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Chapter

On Dynamics and Invariant Sets
in Predator-Prey Maps
Blai Vidiella, J. Tomás Lázaro, Lluís Alsedà

and Josep Sardanyés

Abstract

Amultitude of physical, chemical, or biological systems evolving in discrete time
can be modelled and studied using difference equations (or iterative maps). Here
we discuss local and global dynamics for a predator-prey two-dimensional map.
The system displays an enormous richness of dynamics including extinctions,
co-extinctions, and both ordered and chaotic coexistence. Interestingly, for some
regions we have found the so-called hyperchaos, here given by two positive
Lyapunov exponents. An important feature of biological dynamical systems, espe-
cially in discrete time, is to know where the dynamics lives and asymptotically
remains within the phase space, that is, which is the invariant set and how it evolves
under parameter changes. We found that the invariant set for the predator-prey
map is very sensitive to parameters, involving the presence of escaping regions for
which the orbits go out of the domain of the system (the species overcome the
carrying capacity) and then go to extinction in a very fast manner. This theoretical
finding suggests a potential dynamical fragility by which unexpected and sharp
extinctions may take place.

Keywords: bifurcations, chaos, invariant sets, maps, nonlinearity, ecology

1. Introduction

Natural and artificial complex systems can evolve in discrete time, often
resulting in extremely complex dynamics such as chaos. A well-known example of
such a complexity is found in ecology, where discrete-time dynamics given by a
yearly climatic forcing can make the population emerging a given year to be a
discrete function of the population of the previous one [1]. Although early work
already pointed towards complex population fluctuations as an expected outcome
of the nonlinear nature of species interactions [2], the first evidence of chaos in
species dynamics was not characterised until the late 1980s and 1990s [3, 4]. Since
pioneering works on one-dimensional maps [5, 6], the field of dynamical complex-
ity in ecology experienced a rapid development [5–7], with several key investiga-
tions offering a compelling evidence of chaotic dynamics in insect species in
nature [1, 3, 4].

Discrete-time models have played a key role in the understanding of complex
ecosystems, especially for univoltine species (i.e. species undergoing one generation
per year) [5, 6]. Many insects inhabiting temperate and boreal climatic zones
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behave as univoltine species, for example, Lepidoptera [8], Coleoptera [9], or
Heteroptera [10] species, among others. For Lepidoptera, the populations of the
butterfly Pararge aegeria are univoltine in its most northern range (e.g. northern
Scandinavia). Adult butterflies emerge in late spring, mate, and die shortly after
laying the eggs. Then, their offspring grow until pupation, entering diapause before
winter. New adults emerge the following year, thus resulting in a single generation
of butterflies per year [11].

Some predators feed on these univoltine insects. For example, Picromerus bidens
(Heteroptera) predates on Pararge aegeria by consuming their eggs. Thus, both prey
and predator display coupled yearly cycles (Figure 1(a)). This type of systems has
been modelled using two-dimensional discrete-time models, such as the one we are
introducing in this chapter, given by the map (1) (see Ref. [12] for more details on
this model). As mentioned, the dynamical richness of discrete ecological models
was early recognised [5, 6] and special attention has been paid to small food chains
incorporating two species in discrete systems [12]. These systems, similarly to
single-species maps, display static equilibria, periodic population oscillations, as
well as chaotic dynamics (see, e.g. Figure 1(b)).

A crucial point that we want to address in this chapter is the proper characteri-
sation of the invariant set in which the dynamics lives. This is of paramount impor-
tance for discrete-time systems since the iterates can undergo big jumps within
the phase space and extinctions can occur in a very catastrophic manner if some
iterate visits the so-called escaping regions. That is, catastrophic extinctions not
caused by bifurcations but from topological features of the invariant sets may occur.
Together with the characterisation of the invariant set, we provide a dynamical
analysis of fixed points, local and global stability, as well as a numerical
investigation of chaos.

