
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

1

Chapter

Approximation for Scheduling on
Parallel Machines with Fixed Jobs
or Unavailability Periods
Liliana Grigoriu

Abstract

We survey results that address the problem of non-preemptive scheduling
on parallel machines with fixed jobs or unavailability periods with the purpose
of minimizing the maximum completion time. We consider both identical and
uniform processors, and also address the special case of scheduling on nonsimul-
taneous parallel machines, which may start processing at different times. The
discussed results include polynomial-time approximation algorithms that achieve
the best possible worst-case approximation bound of 1.5 in the class of polynomial
algorithms unless P = NP for scheduling on identical processors with at most one
fixed job on each machine and on uniform machines with at most one fixed job on
each machine. The presented heuristics have similarities with the LPT algorithm or
the MULTIFIT algorithm and they are fast and easy to implement. For scheduling
on nonsimultaneous machines, experiments suggest that they would perform well
in practice. We also include references to the relevant work in this area that contains
more complex algorithms. We then discuss the main methods of argument used in
the approximation bound proofs for the simple heuristics, and comment upon cur-
rent challenges in this area by describing aspects of related practical problems from
the automotive industry.

Keywords: multiprocessor scheduling, availability constraints, fixed jobs,
uniform processors, worst-case approximation, nonsimultaneous machines,
makespan, maximum completion time, unavailability

1. Introduction

The necessity to assign resources such as machines to jobs that need to be
performed without interruption, where the time required for a machine to per-
form a certain job is known in advance, is a widely encountered problem. It can
occur for example in production planning or when assigning landing and take-off
stripes to planes in airports. Sometimes these resources become unavailable for
predetermined periods of time, for example because of necessary maintenance.
Minimizing the maximum completion time of all tasks is often considered as a goal,
for example such that the workers who operate the machines can undertake other
activities afterward or go home early. As a consequence, the problem of schedul-
ing on multiple machines with predefined unavailability periods (downtimes) to
minimize the maximum completion time, that is, the latest completion time of a job
in a schedule, has been considered. A closely related problem, of scheduling with

Scheduling Problems - New Applications and Trends

2

fixed jobs, where on each machine certain jobs have to be performed at predefined
times, has also been considered. The difference between these two problems is
in the meaning of the objective function: when scheduling with fixed jobs, the
maximum completion time of the jobs must be at least the latest completion time of
a fixed job, whereas the maximum completion time when scheduling in the pres-
ence of unavailability periods can occur before the end of an unavailability period.
We consider the static nonresumable variant of the problem of scheduling with
unavailability periods, where the downtimes are known for each machine before the
schedule needs to be made, and where jobs that start executing before a downtime
cannot resume execution after it.

In these problems, the job execution times are usually assumed to be given as an
integer number of computing units such as clock cycles or of other suitable units
such as time units. Similarly, the starttimes and endtimes of unavailability periods
or of fixed jobs are assumed to be given as integer multiples of adequately chosen
time units. We note that any problem with rational numbers as job durations and
starttimes and endtimes of downtimes or of fixed jobs can be transformed into an
equivalent problem where these entities are integers by multiplying them with an
adequate factor, thus there is arguably no loss of generality in this assumption when
considering the representation of any practical problem.

Both the problem of multiprocessor scheduling on fixed jobs and that of multi-
processor scheduling with unavailability periods are strongly NP-hard as they are
more general than the strongly NP-hard multiprocessor scheduling problem (MSP),
which has no downtimes or fixed jobs.

For scheduling with downtimes, it is NP-hard to find a schedule that ends within
a given constant multiple of an optimal schedule even when scheduling on identical
machines with at most one downtime on each machine. We discuss this in more detail
in Section 4.2. To obtain approximation results for scheduling with unavailability
periods in this context, assumptions about the downtimes were made such as the
assumption that only a fraction of the processors can be unavailable at the same time
[1, 2], or by comparing the generated schedule to the latest among the end of an opti-
mal schedule or the latest end of a downtime, thus essentially considering scheduling
with fixed jobs [3, 4].

To describe the performance of an approximation algorithm, we use the notion
of a worst-case approximation bound. In this work, we call worst-case approxima-
tion bound of an algorithm A when applied to a scheduling problem SP the largest
ratio between the maximum completion time of a schedule produced by A and the
maximum completion time of an optimal schedule for a problem instance of SP.

For the problem of multiprocessor scheduling with fixed jobs to minimize the
maximum completion time, even in the case where there is at most one fixed job on
each machine, it has been shown in [5] that no polynomial algorithm can achieve a
worst-case approximation bound that is less than 1.5 unless P = NP . Sharbrodt et al.
[5] also give a polynomial-time approximation scheme (PTAS) for scheduling on a
constant number of uniform processors with fixed jobs. Polynomial-time approxi-
mation algorithms for this problem that achieve the worst-case approximation
bound of 1.5 were given for the general problem in [6]. For the case where there is
at most one fixed job on each machine, significanlty simpler heuristics with lower
time complexities resembling the largest processing time algorithm (LPT) [7] for
identical processors and the MULTIFIT algorithm [8] for uniform processors also
achieve this bound [3, 4].

The case where all downtimes are at the beginning of the processing time on all
machines is called scheduling with nonsimultaneous machine available times, as the
machines start processing jobs nonsimultaneously. For this problem, polynomial-
time algorithms with constant worstcase approximation bounds exist.

