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Chapter

A New Approach for Model
Developing to Estimate
Unmeasured Parameters in an
Engine Lifetime Monitoring
System
Cristhian Maravilla and Sergiy Yepifanov

Abstract

Monitoring systems to predict the remaining lifetime of gas turbine engines are a
major field of investigation, in particular, the monitoring systems that allow an on-
line prediction. This chapter introduces and analyzes a new approach to develop
mathematical models to estimate unmeasured parameters in an engine lifetime
monitoring system; these models in contrast to previously developed models allow
an on-line monitoring of unmeasured parameters, which are necessary to perform
an on-line lifetime prediction. The blade of a high-pressure turbine (HPT) of a two-
spool free turbine power plant is the test case. Several candidate models are devel-
oped for each unmeasured parameter; the best models are selected by their accuracy
and robustness using the instrumental and truncation error as criteria. Ten faulty
engine conditions are considered to analyze the model robustness. Two methods for
model developing are compared; the first method uses physics-based models (pro-
posed in this chapter), and the second method develops the models using the
similarity concept (reference methodology). The results of the comparison show
that the physics-based models are more robust to engine faults and overall they
deliver a significantly more accurate prediction of the engine lifetime.

Keywords: gas turbine, lifetime prediction, model developing, thermodynamic
relations, unmeasured parameters

1. Introduction

Lifetime monitoring systems are an effective way to perform condition base
maintenance of gas turbine engines [1–3]; this allows a better use of the available
lifetime and improvement of the engine’s reliability.

Several approaches exist to predict the remaining lifetime, such as neural net-
works [4–7], finite element analysis (FEA) [8–10], and statistical methods [11];
however, in order to significantly enhance the accuracy of the lifetime prediction, it
is necessary to estimate the lifetime in real time (on-line prediction) using actual
conditions [12, 13]. All of the previously cited approaches require a large amount of
computing resources, making them not suitable for an on-line application; another
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limitation is that none of the cited approaches take into consideration the existing
engine-to-engine differences and the performance deterioration.

Oleynik proposes in a study [14] an approach to perform on-line lifetime pre-
diction of engine component condition (Figure 1); he proposes to use simple
models to estimate the temperature and stresses at critical points. A major advan-
tage of this approach is the use of actual engine operating and atmospheric condi-
tions as input data. The methodology has been proven by practical application in
monitoring of some Ukrainian engines.

As shown in Figure 1, one of the blocks performs the thermal condition (TC)
monitoring, while the second block, the stress condition (SC) monitoring.

Inside the block of TC, it is necessary to set the thermal boundary conditions
(gas temperature around the critical element and the heat transfer coefficient
between the gas and metal), which are not measured parameters; the author [14]
proposed a methodology to develop mathematical models based on the theory of
similarity to estimate these boundary conditions.

In this chapter a new approach to develop physics-based models to estimate the
unmeasured parameters is proposed and analyzed. This new approach emphasizes
the accuracy of the models regardless of the engine-to-engine differences, taking
into consideration a healthy and faulty engine condition.

With the help of the thermodynamic model of the engine chosen as test case, all
the necessary data for model developing and validation is simulated; the simulation
of the engine’s component degradation is widely used in gas turbine monitoring and
diagnostics [15, 16].

A comparison between the physics-based models and the reference method
based on the theory of similarity proposed by [14] is conducted to validate the
accuracy of the methods.

Finally, the influence of the accuracy in the prediction of the thermal boundary
conditions on the errors of the engine lifetime prediction is evaluated.

Figure 1.
Scheme for on-line lifetime prediction.
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2. Test case

It is well-known that the thermomechanical stresses in gas turbine hot elements
are very high, particularly in the turbine blade having a significant effect on the safety
and economics of the fleet operation [17]. For this reason, a turbine blade with three
cooling channels has been chosen as the test case; the blade is mounted in the first
stage of the high-pressure turbine (HPT) of a two-spool free turbine engine.

In Table 1 the seven measured gas path parameters of the engine chosen as test
case are listed.

Experience has shown that it is sufficient to consider a two-dimensional analysis
of the mid-span section of the blade in order to save computing time; however, the
same methodological approach can be applied for a three-dimensional geometry.

