The sign before the square root in Eq. (8) is negative for the oscillation stage that
moves from þA to �A and vice versa. We note that if _ur ¼ 0, then Ars ¼ Brs ¼
1
2 ur � Crsð Þ and
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u tð Þ ¼ ur � Crsð Þ cosh ωrstð Þ þ Crs: (9)

Therefore,

∆t ¼ 1

ωrs
cosh �1 us � Crs

ur � Crs

� �

: (10)

2.2.3 Solution for zero linearized stiffness

In very rare situations, we may have Krs ¼ 0 for one or two discretization
around the turning points or relatively flat regions of the restoring force. This is
likely when ∆u is very small, i.e., for very large n, and can be eliminated by
increasing or decreasing n slightly. However, if we want to account for Krs ¼ 0,
then we get [53]:

u tð Þ ¼ Hrs þGrst�
1

2
Frt

2, (11)

where Grs ¼ _ur þ Frtr and Hrs ¼ ur � _urtr � 1
2Frt

2
r . Hence, the time interval is

derived from Eq. (11) as:

∆t ¼
Grs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
rs þ 2Fr Hrs � usð Þ

q

Fr
: (12)

2.3 Remarks on the CPLM algorithm

1.From the above presentation of the CPLM formulation, it is obvious that the
CPLM algorithm is simple and can be implemented by undergrads without
difficulty.

2.The CPLM is inherently stable and does not have convergence issues [8].

3.For few discretization, say n≤ 10, the CPLM algorithm can be implemented
with reasonable accuracy using a pocket calculator. However, the CPLM is
better executed using a simple code in any programming language such as
MATLAB and Mathematica or using a customized MS Excel spreadsheet.

4.When dealing with conservative oscillators with odd nonlinearity, which
are symmetrical about the origin, discretization of the restoring force is only
required for 0 to A. This means that there will be 2n discretizations from
�A to A.

5.The CPLM algorithm retains the same simplicity in implementation
irrespective of the complexity of the restoring force. Only the Krs constant and
the integral of the restoring force are to be evaluated anew for any oscillator.

6.The CPLM relies on the explicit expression of restoring force, which means
that the model for the oscillator must be expressed in the form of Eq. (1). For
Hamiltonian systems, the oscillator model is formulated naturally in the form
of Eq. (1). For non-Hamiltonian conservative systems, the oscillator model is
not formulated naturally in the form of Eq. (1). Therefore, there is a need to
transform the model of non-Hamiltonian conservative systems into the form
of Eq. (1) before applying the CPLM algorithm. Fortunately, this
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transformation only requires a simple algebraic manipulation as demonstrated
in Section 4.

7.The phase equation gives the relationship between the state variables
(displacement and velocity) and can be derived exactly in closed-form for all
conservative systems. The CPLM extends this bilateral relationship into a
tripartite one by finding the value of the corresponding independent variable
(i.e., time) that matches the values of the state variables in each discretization.

8.For few discretization, say n≤ 20, it would be necessary to extract values
within each discretization in order to obtain a smooth plot of the oscillation
history. The values can be extracted using the approximate solution of the
displacement. However, for many discretizations, say n≥ 50, there is no need
to extract values from any discretization.

9.The usual initial conditions investigated for nonlinear conservative oscillators
are nonzero displacement and zero velocity. However, the CPLM algorithm can
comfortably handle nonzero initial conditions for displacement and velocity.

3. Periodic solution of typical Hamiltonian systems

3.1 Nonlinear simple pendulum

The simple pendulum is arguably the most investigated physical system and
provides very interesting insights into nonlinear phenomena. Butikov [57] calls it
“an antique but evergreen physical model.” The undamped oscillation of a simple
pendulum is a Hamiltonian system governed by the well-known nonlinear ODE as
shown:

€uþ Ω
2
0 sin u ¼ 0, (13)

where u is the angular displacement, Ω0 ¼
ffiffiffiffiffiffi

g=l
p

, l is the length of the pendulum,

and g ¼ 9:8 m=s2. The initial conditions are given as u 0ð Þ ¼ A and _u 0ð Þ ¼ 0. The
same initial conditions are applicable to all other oscillators discussed subsequently.
The exact solution to Eq. (13) is expressed in terms of elliptic functions. The
displacement and natural frequency are given as [58]:

uex tð Þ ¼ 2 sin �1 ksn Ω0tþ K k2
� �

; k
� �	 


(14)

ωex ¼
πΩ0

2K k2
� � , (15)

Where sn is the Jacobi elliptic sine function, k ¼ sin A=2ð Þ, and K k2
� �

is the

complete elliptic integral of the first kind given as:

K k2
� �

¼
ðπ=2

0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin 2ϕ

q dϕ: (16)