3

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

For scheduling on identical nonsimultaneous parallel machines, MULTIFIT
achieves a tight worst-case approximation bound of 24/19 (~1.2632) [9] and another
algorithm achieves a bound of 5/4 [10], while in the case of scheduling on uniform
nonsimultaneous parallel machines, a MULTIFIT variant has a worst-case approxi-
mation bound of 1.382 [11], which was shown by generalizing the bound obtained
for MULTIFIT when scheduling on uniform processors in [12]. Experimental results
suggest that for scheduling on nonsimultaneous uniform machines, the MULTIFIT
variant from [11] is adequate for use in practice, as we discuss in Section [4].

In Section 2, we describe the ways in which the content of this work can be used.
In Section 3, we introduce the algorithms LPT and MULTIFIT. In Section 4, we
consider scheduling with unavailability periods, while first focussing on schedul-
ing with nonsimultaneous machine available times in Section 4.1, and on the more
general case where downtimes do not have to occur at the beginning of the schedule
in Section 4.2. In Section 5, we present results on scheduling with fixed jobs. Section
6 contains the description of main techniques used in the worst-case approximation
bound proofs and Section 7 contains concluding remarks and a discussion of some
of the challenges in this area.

2. Contributions of this work

We next present ways to use the content of this work.

2.1 A deeper understanding

This work aims to provide a deeper understanding of multiple related problems
that involve scheduling on parallel machines with fixed jobs or unavailability periods
to minimize the maximum completion time. We explain why multiprocessor schedul-
ing with at most one unavailability period on each machine does not have a polyno-
mial-time approximation algorithm with a constant worst-case approximation bound
unless P = NP, which is the main reason why results on this topic are hard to obtain.

Furthermore, we observe that most results in this area involve variants of LPT
and MULTIFIT, and comment on the other results obtained. We also hope that this
work will increase awareness of these results and of how they relate to each other.

2.2 Practical use of the heuristics

The heuristics presented and referenced in this work can be used directly in
practice or for research purposes to solve the problems they address. The heuristics
based on LPT and MULTIFIT are fast and easy to implement and some of them
have best possible worst-case approximation bounds in the class of polynomial
algorithms unless P = NP for the problems they address. In addition to worst-case
approximation results, this work also highlights for some cases experimental
insights into how the heuristics would perform in practice based on how they
perform for randomly generated instances. As expected, they perform much better
for such instances than in the worst case. Also, for some cases, references to more
complex methods are provided in case the user prefers to use those.

2.3 Proof techniques

This work presents the main proof techniques used to obtain worst-case approxi-
mation bounds for LPT- and MULTIFIT-like heuristics when the aim is to minimize
the maximum completion time. Thus, the interested reader is provided with a

Scheduling Problems - New Applications and Trends

4

concise description of the tools that can be used to develop such proofs, and he or she
may not have to read hundreds of pages in order to become aware of all of them or
work with an expert in the area when developing such a proof. Even for people with
expertise in the area, one or more of the ideas presented may be new and helpful.

3. The algorithms LPT and MULTIFIT

The algorithms LPT and MULTIFIT are among the most studied approximation
algorithms for multiprocessor scheduling with or without unavailability periods
or fixed jobs. In this section, we describe the basic versions of these algorithms for
MSP, which can be stated as follows: given a set of m machines P and n jobs J find a
non-preemptive schedule that ends at the earliest possible time. A non-preemptime
schedule is an assignment of jobs to processors, together with an order in which the
jobs on each processor are processed.

The algorithm LPT [7] works as follows:

The algorithm MULTIFIT was first introduced by Coffmann Garey and Johnson
in 1978 [8]. It uses binary search for the end of its resulting schedule and receives as
input an accuracy ε with which it determines this schedule end. In each iteration it
assigns a deadline and attempts to create a schedule that contains all tasks that ends
at or before that deadline by using the bin packing algorithm first fit decreasing
(FFD). If a feasible schedule is created, it decreases the deadline and otherwise it
increases the deadline. This process is repeated until the difference between the cur-
rent deadline and the previously considered deadline is less than ε. More formally,
the algorithm is described as Algorithm 2.

The MULTIFIT algorithm results in a schedule with a maximum completion
time that is within ε of the maximum completion time of the schedule that would
result if the binary search for the deadline would be continued.

An example of a LPT-schedule and a MULTIFIT schedule for the same problem
instance are presented in Figures 1 and 2 respectively.

Figure 1.
A LPT schedule. The jobs are numbered according to the order in which they are considered. At start, when all
processors are available at the same time, they are considered in the order p1, p2, p3 in this example.

Algorithm 1 The largest processing time algorithm (LPT)

1: Order jobs in nonincreasing order of their processing time.
2: In this order assign each job at the earliest possible time allowed by the schedule that exists when the job is

assigned.

5

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

The MULTIFIT algorithm tends to produce more balanced schedules than LPT,
and, as a consequence it tends to perform better when the aim is to minimize the
maximum completion time. It also has a higher time complexity, as it tries to make a
schedule about log 2 (ub − lb) times, whereas the LPT algorithm only does that once.
When the instances are prohibitively big and the schedule needs to be made in a
short time, it may be indicated to use LPT or another list scheduling algorithm to
schedule the jobs. This is because in practical situations, there may not be enough
time to go through the list of jobs more than once while scheduling thousands of
jobs and making sure that all required constraints are obeyed by the schedule.
The reason why such big schedules are made is that the companies aim to estimate
delivery times for their orders.