The finite element model of the mid-span turbine blade section was built with
the help of FEA software. After setting all the necessary boundary conditions, the
distribution of the temperature and stresses was obtained. The critical points with
the smallest safety factor were found as well; as shown in Figure 2, the critical
points correspond to the numbers 101, 102, 103, and 69.

Three critical points are located at the leading edge of the blade and one critical
point at the trailing edge. For an easier analysis, the four critical points are

Designation Gas path parameter

Gf Fuel consumption

T ∗

C Compressor discharge temperature

p ∗

C Compressor discharge pressure

T ∗

HPT HPT discharge temperature

p ∗

HPT HPT discharge pressure

T ∗

LPT Low-pressure turbine (LPT) discharge temperature

nHP Rotational speed of the high-pressure (HP) rotor

Table 1.
List of gas path measured parameters of the engine selected as test case.

Figure 2.
Critical points at the turbine blade mid-span section.
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organized into two groups: group a (GA) contains the critical points 101, 102, and
103, and group b (GB) contains the critical point number 69.

The thermodynamic model of the engine chosen as test case [18] is used to
generate all the data for model developing and validation.

3. Engine lifetime monitoring system

A brief description of the lifetime monitoring system proposed by the author
[14] is presented to have a better understanding. As shown in Figure 1, the block to
perform the TC contains the sub-block named “thermal boundary conditions”
(unmeasured parameters). The new approach for model developing proposed in
this chapter focuses all the efforts in improving the accuracy in this sub-block, as
improving the efficiency in the prediction of the thermal boundary conditions
directly affects the accuracy of the whole monitoring system.

In the following subsection, the simple mathematical models used to estimate
the blade temperature and the thermal stress at the critical points are explained.

3.1 Turbine blade thermal and stress monitoring models

In [19] an analysis of the models proposed by [14] to estimate the blade tem-
perature and stress applied to the same turbine blade and critical points was
conducted. As a result, it was concluded that the best model to calculate the blade
temperature at the critical points is:

tcr ¼ T ∗

S1 þ Θ kαð Þ � T ∗

S2 � T ∗

S1

� �

(1)

Here tcr is the blade temperature at the critical point, T ∗

S1 is the cooling temper-
ature, T ∗

S2 is the heating temperature, Θ is a dimensionless parameter, and kα is the
relation of the heat transfer coefficients at current and reference engine operating
modes:

kα ¼ αi=αref (2)

Here αi and αref are the heat transfer coefficients at actual and reference engine

working operating modes, respectively.
The model to estimate the thermal stress at critical points is:

σt ¼ S kαð Þ � n2 (3)

Here σt is the thermal stress at the critical point, S is a dimensionless parameter,
and n is the rotational speed.

The dimensionless parameters Θ in Eq. (1) and S in Eq. (3) are calculated as
dependence of kα using a polynomial with gas path measured parameters as
arguments.

The parameters T ∗

S1, T
∗

S2, and kα are unmeasured parameters, which further will
be referred as thermal boundary conditions; since this unmeasured parameters are
the input data in Eqs. (1) and (3), it is necessary to develop mathematical models
for their prediction. In the following section, the model developing methodology is
explained.
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4. Model developing methodology

As mentioned in the introduction, a new approach for model developing is
proposed. Since the models will be used in an on-line monitoring system, it is
necessary to meet the following requirements:

• The models must be developed on physics-based relations, such as
thermodynamic and kinematic relations and others.

• All models must use the gas path measured parameters as input data.

• The structure of the models must be simple.

• The measuring error of the gas path parameters, which are the input data of the
models, must be taken into account.

• The models must have high robustness to the influence of engine’s component
deterioration.

Taking into account the main requirements, the following general dependence
for any unmeasured parameter is proposed:

z ¼ f Y,W,T ∗

H ,P
∗

H

� �

(4)

Here z is the vector of unmeasured parameters to be predicted; Y is the vector of
gas path measured parameters; W is the vector of the intermediate unmeasured
parameters which describe the thermodynamic properties of the fluid, such as
efficiencies and pressure loss factors; and T ∗

H ,P
∗

H are the ambient conditions.