From Eq. (13), the restoring force for the pendulum is f uð Þ ¼ Ω
2
0 sin u and looks

like the plot in Figure 1. This means that Krs ¼ Ω
2
0 sin us � sin urð Þ= us � urð Þ and

_u ¼ �Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cos u� cosAð Þ
p

. The initial and final velocities for each discretization
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are determined using the expression for _u, and all the other constants for the
solution of each discretization are determined based on Krs. A plot of the frequency-
amplitude response for the simple pendulum when Ω0 ¼ 1:0 is given in Figure 2a
and the corresponding error of the CPLM solution in comparison with the exact
solution (Eq. (15)) is shown in Figure 2b. We see that for A≤ 178°, the maximum
error in the CPLM estimate is less than 0.45% for n ¼ 50 and 0.14% for n ¼ 100.
Also, the oscillation history for moderate-amplitude (A ¼ 45°) and large-amplitude
(A ¼ 135°) is shown in Figure 3 and an excellent agreement between the CPLM
solution for n ¼ 100 and the exact solution (Eq. (14)) is observed. We noted that
trigonometric nonlinearity is usually difficult to deal with and that is why the
CPLM shows a relatively slow convergence to accurate results. Hence, many
discretizations (e.g., n ¼ 50� 100) are required to get an accuracy that is within
1.0% of the exact solution during large-amplitude oscillations (90°<A< 180°) of
the simple pendulum.

3.2 Motion of satellite equidistant from twin stars

Consider the motion of a satellite along a path that is equidistant from two
identical massive stars with mutually interacting gravitational fields. If the distance
between the two stars is 2d and the coordinate of the satellite motion is u, then the
equation of motion of the satellite is given as [3]:

€uþ 2Mu

d2 þ u2
� �3=2

¼ 0, (17)

Figure 2.
(a) Frequency-amplitude response of the simple pendulum for 0°<A< 180°. (b) CPLM error analysis.

Figure 3.
Oscillation history of the simple pendulum for (a) A ¼ 45° and (b) A ¼ 135°. CPLM estimate—Lines; exact
solution—Markers.
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where M is the mass of a star and the restoring force is f uð Þ ¼ 2Mu= d2 þ u2
� �3=2

.

Eq. (17) shows that the satellite-star interaction results in a conservative oscillation
of the satellite. Figure 4 shows the nonlinear restoring force, which is an irrational
force because of the bottom square root. The restoring force spikes on both sides of
the vertical axis close to the origin. The spikes indicate the point when the satellite is
most influenced by the mutual gravitational field of the stars. Away from the origin,
the restoring force decreases gradually and approaches the horizontal axis asymp-
totically. This means that the satellite is far away from the stars and experiences a
much smaller gravitational force. This problem was discussed qualitatively by Jor-
dan and Smith [3] and Arnold [59], but here, the periodic solution was investigated.

The main CPLM constant is Krs ¼ 2M d2 þ u2s
� ��3=2 � d2 þ u2r

� ��3=2
h i

and the

velocity was derived as: _u ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M d2 þ u2
� ��1=2 � d2 þ A2

� ��1=2
h i

r

. The periodic

solutions obtained by the CPLM and exact numerical solution are shown in
Figures 5 and 6. The numerical solution was obtained by solving Eq. (17) using
the NDSolve function in Mathematica™. The NDSolve function is a Mathematica
subroutine for solving ordinary, partial, and algebraic differential equations
numerically. In its basic form, it automatically selects the numerical method to use
from a list of standard methods such as implicit Runge–Kutta, explicit Runge–
Kutta, symplectic partitioned Runge–Kutta, predictor–corrector Adams, and back-
ward difference methods. In some cases, the NDSolve function can combine two or

Figure 4.
Restoring force for Eq. (18): M ¼ 105 kg½ �; d ¼ 100 m½ �; A ¼ 500.

Figure 5.
(a) Frequency-amplitude response for satellite. (b) CPLM error analysis.
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more methods to obtain the required solution. This basic form is preferable because
the NDSolve function uses the method(s) that best solves the differential equation
considering accuracy and solution time. Hence, the NDSolve function was used in
its basic form for all numerical solutions obtained in this chapter.

The input values used for simulation are M ¼ 105 kg½ � and d ¼ 1000 m½ �. In
contrast to the simple pendulum, the oscillation of the satellite requires less
discretization for accurate results because there is no trigonometric nonlinearity.
The maximum error of the CPLM estimate for the frequency-amplitude response is
less than 0.55% for n ¼ 10 and 0.20% for n ¼ 20. Significantly higher accuracies can
be achieved by increasing n, but the results show that n ¼ 10 gives reasonably
accurate estimates.

On the other hand, Figure 6 shows the oscillation history of the satellite during
small-amplitude (A ¼ 50) and large-amplitude (A ¼ 1500) oscillations. The former
gives a simple harmonic response with a natural frequency that is independent of

the amplitude and approximately equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=d3
q

, while the latter exhibits

an anharmonic response with a natural frequency that depends strongly on the
amplitude.