3.1 Time complexity of MULTIFIT

If the parameter ε of MULTIFIT is adequately set, for example as a computer
clock cycle, the algorithm returns the best possible MULTIFIT schedule, that is,
running it further would not result in a better schedule, as was commented
upon in [4].

The binary search for the deadline within the MULTIFIT algorithm happens
within log 2 [(ub − lb) / ε] time, which is at most log 2 (ub / ε) , which is the size of ub in
binary, assuming that the numbers for the upper bound and the lower bound do not
change their representation during the execution of the algorithm and that they allow
within their representation for an accuracy of ε . In Section 1, we mentioned that the
job durations are usually given as integer multiples of an adequately chosen (time)

Figure 2.
A MULTIFIT schedule together with a possible deadline. The jobs are numbered according to the order in which
they are considered. The processors are considered in the order p1, p2, p3 when generating the schedule.

Algorithm 2 The algorithm MULTIFIT

1: Order the jobs in non-increasing order of their duration.
2: Assign upper bound (ub) and lower bound (lb) for the end of schedule; (for example, lb = sum of job

durations/number of processors, ub = sum of job durations).
3: Assign b = (ub + lb) / 2 as deadline.
4: FFD: Assign tasks in non-increasing order on the first processor on which they fit while respecting the
deadline (the processors are considered in each iteration in the same order).
5: If all tasks are successfully scheduled decrease the upper bound: ub = b .
6: Else increase the lower bound: lb = b .

7: If ub − lb ≥ ε loop back to Step 3.

Scheduling Problems - New Applications and Trends

6

unit; therefore, the end of any schedule is an integer, and thus, there is no point in
making ε less than 1, in which case the MULTIFIT loop is repeated log 2 (ub) times.

As a consequence, the number of times the MULTIFIT loop is called is polyno-
mial in the size of the input, as any reasonable upper bound is at most the sum of
the processing times of all jobs, which can be represented within at most the total
number of bits used to represent all jobs. In [4], Grigoriu and Friesen also comment
that if the upper bound is 2 years, the lower bound is 0 and the deadline is deter-
mined with an accuracy of 10−13 s, the MULTIFIT loop is called at most 40 times.

The time complexity of MULTIFIT is thus O (n log n + nm log 2 (ub)) , as the jobs
need to be sorted according to their execution times in a non-increasing order in
Step (1), and as in each iteration of the MULTIFIT loop, the algorithm looks for
each job for the first processor on which it fits; thus, it will have to look at most at m
processors. Recall that n is the number of jobs in the considered problem instance.

4. Scheduling with unavailability periods

In this section, we first present results for the case where all unavailability
periods are at the beginning of the schedule. Then, we present results for the more
general case where the unavailability periods can occur anywhere in the schedule.

4.1 Scheduling with nonsimultaneous machine available times

This section addresses the case where the processors may have unavailability
periods at the start of their processing time. This situation is more general than the
multiprocessor scheduling problem (where there are no fixed jobs or downtimes)
and less general than the problems of scheduling with fixed jobs or with unavail-
ability periods. As the less general multiprocessor scheduling problem is NP-hard,
so are the problems of scheduling on identical machines with nonsimultaneous
machine available times (NMSP: nonsimultaneous multiprocessor scheduling
problem) and scheduling on uniform processors with nonsimultaneous machine
available times (UNMSP) when minimizing the maximum completion time. Due
to the NP-hardness of these problems, polynomial-time approximation algorithms
like LPT and MULTIFIT and their variants have been studied for their solution. As
before, we will continue to denote with the number of processors in the problem
instance being considered with m.

4.1.1 Scheduling on identical nonsimultaneous processors

For NMSP, worst-case approximation bounds for LPT of 3 / 2 − 1 / (2m) and for a
modified version of LPT (MLPT) of 4/3 have been obtained by Lee [13]. The bound
obtained by Lee in [13] was improved upon by Kellerer in [10], where a dual approx-
imation algorithm with a worst-case approximation bound of 5/4 was presented.

When MULTIFIT is used for MSP, a deadline results in periods of equal duration
in which jobs can be scheduled on each processor; thus the schedules resulting from
using any ordering of processors in step (4) of MULTIFIT have the same maximum
completion time. When considering NMSP, thus allowing for nonsimultaneous
machines, the order in which processors are considered becomes relevant, as the
period in which jobs can be executed on each processor corresponding to a deadline
depends on the time the processor becomes available. MULTIFIT variants that
address such situations usually order the processors in non-decreasing order of their
periods in which jobs can be scheduled. Thus, in this case, the ordering is in non-
increasing order of the times at which the processors become available.

7

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

A bound of 9/7 (about 1.2857) was obtained for MULTIFIT by Chang and
Hwang [14]. In [10], Kellerer gives a problem instance of NMSP for which the
approximation factor of its MULTIFIT schedule is 24/19 (about 1.2632). More
recently, 24/19 was shown to be the exact worst-case approximation bound when
using MULTIFIT for NMSP by Hwang and Lim [9]. By comparison, a tight worst-
case approximation bound of 13/11 (about 1.18182) was shown by Yue [15] for
MUTLIFIT when applied to MSP.