Figure 3.
Algorithm to estimate the unmeasured parameters.
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As shown in Eq. (4), such dependence is not possible to be used in an on-line
monitoring system since it includes the vector W, which is an unmeasured param-
eter. In order to solve this inconvenience, it is proposed to estimate each
unmeasured parameter w as a function A (internal model) using one of the available
gas path measured parameters as argument w ¼ A xð Þ, where x is a gas path mea-
sured parameter.

Besides, all the parameters are corrected to standard atmosphere to take into
account the influence of atmospheric conditions [20]. After rewriting Eq. (4), the
general dependence for any unmeasured parameter is:

zcor ¼ f Ycor,A xcorð Þð Þ (5)

Figure 3 shows the algorithm to estimate the unmeasured parameters using the
previously presented model developing methodology.

4.1 Model verification

The best models are selected during the model verification process. The total
mean square error (MSE) is the main criteria to select the best models; the MSE
consists of two components, a truncation error and an instrumental error:

σTT ¼ σTR þ σINS (6)

Here σTT is the total MSE, σTR is the truncation error, and σINS is the instrumen-
tal error.

4.1.1 Truncation error

The mean square truncation error is:

σTR j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PNj

j¼1 zj i m � zj i
� �2

Nj

v

u

u

t

(7)

Here zj i m is the value of the unmeasured parameter calculated by the
developed models, zj i is the true value obtained from the engine thermodynamic
model, and Nj is the sample size; in other words, it is the number of engine
operating points considered for analysis corresponding the engine health condition
number j.

The average truncation error in percentage for any engine health conditions is
obtained by:

σTR m ¼
1

n

X

n

j¼1

σTR j � 100% (8)

Here n is the number of engine health conditions.

4.1.2 Instrumental error

The MSE for the instrumental error for a healthy engine condition is calculated
as follows:
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σINS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XQ

q¼1

∂z

∂yq

 !

i

� σ2y q þ
XK

K¼1

∂z

∂xK

� �

i

� σ2x K þ
∂z

∂T ∗

H

� �

i

� σ2T ∗

H
þ

∂z

∂p ∗

H

� �

i

� σ2p ∗

H

v

u

u

t (9)

Here Q is the amount of gas path measured parameters, and K is the amount of
internal models, which are part of the developed model to estimate the unmeasured
parameterz.

The average instrumental error in percentage is obtained by:

σINS m ¼
1

N

X

n

j¼1

σINS j � 100% (10)

HereN is the sample size—the number of engine operating points corresponding
to a healthy engine condition.

4.1.3 Model robustness analysis

Engine health conditions in real life are different from engine to engine; therefore,
it is necessary to take into account these shifts from the ideal engine. For the model
robustness analysis, the truncation error is calculated for several engine health con-
ditions. In [21] the most common engine faulty conditions of a two-spool free turbine
engine were analyzed; as a result, 10 faulty engine conditions were selected.

In Table 2 the 11 engine conditions considered for analysis are listed. The
deteriorated engine condition represents a 3% shift from engine health condition.

5. Developing and verification of models for unmeasured parameters
for the test case

As shown in SubSection 3.1, it is necessary to calculate the input data for Eqs. (1)
and (3). For our particular test case, the selected thermal boundary conditions are
shown in Table 3.

Designation Fault parameter Deteriorated condition

C1 — Healthy engine

C2 δηC Compressor efficiency decrease

C3 δGC Compressor airflow decrease

C4 δηCC Combustion chamber (CC) efficiency decrease

C5 δσCC Decrease in the CC total pressure

C6 δηHPT HPT efficiency decrease

C7 δFNBHPT HPT nozzle box (NB) area increment

C8 δσHPT�LPT Decrease in the total pressure between HPT and LPT duct

C9 δηLPT LPT efficiency decrease

C10 δFNBLPT LPT NB area increment

C11 δGST Increment of the air bleed for gas pumping needs

Table 2.
Engine healthy and faulty condition considered for analysis.
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It is necessary to develop alternative models for each one of the selected thermal
boundary conditions. Although the compressor discharge temperature is a mea-
sured gas path parameter for our test case (Table 1), it is of particular interest to
analyze the effect of its inclusion or exclusion from the list of gas path measured
parameters in the overall lifetime prediction.

Since many alternative models were developed, only one example will be shown
in order to save available text space; for more details consult [21].