3.3 Mass-spring oscillator with fractional nonlinearity

An interesting oscillator that has been the subject of several studies [60–65] is
the Hamiltonian oscillator with odd fractional nonlinearity. For the purpose of the
present investigation, we consider an oscillator that is characterized by a general
fractional nonlinearity as follows [65]:

€uþ u1= 2mþ1ð Þ ¼ 0, (18)

where the restoring force, f uð Þ ¼ u1= 2mþ1ð Þ, has a fractional index for all

m ϵ ℤ
þf g. The main CPLM constant is evaluated as Krs ¼ u

1= 2mþ1ð Þ
s � u

1= 2mþ1ð Þ
r

h i

=

us � urð Þ and the velocity as _u ¼ � 2mþ 1ð Þ= mþ 1ð Þ½ �1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A 2mþ2ð Þ= 2mþ1ð Þ � u 2mþ2ð Þ= 2mþ1ð Þ
p

.

The periodic solution for the case of m ¼ 1, i.e., u1=3 oscillator, is shown in Figures 7
and 8. The exact frequency-amplitude response used for the verification of the CPLM
solution is [63]:

ωex ¼
2πΓ 5=4ð Þ

ffiffiffi

6
p

Γ 3=4ð ÞΓ 1=2ð ÞA1=3
¼ 1:070451

A1=3
: (19)

Figure 6.
Oscillation history of satellite for (a) A ¼ 50 and (b) A ¼ 1500. CPLM estimate—Lines; exact solution—
Markers.
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while the exact oscillation history was obtained by the numerical solution of
Eq. (18) using the NDSolve function in Mathematica™. The CPLM solution dem-
onstrates an excellent agreement with the exact solution.

Figure 7 compares the CPLM estimates of the frequency-amplitude response
with Eq. (19), and the maximum error of the CPLM solution is 0.22% for n ¼ 10
and 0.076% for n ¼ 20. The error in the CPLM estimate is approximately constant
for all amplitudes, and the maximum error is well below 1.0% for n ¼ 10. The
results also reveal that the frequency approaches zero as A ! ∞. In Figure 8, the
oscillation history for small-amplitude (A ¼ 0:01) and large-amplitude (A ¼ 10:0)
oscillations is shown to exhibit similar anharmonic response, which is an indication

of strong nonlinearity. Therefore, it can be concluded that the u1=3 oscillator is
highly nonlinear for all amplitudes. This quality of possessing strong nonlinearity
for all amplitudes is in contrast to most Hamiltonian oscillators that are linear for
small amplitudes, e.g., the oscillators considered in Sections 3.1 and 3.2 above.
Another Hamiltonian oscillator that possesses strong nonlinearity for all amplitudes
is the geometrically nonlinear crank [1].

4. Periodic solution of non-Hamiltonian conservative systems

The non-Hamiltonian conservative systems are generally more complex and
difficult to solve compared with the Hamiltonian systems. In order to demonstrate
the application of the CPLM algorithm to non-Hamiltonian conservative systems,
we consider the motion of a particle on a rotating parabola. This system consists of a
frictionless mass sliding on a vertical parabolic wire described by y ¼ qu2 for q>0

Figure 7.

(a) Frequency-amplitude response for u1=3 oscillator. (b) CPLM error analysis.

Figure 8.

Oscillation history of u1=3 oscillator for (a) A ¼ 0:01 and (b) A ¼ 10. CPLM estimate—lines; exact solution—
markers.
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and rotating at a constant speed, Ω, about the y-axis (Figure 9a). The u-axis
represents the perpendicular displacement of the mass from the y-axis. The kinetic
and potential energies of the system are given as [4]:

T ¼ 1

2
m 1þ 4q2u2

� �

_u2 þ Ω
2u2

	 


;V ¼ mgqu2: (20)

Hence, the Lagrangian is:

L ¼ T � V ¼ 1

2
m 1þ 4q2u2

� �

_u2 þ Ω
2u2

	 


�mgqu2: (21)

Next, we substitute Eq. (21) into the Euler–Lagrange equation to derive the
equation of motion. The Euler–Lagrange equation can be written as:

d

dt

∂L

∂ _u

� �

� ∂L

∂u
¼ 0: (22)

Therefore, using Eqs. (21) and (22), the motion of a particle on a rotating
parabola is governed by:

1þ 4q2u2
� �

€uþ 4q2u _u2 þ Λu ¼ 0, (23)

where Λ ¼ 2gq�Ω
2 and the initial conditions are: u 0ð Þ ¼ A and _u 0ð Þ ¼ 0.