4.1.2 Scheduling on uniform nonsimultaneous processors

For the uniform multiprocessor scheduling problem with simultaneous
machine available times (UMSP), that is, where processors execute jobs at dif-
ferent speeds, the amount of jobs that fit on a processor corresponding to a given
MULTIFIT deadline depends on the speed of that processor. Usually, the slowest
processor is considered to have a speed of 1, and for each job j, the time it would
take to process it on this processor l j is given. Thus, on a machine with speed 5, a
job j needs a time of l j / 5 to be processed. As a consequence, the ordering in which
the processors are considered in Step (4) of MULTIFIT is in most cases relevant
to the maximum completion time of the resulting schedule. MULTIFIT for UMSP
orders processors in each iteration before its Step (4) in non-decreasing order
of the duration of the processing time on that processor times the speed of that
processor [12, 16].

For UMSP, approximation bounds of 1.4 and 1.382 were obtained for MULTIFIT
by Friesen and Langston [16] and by Chen [12] respectively. In [17], Burkard and
He derive a worst-case approximation bound of √

_
 6 / 2 (about 1.2247) of MULTIFIT

for UMSP with at most two processors, and show a better bound of (√
_

 2 + 1) / 2
(about 1.2071) for the case where MULTIFIT is combined with LPT as an incum-
bent algorithm.

In [11], Grigoriu and Friesen show that bounds that apply to the MULTIFIT
variants from previous work such as [12, 16, 17] where scheduling on two uniform
processors is considered also apply to a slightly different proposed variant of
MULTIFIT for UNMSP, LMULTIFIT, which was first proposed in [4] in a more gen-
eral form. The difference between the MULTIFIT variants from [12, 16, 17] on the
one hand and LMULTIFIT on the other hand is that in the latter, the choice of the
initial upper and lower bounds is not given explicitly within the algorithm, and thus
the worst-case approximation bound proofs are more general, as they work for any
initial choices of upper and lower bounds for the duration of the resulting schedule.
A first step in the proofs that the bounds hold in the more general case, where there
are uniform nonsimultaneous parallel machines, was to show that LMULTIFIT
obeys the bounds of the earlier MULTIFIT variants in the simultaneous machines
case for the instances considered in those works.

Using LPT for UNMSP has been considered in [18], where worst-case approxi-
mation bound of 5/3 was shown in the general case, as well as a better bound for the
case where there are only two machines.

For the case where the number of machines is constant, a PTAS exists for
UNMSP [11], which was derived from a PTAS for scheduling on a constant num-
ber of uniform processors with fixed jobs from [5]. As the objective function for
scheduling with fixed jobs that are at the beginning of the schedule and scheduling
with unavailability periods that are at the beginning of the schedule differ, the
PTAS from [5] can not be used unaltered to address UNMSP. To address UNMSP,
the PTAS from [5] is first run for the transformed problem instance where the
unavailability periods become fixed jobs, and then for all problem instances result-
ing from successively removing the machine with the latest end of a fixed job from

Scheduling Problems - New Applications and Trends

8

the transformed instance [11]. This accounts for the cases where a number between
1 and m − 1 of processors start processing after the end of the optimal schedule.

In [19], a lower bound is derived for the end of an optimal schedule of an
UNMSP instance, and using that bound approximation factors for LMULTIFIT
schedules of randomly generated instances are determined. The reasonably exten-
sive experiments described in [19] suggest that LMULTIFIT is a good option for
solving UNMSP in practice, not only because of being fast and easy to implement,
but also because it has very good approximation factors (less than 1.03) for the
generated instances with an average of at least five jobs for each machine. In order to
obtain the approximation factors, a lower bound for the end of the optimal schedule
that can be calculated directly from the problem instance was used.

4.2 Multiprocessor scheduling with availability constraints

In this section, we consider the multiprocessor scheduling problem where
downtimes can occur at any time during the scheduling horizon.

Surveys with focus on scheduling with availability constraints are given in
[20–24]. Besides the makespan, the authors of these works survey work on various
other objective functions such as total completion time, and also address additional
variants of the problem, such as its resumable version.

Unless assumptions about the unavailability periods are made or unless P = NP,
there is no polynomial-time approximation algorithm with a constant worst-case
approximation bound for the problem of scheduling with unavailability periods to
minimize the maximum completion time, since there is a polynomial-time reduction
from the NP-hard problem of 3-Partition to the problem of finding a schedule that has
a maximum completion time that is at most α times the end of an optimal schedule for
this problem. We next outline such a reduction. Let X be an instance of 3-Partition, that
is, a set of 3m positive integers, given with the purpose of finding out whether there is a
partition of these numbers into m sets, such that the sum of the numbers in each set is
the same for all sets. Let S be the sum of all numbers in X . The instance Y of scheduling
with unavailability periods that we build is given as follows: there are m processors, each
of which has an unavailability period of duration (α + 1) S that starts at time S / m , and
the job durations in Y are the numbers in X . X is a yes-instance of 3-Partition if and only
if in instance Y , the optimal schedule ends at time S / m . In such a situation, any approxi-
mation algorithm with worst-case approximation factor α for scheduling with avail-
ability constraints will find a schedule that ends at or before time 𝛼S / m which is less than
(α + 1) S . Thus, the found schedule must end before or when the unavailability periods
start, at time S / m . In such a schedule, the sets of durations of jobs on each processor
are a 3-Partition of X. Therefore, any polynomial-time approximation algorithm for
scheduling with unavailability periods with a worst-case approximation factor α can be
used to solve 3-Partition in polynomial time.

4.2.1 Scheduling on identical machines with unavailability periods

For resumable scheduling, where the execution of jobs may continue after
a downtime that interrupted them, but where jobs cannot be preempted by the
scheduling algorithm, and where one machine does not shut down and all other
machines shut down at most once, Lee shows that the makespan of LPT is in the
worst case (m + 1) / 2 times the optimal makespan [25].