5.1 Model developing

Let us consider the gas temperature at the inlet of the turbine T ∗

g . As mentioned

in Section 4, the models must be physics-based; therefore, we use the relation that
describes the power balance between the high-pressure turbine and the high-
pressure compressor [20] as the base equation for model developing:

NT � ηm ¼ NC (11)

Here NT is the turbine power, ηm is the mechanical efficiency, and NC is the
compressor power.

Let us take into account that:

NT ¼ Gg � LT ¼ Gg � Cp g � T ∗

g � T ∗

T

� �

(12)

NC ¼ Ga � LC ¼ Ga � Cp a � T ∗

C � T ∗

H

� �

(13)

Here Gg and Ga are the gas and air flow consumptions accordingly, and Cp g and
Cp a are the specific heat values at constant pressure for gas and air accordingly.

Solving Eq. (11) for T ∗

g , we obtain:

T ∗

g ¼
Cp a

Cp g
�

Ga

Gg � ηm

� �

� T ∗

C � T ∗

H

� �

þ T ∗

HPT (14)

All the unmeasured parameters in Eq. (14) will be described with the help of the
internal model ATG1:

ATG1 ¼
Cp a

Cp g
�

Ga

Gg � ηm

� �

(15)

Let us remember that all the internal models will be calculated as a polynomial
functions using one of the available gas path measured parameters as argument.

Cooling temperature T ∗

S1 ¼ T ∗

C

Heating temperature T ∗

S2 ¼ T ∗

W

Relation of heat transfer coefficients for hot gases kα g ¼ αi g=αref g

Relation of heat transfer coefficients for cooling air kα a ¼ αi a=αref a

Here T ∗

C is the compressor discharge temperature, and T ∗

W is the gas temperature in relative motion in front of the first
turbine stage.

Table 3.
Thermal boundary conditions for our test case.
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Finally, after making the correction to standard atmospheric conditions of
Eq. (14), we arrive at the following expression:

T ∗

g cor ¼ ATG1 cor xð Þ � T ∗

C cor � T0

� �

þ T ∗

HPT cor (16)

Here T0 = 288.15 K is the value of standard atmospheric temperature.
Several models can be developed for the same unmeasured parameter based on

different source equations (alternative models). Figure 4 shows the general scheme
for the developing of alternative models.

Using the scheme shown in Figure 4, a total of 31 models were developed for our
test case (see reference [21]). A name is given to each developed model for easier
identification, for example, the model shown in Eq. (16) is named MTG1. The
names and arguments for each alternative developed model are shown in Figure 5.

5.2 Model verification

Let us consider the model MTG1 shown in Eq. (16), which includes the internal
model ATG1 cor xð Þ. It is necessary to analyze which of the gas path measured param-
eters (Table 1) is best suited to be used as argument in the polynomial, as well as
the degree of the polynomial that results in the most accurate prediction of T ∗

g .

All of the necessary data for the analysis was obtained using the thermodynamic
model of the engine selected as test case [18]. A total of 245 engine operating modes
for a healthy engine condition were simulated; these operating modes describe the
whole range of the engine operating conditions.

The generated data was randomly divided into two sets. The first set of 123
operating points is used as reference. The second set of 122 operation modes is for
model validation. Using the data from the reference set, the coefficients for the
polynomial functions were obtained using the least square method.

The polynomial degree was changed from 1 to 4 using each one of the gas path
measured parameters (see Table 1) as argument in the polynomial.

Once all the polynomial coefficients describing the internal model ATG1 cor xð Þ
were obtained, the value of T ∗

g was calculated. According to the scheme shown in

Figure 4.
Scheme for the developing the alternative models.
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Figure 3, it is necessary to perform an inverse conversion of Eq. (16) to calculate the
value of T ∗

g as follows:

T ∗

g ¼ ATG1 cor xð Þ � T ∗

C cor � T0

� �

þ T ∗

HPT cor

	 


�
T ∗

H

T0
(17)

The total error (see Eq. (6)) was the main criteria to assess the accuracy of the
developed models. A total of 11 engine conditions (Table 2) were considered for the
model validation (model robustness analysis).

Figure 6(a) depicts the total error in the prediction of T ∗

g using the model

MTG1 with different gas path measured parameters as argument in the polynomial
to describe the internal model ATG1 cor xð Þ. From this figure it is clear that the lowest
error is obtained when T ∗

HPT is set as argument.