To solve Eq. (23) using the CPLM, it must be recast in the form of Eq. (1). The
conservation of energy for Eq. (23) is given as [4]:

1þ 4q2u2
� �

_u2 þ Λu2 ¼ h, (24)

where h is a constant representing the total energy in the system. Eq. (24)

confirms that the Hamiltonian, H ¼ T þ V ¼ 1
2m 1þ 4q2u2ð Þ _u2 þ Λþ 2Ω2

� �

u2
	 


¼
1
2m hþ 2Ω2u2

� �

, is not constant. Applying the initial conditions, we get h ¼ ΛA2 so

that _u2 ¼ Λ A2 � u2
� �

= 1þ 4q2u2ð Þ. Substituting this expression for _u2 in Eq. (24) and

after algebraic simplification, we get:

€uþ Λ 1þ 4q2A2
� �

u

1þ 4q2u2ð Þ2
¼ 0: (25)

Figure 9.
(a) Schematic of particle on a rotating parabola. (b) Restoring force when q ¼ 1:0; Λ ¼ 10:0; A ¼ 2:0.
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Therefore, the restoring force is f uð Þ ¼ Λ 1þ 4q2A2
� �

u= 1þ 4q2u2ð Þ2. Figure 9b
shows that f uð Þ is linear at small amplitudes and strongly nonlinear at large ampli-

tudes. The main CPLM constant was calculated as Krs ¼ Λ 1þ 4q2A2
� �

1= 1þ 4q2u2s
� �2�

h

1= 1þ 4q2u2r
� �2�, and the velocity was evaluated as _u ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ A2 � u2
� �

= 1þ 4q2u2ð Þ
q

.

The exact time period for this oscillator can be derived in terms of elliptic function
as follows [4]:

Tex ¼ 4 1þ 4q2A2
� �

=Λ
	 
1=2

E k2
� �

, (26)

where E k2
� �

¼
Ð π=2
0 1� k2 sin 2ϕ

� �1=2
dϕ is the complete elliptic integral of the

second kind and k2 ¼ 4q2A2= 1þ 4q2A2
� �

. Then, the exact frequency was computed
as ωex ¼ 2π=Tex, while the exact oscillation history was obtained by solving Eq. (25)
numerically using the NDSolve function in Mathematica™.

A comparison of CPLM frequency estimate and the exact frequency is shown in
Figure 10, while the oscillation histories for A ¼ 0:50 and A ¼ 2:0 are shown in
Figure 11. As demonstrated in [4], periodic solutions for this system exist only for
Λ>0. Hence, the simulations in Figures 10 and 11 were conducted for Λ ¼ 10 and
q ¼ 1:0. An excellent agreement is observed between the CPLM estimates and the
exact results. For 0<A≤ 20, the maximum error in the CPLM estimate of the
frequency-amplitude response is 0.642% for n ¼ 10 and 0.101% for n ¼ 20, both of
which are well below 1.0%. Also, the CPLM solution gives an accurate prediction of
the strong anharmonic response in the oscillation history as shown in Figure 11.

Figure 10.
(a) Frequency-amplitude response for particle on a rotating parabola. (b) CPLM error analysis.

Figure 11.
Oscillation history of particle on a rotating parabola for (a) A ¼ 0:50 and (b) A ¼ 2:0. CPLM estimate—
Lines; exact solution—Markers.
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5. Concluding remarks

Conservative oscillators generally exhibit nonlinear response, and they form a
large class of natural and artificially vibrating systems. Hence, the study of the
dynamic response of nonlinear conservative systems is important for understanding
many physical phenomena and the design of systems. The main challenge in the
theoretical analysis of nonlinear conservative systems is that exact solutions are
normally not available except for a few special cases where exact solutions are
derived in terms of special functions.

To date, many approximate analytical methods have been formulated for the peri-
odic solution of nonlinear conservative oscillators. This chapter provides a brief survey
of the recent advances in the formulation of approximate analytical schemes and then
introduced a recent approximate analytical algorithm called the continuous piecewise
linearization method. The CPLM has been shown to overcome the challenges of solu-
tion accuracy and simplicity usually encountered in usingmost of the existing approx-
imate analytical methods. The CPLM combines major desirable features of solution
schemes such as inherent stability, accuracy, and simplicity. It is simple enough to be
introduced at the undergraduate level and is capable of handling conservative oscilla-
tors with very complex nonlinearity. Conservative systems of broad interest were used
to demonstrate the wide applicability of the CPLM algorithm. As demonstrated above,
an accuracy of less than 1.0% relative error can be achieved for most oscillators using
few discretizations, say n≤ 20, except for oscillators with trigonometric nonlinearity
where such accuracy is achieved with many discretizations. This chapter has been
designed to stimulate interest in the use of CPLM for analyzing various types of
conservative systems, especially those with complex nonlinearity.
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