In [1], Hwang and Chang make the assumption that at most half of the machines
are unavailable at any time, and show for this situation that the worst-case approxi-
mation bound of LPT is 2. In [3], it is shown that no polynomial algorithm can

9

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

have a better bound than 2 for this problem unless P = NP . The result from [1] is
generalized in [2] where it is shown that if at most λ ∈ {1, … , m − 1} machines may be
unavailable at any time, LPT has a worst-case approximation bound of
 1 + 1 _

2
 [m/ (m−λ)] , and that this bound is tight for LPT.

4.2.2 Scheduling on uniform machines with unavailability periods

In [26], scheduling with at most one unavailability period on each machine
is considered and exact algorithms are given for small problem instances. The
authors consider separately the case of identical jobs, and also consider total
completion time beside the makespan as an objective function. For larger
instances, they propose an LPT-like algorithm, which assigns jobs in nonincreasing
order of their processing time to the fastest machine on which they would finish
being processed at the earliest time. They also do experiments on a total number of
68 generated instances where error margins of at most 5.6% are observed. They do
not compare their heuristic to the previously proposed heuristic from [4], which
we discuss in Section 5.1.2, which was also proposed for this problem, even though
its worst-case approximation bound was shown for the objective function of
scheduling with fixed jobs.

5. Scheduling with fixed jobs

The problem of scheduling with fixed jobs is given as a number of processors,
where each processor may have jobs that must be executed during certain given
periods on it, together with a number of other jobs which can be executed by any
processor. As noted in Section 1, job durations or required execution times are
expressed for example as a number of significant units such as clock cycles. For
uniform processors this number represents the time needed by a job to be executed
on the slowest processor. In case there are uniform processors, each processor also
has a speed factor, by which the time needed by a job on the slowest processor is
divided in order to obtain the time needed for the processor to execute the job.

As noted before, the problem of scheduling with fixed jobs differs from the
problem of scheduling with unavailability periods in that its maximum completion
time cannot be earlier than the latest completion time of a fixed job.

In [5], Scharbrodt et al. give a polynomial-time approximation scheme for sched-
uling on a constant number of uniform machines with fixed jobs. They also show that
it is NP-hard to obtain a schedule that ends within a factor of less than 1.5 when sched-
uling on identical processors with at most one fixed job on each machine. Even though
they do not specify their result in this way, their proof that no polynomial-time
approximation algorithm can have a better worst-case approximation bound than 1.5
for multiprocessor scheduling with fixed jobs does not use the fact that there can be
more than one fixed job on each machine, which implies the previous statement.

If all fixed jobs are at the beginning of the schedule, the results presented in
Section 4.1 apply, as the optimal schedule of each problem instance of scheduling on
nonsimultaneous machines can only potentially get worse when scheduling with fixed
jobs is considered instead, and since the resulting schedule of an approximation algo-
rithm ends later for scheduling with fixed jobs only if its maximum completion time is
the completion time of a fixed job, which the optimal schedule also needs to execute.

We next consider the case where there is at most one fixed job on each machine in
Section 5.1, and the case where there can be multiple fixed jobs on each machine in
Section 5.2.

Scheduling Problems - New Applications and Trends

10

5.1 Scheduling with at most one fixed job on each machine

When scheduling on multiple processors with at most one fixed job on each
machine, LPT and MULTIFIT variants have been shown to achieve a worst-case
approximation bound of 1.5, which is best possible for this problem unless P = NP .

5.1.1 Same-speed processors

For scheduling on identical machines with at most one fixed job on each
machine, an LPT-like algorithm, LPTX, was given in [3], for which a worst-case
approximation bound of 1.5 was shown. Before running LPT, LPTX creates an
order of processors, which is then used by LPT to break ties in case two processors
become available at the same time. The ordered list of processors created before
applying LPT is built in two steps:

1. All processors that have an unavailability period that is not at the beginning
of the schedule are assigned to this list in non-decreasing order of the start of
their downtime.

2. All other processors (that is, those which have the downtimes at the beginning
of the scheduling period or have no downtime at all) are appended to the list
built in the previous step in non-decreasing order of the times at which they
can start executing jobs.

5.1.2 Uniform processors

In the more general case of scheduling on uniform machines with at most one
fixed job on each machine, a MULTIFIT-like algorithm, LMULTIFIT, was given in [4],
which achieves the worst-case approximation bound of 1.5. For a MULTIFIT variant to
work in the presence of downtimes, it must be specified how it deals with the fact that
there are more than one time interval in which jobs can be scheduled on one processor.

After a MULTIFIT deadline is assigned and before applying the bin packing
algorithm FFD (see Section 3), LMULTIFIT orders all time intervals in which jobs
can be scheduled in non-decreasing order of their length. Here, the length of a time
interval is the duration of the time interval multiplied by the speed factor of the
processor on which the interval occurs.

5.2 Scheduling with multiple fixed jobs on each machine

For scheduling on identical processors with fixed jobs, where the number of
fixed jobs on a machine can be arbitrary, approximation algorithms that are much
more complex than LPT and MULTIFIT were given in [27], with a worst-case
approximation bound of 1.5 + ε , where ε is the parameter of a fully polynomial
time approximation scheme (FPTAS) for the multiple subset sum problem, and in
[6] with a worst-case approximation bound of 1.5, where a FPTAS for the multiple
knapsack problem is used as a subroutine.