Figure 5.
Structure of the alternative models developed for our test case.

Figure 6.
Total error in the prediction of T ∗

g using model MTG1. (a) Using seven different measured parameters as

argument; (b) detailed view for the best argument.
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Figure 6(b) shows that it is sufficient to use a third-degree polynomial as
further increment does not reduce the total error in the prediction.

From this analysis the polynomial degree and the gas path measured parameter
to be used as argument in Eq. (17) are selected:

ATG1 cor xð Þ ¼ �6:79 � 10�10 � T ∗ 3
HPT cor þ 2:19 � 10�6 � T ∗ 2

HPT cor � 2:47 � 10� � T ∗

HPT cor þ 1:87
� �

(18)

The selection of the argument in the i-internalmodels and the best polynomial
degree for all the developedmodels was done using the samemethodology. After the
model verification of all the developedmodels, the bestmodels were selected.Figure 7
shows the selectedmodels to calculate the thermal boundary conditions for the test case.

6. Comparative analysis for the model accuracy

Let us conduct a comparative analysis between two approaches for model
developing: the first approach for model developing [14] uses the theory of similar-
ity (reference model), and the second approach is proposed in this chapter and uses
a physics-based methodology.

6.1 Thermal boundary condition prediction

The thermal boundary conditions for our test case (see Table 3) were calculated
using models developed with both methodologies.

The total error was calculated according to Eq. (6), and the model robustness
analysis took into account the 11 engine health conditions listed in Table 2. It is of
particular interest to analyze the model robustness, since such analysis for the
reference methodology does not exist.

In Figure 8 the truncation errors for the thermal boundary condition prediction
are presented.

Figure 7.
Selected models to monitor the thermal boundary conditions of the test case.
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From Figure 8, it is clear that the models developed using the approach intro-
duced in this chapter are more robust; it means that the models are less sensitive to
the deviations from a healthy engine condition. This is a major advantage compared
to the reference methodology based in the theory of similarity [14].

6.2 Prediction of the thermal-stress condition and engine lifetime

The thermal-stress engine condition was calculated using Eqs. (1) and (2). The
prediction of the turbine blade lifetime is a very complex process, which involves
different factors; however, a conservative lifetime prediction will be enough to
assess the impact that a new model developing methodology has on the accuracy of
the lifetime prediction. According to the author [22], a practical way to predict
lifetime is the Larson-Miller relation:

tr ¼ 10
PLM=t cr�C (19)

Here PLM is the Larson-Muller parameter; C is a coefficient, which for the test
case is equal to 20.

Figure 8.
Truncation error in the prediction of thermal boundary conditions for different engine health conditions.
Blue color, physics-based models; red color, models developed on theory of similarity. (a) T ∗

W ; (b) T ∗

C ; (c) kα g;
(d) kα a.
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As mentioned in Section 5, it is of particular interest to analyze what is the
influence of the inclusion or exclusion of the compressor temperature T ∗

C as a gas
path measured parameter in the accuracy of TC, SC, and lifetime prediction tr.
Therefore, the thermal-stress condition and lifetime prediction are calculated for
two cases. For the first case, the compressor temperature is not measured, and for
the second case, the compressor temperature is measured.

Figure 9.
Total error in the prediction of TC, SC, and tr. Blue color, physics-based models; red color, models developed on
the theory of similarity. (a, c, e) T ∗

C is an unmeasured parameter; (b, d, f) T ∗

C is a measured parameter.
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6.2.1 Prediction of the thermal-stress condition and engine lifetime when the compressor
temperature is not measured

Figure 9 presents the total error in the prediction of TC, SC, and lifetime tr.
From Figure 9(a) it is clear that the physics-based models give a better prediction
of TC. Figure 9(c) shows that the improvement in the prediction of SC is not as
significant, especially for the critical points GB. Figure 9(e) shows that the predic-
tion of the lifetime tr is highly improved compared to the results obtained when the
models based on the theory of similarity are used to calculate the thermal boundary
conditions.

From this analysis, it is clear that the methodology used for developing the
models of the unmeasured parameters has a great impact in the final accuracy of the
lifetime tr prediction.

6.2.2 Prediction of the thermal-stress condition and engine lifetime when the compressor
temperature is measured

We repeated the calculation, but this time the value of the compressor temper-
ature is measured. Figure 9(b) shows that the total error in the prediction of TC for
both groups is still better when using physics-based models.

Figure 9(d) shows that the accuracy in the prediction of the SC is not signifi-
cantly affected. From Figure 9(f) it is clear that the improvement in the prediction
of TC has a significant impact in the prediction of the lifetime tr, for example, for
the critical point GA when using physics-based models, an improvement in the
prediction of TC from 0.58 to 0.44% leads to a better lifetime prediction from 45.95
to 27.96%.

We can conclude that the accuracy in the prediction of the lifetime is highly
improved when the temperature after the compressor is a measured parameter.

7. Conclusions

A new approach for model developing to estimate the unmeasured parameters in
an engine lifetime monitoring system was introduced. This is an effort to increase
the accuracy of the lifetime prediction.

All the developed models have a very simple structure and are physics-based,
making them ideal to be applied in an on-line lifetime monitoring system.

A turbine blade mounted on the first stage of the high-pressure turbine of a two-
spool free turbine power plant is the test case.

Several alternative models were developed using different basic equations.
Some of the models include in their structure an internal model, which character-
izes the thermodynamic properties of the working fluid, such as efficiencies, pres-
sure loss factors, and others. The internal models were defined by a polynomial
function. The best measured parameter used as argument in the polynomial and the
degree of the polynomial function were selected using the mean square error as
criteria.

All the necessary data for model developing and validation was generated with
the engine thermodynamic model.

The truncation and instrumental error are the main criteria to select the best
models. Ten engine faulty conditions were considered for the robustness analysis of
the models.
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A comparative analysis between two model developing methodologies was
conducted: physics-based methodology (proposed in this chapter) and models
developed on the theory of similarity (reference). The results show that the physics-
based models are less sensitive to shifts from the engine healthy condition.

It was found that the use of the proposed model developing methodology pro-
vides a better estimation of the thermal boundary conditions, which leads to a
significantly better prediction of the lifetime.

It was proven that the compressor temperature has a great impact in the lifetime
prediction. If this parameter is not measured, then the accuracy of the lifetime
prediction is significantly worse compared to the results obtained when the
compressor temperature is measured.

The obtained results show that it is possible to use the proposed model develop-
ing methodology in real applications; however, it is necessary to take into account a
proper interpretation of the results obtained in this chapter. The reference data,
which was used to determine the accuracy of the models, is simulated data; there-
fore, it is possible that the errors of the lifetime monitoring under real conditions
will grow. To avoid such inconvenience, it is possible to replace the data generated
with the help of the engine thermodynamic model with real data. This approach is
valid, since the engine thermodynamic model is not part of the proposed model
developing methodology. In order to obtain the necessary real data, it will be
necessary to use additional instrumentation under engine test bed conditions.

Nomenclature

Subscripts

a air
cor corrected parameter
cr critical point
C compressor
CC combustion chamber
CH channel
f fuel
g gas
H atmospheric conditions
HP high pressure
HPT high-pressure turbine
i i-engine mode
INS instrumental error
j j-engine health condition
LPT low-pressure turbine
m value calculated with the help of models, mechanical
NB nozzle box
ref reference engine mode
ST gas pumping station
S1 cooling
S2 heating
t thermal
T turbine
TR truncation error
TT total mean square error
W relative velocity
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Designations

G consumption
T temperature
p pressure
n rotational speed, number of engine health conditions
t blade temperature
k coefficient, isentropic factor

S dimensionless parameter

z unmeasured parameter
Y gas path measured parameters
W unmeasured parameters describing thermodynamic properties

of the working fluid
A internal model
x measured parameter, argument of polynomial
p0 standard atmospheric pressure (101.3 KPa)
T0 standard atmospheric temperature (288.15 K)
y measured parameter
N sample size (number of engine operation modes), power
C engine condition, coefficient
L thermodynamic work
Cp specific heat at constant pressure
A coefficient
Re Reynolds number
Kα relation of heat transfer coefficient at current and at a refer-

ence operation mode
tr lifetime

Greek symbols

* stagnation parameter
α heat transfer coefficient
Θ dimensionless parameter
σ stress, mean square error, total pressure conservation
η efficiency
δ shift from healthy engine condition
μ dynamic viscosity
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