In [28], a very long proof is outlined that LMULTIFIT achieves a worst-case
approximation bound of 1.5 when scheduling on identical processors with at most
two fixed jobs on each machine. In [29], an algorithm using two MULTIFIT-like
algorithms is shown to have a worst-case approximation bound of 1.625, which
likely can be improved to 1.6 without excessive effort.

The time complexity of the MULTIFIT-like and LPT-like algorithms is significanlty
lower than that of the algorithms from [6, 27], and they are also significantly easier to

11

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

implement; however, there is little hope in our opinion that bounds better than 1.55
can be shown in the general case for such algorithms with proofs of reasonable length.
Given such problems, the user must decide what is best suited for his or her needs.

6. Proof techniques

Worst-case approximation results in this research area about LPT and
MULTIFIT variants mainly use proofs by contradiction in which some proof
techniques appear very often. We next describe two techniques that we consider to
be the most relevant, and then comment upon some other methods that are used
relatively often. In the following, we call job lengths the durations of the jobs on the
slowest processor.

6.1 Minimal counterexample

A very well-known proof method is that of assuming that there exists a minimal
counterexample to a theorem T, that is, a problem instance for which the algorithm’s
schedule does not obey that theorem, with a minimal number of processors, of jobs,
of downtimes (or of fixed jobs) that do not start at the beginning of the schedule, and/
or of other quantities that can be minimized which are chosen to fit the statements
to prove. A minimal counterexample exists whenever there is a counterexample, and
thus, showing that it does not exist proves T. In order to define minimality among
counterexamples, the author of the proof first chooses a partial order among the prob-
lem instances. An instance which is minimal according to this partial order among the
instances for which a theorem T does not apply is called a minimal counterexample.

This method can be very powerful, because after assuming that a minimal
counterexample does not obey a theorem T, many useful properties of a minimal
counterexample can be derived from the fact that no lesser counterexample exists,
which can ultimately lead to a contradiction.

Here, a lesser counterexample is a counterexample with less processors, or less
tasks, or less downtimes, or with a job with a smaller length, depending on how the
order of instances was defined. Showing that a minimal counterexample does not
exist is usually significantly easier than developing a direct proof for T.

The theorem to prove could be that the worst-case approximation bound holds,
but it can also be an intermediary result that is later used to prove the worst-case
approximation bound. One could address instances that have a certain property
first, and then show that the worst-case approximation bound holds for these, for
example by using a minimal counterexample among these instances, and then do
the same for all other instances.

Sometimes it is enough to define the partial order only using the number of
processors [11], while in most cases, it is useful to include multiple characteristics
of problem instances, such as all or a part of the characteristics enumerated above.
In one situation, a minimal counterexample was defined to also have minimal
job lengths, meaning that if in a minimal counterexample the length of one job is
reduced, the resulting instance is not a counterexample [28].

6.2 Weighing arguments

For a problem instance that does not obey a worst-case approximation bound,
there is a job (X) that is scheduled such that it crosses the bound to prove times the
end of an optimal schedule (B) for LPT-like algorithms, or that can not be sched-
uled when the deadline is at B for MULTIFIT-like algorithms. If the order defined on

Scheduling Problems - New Applications and Trends

12

instances includes the number of jobs, there is only one such job in a minimal coun-
terexample to (for example) a theorem that the analyzed algorithm (A) generates
only schedules that obey the bound. Otherwise, all jobs that would be scheduled
afterward can be removed and a lesser counterexample could be obtained, result-
ing in a contradiction. As a consequence of how LPT and MULTIFIT work, X is the
smallest job of the minimal counterexample in both cases.

The schedule S A generated by an LPT-like algorithm A until a job would cross B
and the schedule S A generated by a MULTIFIT-like algorithm A if the MULTIFIT
deadline is at B do not contain the job X . An optimal schedule, however, contains all
jobs, including X .

Therefore, the optimal schedule has more total execution time than S A . Also, if
nonzero weights are assigned to each job, the optimal schedule has a total weight of
all its jobs that is greater than that of S A , the difference being the weight of X . An
adequate assignment of weights to jobs can lead to the conclusion that the sum of
weights of all jobs contained in the schedule S A is at least the sum of the weights of
all jobs in the considered optimal schedule, a contradiction.

There are infinite ways of assigning weights, and there is no unique strategy
that leads to success. Usually, the weight function is monotonic with regard to
job lengths, and, as X has the smallest job length, its weight can be set to 1. In the
following, we denote both the job X and the time X would need to be executed
on the slowest processor by X. The other weights can be assigned for intervals
of job lengths, for example, a job with length within [X,1.5X) could be assigned
weight 1. Weights can also be assigned otherwise: for example, a job with a
certain property can be chosen to be the end of a weight interval. Jobs that have
a certain property can also be assigned a specific weight that corresponds to that
property. Of course, while proving different theorems that lead to the proof of a
worst-case approximation bound, a new weight function can be chosen for each
statement to prove.

6.3 Normalizing time intervals and job execution times

In order to reason easier about time, one can divide all durations of time inter-
vals in which jobs can be scheduled by X if scheduling on identical processors.
For uniform processors, such intervals can be divided by the time it would take
X to execute on the processor on which the interval occurs, in order to derive the
length of the interval [4]. Also, all job durations can be divided by X and these
normalized durations can be used in the proofs. For example, a theorem could be
proved that there are no jobs that have a longer duration than 5, or it can be stated
that the unused time intervals on processors before the MULTIFIT deadline B all
have length less than 1, as otherwise X would have been scheduled in one of those
intervals.

6.4 Task density

In the case of uniform processors, the time intervals can have unbounded
lengths because the speed factors may be arbitrarily high. A way to describe the
amount of jobs assigned within a schedule in such an interval is to use task densi-
ties, which can be defined for each task as being the ratio between its weight and its
length. Also, a task type density can be defined as a lower bound for all possible task
densities of tasks of that type. The concept of task density can be used in order to
reason about time intervals that may be very long. For example, the total weight of
all tasks in an interval of length t is at most t times the maximum task type density
among all task types represented within that interval.

13

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

6.5 Processor with more execution time in the optimal schedule

We use the notations from the previous subsection. Since X is not contained
in SA, there must be a processor p* in the optimal schedule that has a total execu-
tion time that is greater than that of SA on p*. Such a processor can be analyzed in
detail and may be shown to have certain properties that, in conjunction with other
methods, result in proofs of useful theorems. For example, the existence of p* may
imply a certain minimum duration of the optimal schedule, in conjunction with the
observation that X could not be fitted by A on p* without causing the maximum
completion time of SA to exceed B.

7. Conclusions and future challenges

In this work, we considered worst-case approximation for scheduling on mul-
tiple machines with availability constraints or with fixed jobs in order to minimize
the maximum completion time. We surveyed results obtained in this research area
and commented upon the algorithms used.

Prominent among these algorithms are LPT and MULTIFIT and their variants,
whereas for multiprocessor scheduling with fixed jobs, more complicated algo-
rithms were used to achieve best possible worst-case approximation bounds in the
class of polynomial algorithms assuming that P ≠ NP in the general case where there
can be any number of fixed jobs on each machine.

The problem of scheduling with availability constraints cannot be approximated
by a polynomial-time algorithm with a constant worst-case approximation bound,
even if there is at most one downtime on each machine, unless assumptions about
the downtimes are made. The results we presented in this area address the problem
of scheduling on identical processors with at most one downtime on each machine,
with various assumptions.

Due to its different objective function, the problem of scheduling on identical
parallel machines with fixed jobs allowed for the development of a polynomial-time
approximation algorithm with a worst-case approximation bound of 1.5, and the
development of a PTAS for scheduling on a constant number of uniform machines
with fixed jobs was also possible.

The MULTIFIT and LPT variants developed for the discussed variants of these
problems could be useful in practice, as their time complexity is low and thus they
should be able to address very large problem instances, as they are easy to imple-
ment, and because in some cases their worst-case approximation bounds could be
considered to be good enough. In the case of scheduling on uniform nonsimultane-
ous machines, the average performance of a MULTIFIT variant was studied, and
shown to be very good, as the experiments suggest that in general, for instances
that can be relevant in practice and for which exhaustive search is not an option, the
algorithm returns schedules with a maximum completion time that is within 3% of
that of an optimal schedule.

We also elaborated on the most encountered proof techniques in worst-case
approximation bound proofs for LPT and MULTIFIT variants.

The limitations of the presented works result mainly from the difficulty of the
problem of scheduling with unavailability periods when considering the subject of
approximation. To assess how well the proposed heuristics for this problem perform
under such conditions is difficult, as it is hard to have a good estimate of the opti-
mal schedule unless it is computed by an exact algorithm as was done in [26]. This
problem has therefore been addressed only by considering the special case where
there is at most one downtime on each machine.

Scheduling Problems - New Applications and Trends

14

In the future, it may be interesting to compare the heuristics proposed for the
same problems experimentally.

Another limitation of the discussed works and of many other research works
on scheduling results from the fact they attempt to understand problems with
one, two, or at most three aspects at one time, whereas in many practical prob-
lems such as some production planning problems, many aspects occur at once.
For example, availability constraints can appear alongside a multitude of other
constraints that have to be considered simultaneously. These can be precedence
constraints, that certain jobs have to be assigned to certain machines, or prefer-
ences of the manufacturer that the machines should not have more than a 60%
or another predefined load for example in order to leave room for unexpected
events. Furthermore, orders often come online, and if an urgent order from an
important client needs to be given priority, this can alter the delivery times of
other orders. Also, delivery times and delays have a big relevance in practice,
as not delivering on time can cause fines. Such practical problems can also have
sequence-dependent setup times, the necessity for setup operators to be present to
perform setups, the preference that setup times are kept low by putting jobs from
the same family of types of jobs consecutively on machines whenever possible,
the necessity for workers to attend to certain machines while production takes
place, and worker breaks and holidays. The preexisting schedule also has to be
kept unchanged for a predefined time period since materials are brought to the
production place in preparation for the production process. In addition, orders
may have priorities and deadlines. For such problems, given the time constraints
in which the schedule needs to be generated and that there can be thousands of
jobs, usually a heuristic is employed that first orders the jobs for example by using
priorities assigned to them and/or their deadlines and then schedules them on the
machines in that order while also obeying all constraints and attempting to fulfill
all preferences. Difficulties in researching such problems include that probably for
different sets of orders different scheduling strategies may be better, and that an
optimal schedule may be very hard to find and thus it is hard to quantify how well
a heuristic performs.

Acknowledgements

This publication was supported by the Open Access Publication Fund of
Technische Universität Berlin.

Conflict of interest

The author declares no conflict of interest.

Abbreviations

MSP multiprocessor scheduling problem
NMSP nonsimultaneous multiprocessor scheduling problem
UNMSP uniform nonsimultaneous multiprocessor scheduling problem
LPT largest processing time
FFD first fit decreasing

15

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

Author details

Liliana Grigoriu1,2

1 Department of Computer Science and Engineering, Faculty of Control and
Computers, Politehnica University Bucharest, Bucharest, Romania

2 Department of Mathematics, Technical University of Berlin, Berlin, Germany

*Address all correspondence to: liliana.grigoriu@cs.pub.ro

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

16

Scheduling Problems - New Applications and Trends

[1] Hwang H-C, Chang SY. Parallel
machines scheduling with machine
shutdowns. Computers and
Mathematics with Applications. June
1998;36:21-31

[2] Hwang H-C, Lee K, Chang SY. The
effect of machine availability on
the worst-case performance of
LPT. Discrete Applied Mathematics.
April 2005;148:49-61

[3] Grigoriu L, Friesen DK. Scheduling
on same-speed processors with at
most one downtime on each machine.
Discrete Optimization. November
2010;7:212-221

[4] Grigoriu L, Friesen DK. Scheduling
on uniform processors with at most one
downtime on each machine. Discrete
Optimization. November 2015;17:14-24

[5] Scharbrodt M, Steger A, Weisser H.
Approximability of scheduling with
fixed jobs. Journal of Scheduling.
November 1999;2(6):267-284

[6] Jansen K, Pradel L, Schwarz UM,
Svensson O. Faster approximation
algorithms for scheduling with fixed
jobs. In: 17th Conference of Computing:
The Australasian Theory Symposium
(CATS 2011), Perth, Australia, January.
2011

[7] Graham RL. Bounds on
multiprocessing timing anomalies.
SIAM Journal of Applied Mathematics.
March 1969;17:416-429

[8] Coffman EG Jr, Garey MR,
Johnson DS. An application of bin-
packing to multiprocessor scheduling.
SIAM Journal on Computing. February
1978;7:1-17

[9] Hwang HC, Lim K. Exact
performance of MULTIFIT for
nonsimultaneous machines. Discrete
Applied Mathematics. 2014;167:172-187

[10] Kellerer H. Algorithms for
multiprocessor scheduling with
machine release times. IIE Transactions.
1998;30:991-999

[11] Grigoriu L, Friesen DK.
Approximation for scheduling on
uniform nonsimultaneous parallel
machines. Journal of Scheduling.
December 2017;20:593-600

[12] Chen B. Tighter bound for multifit
scheduling on uniform processors.
Discrete Applied Mathematics. May
1991;31:227-260

[13] Lee CY. Parallel machine scheduling
with nonsimultaneous machine
available time. Discrete Applied
Mathematics. January 1991;30:53-61

[14] Chang SY, Hwang HC.
The worst-case analysis of the
MULTIFIT algorithm for scheduling
nonsimultaneous parallel machines.
Discrete Applied Mathematics. June
1999;92:135-147

[15] Yue M. On the exact upper bound
of the MULTIFIT processor scheduling
algorithm. Annals of Operations
Research. December 1990;24:233-259

[16] Friesen DK, Langston MA. Bounds
for multifit scheduling on uniform
processors. SIAM Journal on
Computing. February 1983;12:60-69

[17] Burkard RE, He Y. A note on
MULTIFIT scheduling for uniform
machines. Computing. 1998;61:277-283

[18] He Y. Uniform machine scheduling
with machine available constraints. Acta
Matematicae Applicatae Sinica (English
Series). 2000;16:122-129

[19] Grigoriu L, Friesen DK. Scheduling
on uniform nonsimultaneous parallel
machines. In: Fink A, Fiigenschuh A,
Geiger M, editors. Operations Research

References

17

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

Proceedings 2016 Selected Papers of
the Annual International Conference
of the German Operations Research
Society (GOR), Hannover, August 30–
September 2. 2016. pp. 467-473

[20] Lee CY, Lei L, Pinedo M. Current
trends in deterministic scheduling.
Annals of Operations Research. April
1997;70:1-41

[21] Sanlaville E, Schmidt G. Machine
scheduling with availability constraints.
Acta Informatica. September
1998;35:795-811

[22] Schmidt G. Scheduling with limited
machine availability. European Journal
of Operational Research. February
2000;121:1-15

[23] Lee C-Y. Machine scheduling with
availability constraints. In: Leung
JY-T, editor. Handbook of Scheduling:
Algorithms, Models and Performance
Analysis. London: Chapman & Hall/
CRC; 2004. pp. 22-1-22-13

[24] Ma Y, Chu C, Zuo C. A survey of
scheduling with deterministic machine
availability constraints. Computers &
Industrial Engineering. 2010;58:199-211

[25] Lee CY. Machine scheduling with
an availability constraint. Journal
of Global Optimization. December
1996;9:395-416

[26] Kaabi J, Harrath Y. Scheduling on
uniform parallel machines with periodic
unavailability constraints. International
Journal of Production Research.
2019;57(1):216-227

[27] Diedrich F, Jansen K. Improved
approximation algorithms for
scheduling with fixed jobs. Proceedings
of 20th ACM-SIAM Symposium
on Discrete Algorithms (SODA).
2009:675-684

[28] Grigoriu L. Multiprocessor
scheduling with availability constraints

[PhD thesis]. College Station, TX, USA:
Texas A&M University; 2010

[29] Grigoriu L. Scheduling on parallel
machines with variable availability
patterns [PhD thesis]. Bucharest,
Romania: Politehnica University
Bucharest; 2012