2. Predator-prey map

We consider a food chain of two interacting species with predator-prey dynam-
ics, each with nonoverlapping generations (see Figure 1(a)). The preys x grow
logistically without the presence of predators population y, following the logistic
map [6]. The proposed model to study such ecosystem can be described by the
following system of nonlinear difference equations [12]:

Figure 1.
Two-species predator-prey dynamics can be studied with difference equations or maps when species generations
are discrete (univoltine). (a) Here we display two insect species with univoltine generations at the North
Hemisphere. The Heteroptera Picromerus bidens predates the butterfly Pararge aegeria by consuming the eggs
(photos obtained from the Wikipedia). A simple model for this type of system is given by the map (1). (b) Some
typical dynamics arising in discrete-time ecological systems for preys (green dots) and predators (blue dots):
(upper panel) period-one fixed point and (lower panel) chaos.

2

Dynamical Systems Theory



xnþ1
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where T
x

y

� �

¼ Tμ, β

x

y

� �

¼
μx 1� x� yð Þ

β xy

� �

(1)

is defined on the phase space given by the simplex:

S ¼ x, yð Þ : x, y≥0 and xþ y≤ 1f g:

We will focus our analysis on the parameter regions, μ∈ 0, 4ð � and β ∈ 0, 5ð �,
which contain relevant biological dynamics. State variables x, yð Þ∈ 0, 1½ �2
denote population densities with respect to a normalised carrying capacity for
preys (K ¼ 1). Observe that, in fact, if we do not normalise the carrying
capacity, the term 1� x� y in Tμ, β should read 1� x=K � y. As mentioned, preys
grow logistically with an intrinsic reproduction rate μ>0 without predators.
Finally, preys’ reproduction is decreased by the action of predators, which
increase their population numbers at a rate β >0 due to consumption of preys.

3. Fixed points and local stability

The next lemma provides the three fixed points of the dynamical system defined
by the map (1) for μ, βð Þ∈ 0, 4ð � � 0, 5ð � and the parameter regions for which they
belong to the simplex S.

Lemma 1.1. The dynamical system (1) on the simplex S has the following three
fixed points (see Figure 2 (left)):

• P ∗
1 ¼ 0, 0ð Þ which belongs to the simplex S for every μ, βð Þ.

• P ∗
2 ¼ 1� 1

μ
, 0

� �

which belongs to the simplex S for every μ, βð Þ∈ 1, 4½ � � 0, 5ð �.

• P ∗
3 ¼ 1

β
, 1� 1

μ
� 1

β

� �

which belongs to the simplex S for every

μ, βð Þ∈ 5

4
, 4

� �

� μ

μ� 1
, 5

� �

:

The fixed point P ∗
1 corresponds to co-extinctions, P ∗

2 to predator extinction and
prey survival, and P ∗

3 to the coexistence of both populations.
Proof: It is a routine to check that P ∗

1 ,P
∗
2 and P ∗

3 are the unique possible fixed
points of model (1). Thus, the first and the second statements of the lemma are
evident.

We need to prove that P ∗
3 belongs to the simplex S if and only if μ, βð Þ∈

5
4 , 4
� 	

� μ

μ�1 , 5
h i

:

Observe that the inequalities μ>0 and β >0 directly give 1
β
>0, 1� 1

μ
� 1

β
< 1,

and 1� 1
μ
¼ 1

β
þ 1� 1

μ
� 1

β

� �

< 1: So, the statement P ∗
3 ∈ S is equivalent to 1

β
< 1 and

0≤ 1� 1

μ
� 1

β
⇔

μ> 1, and

1

β
≤ 1� 1

μ
¼ μ� 1

μ

8

>

<

>

:

⇔

μ> 1, and

β ≥
μ

μ� 1
:

8

>

<

>

:
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Clearly, the last two conditions give β ≥ μ

μ�1 > 1 which is equivalent to 1
β
< 1.

On the other hand, μ

μ�1 ≤ β ≤ 5 is equivalent to μ≥ 5
4 :

In the next three lemmas, the different regions of local stability of these fixed
points are studied. This study, standard in dynamical systems theory, is based on
the computation of the eigenvalues of the Jacobian matrix at each fixed point and on
the determination of the regions where their moduli are smaller or larger than 1. To
ease the reading, the proofs have been deferred to the end of the section.

Lemma 1.2 (Stability of the point P ∗
1 ) The fixed point P ∗

1 is locally asymptot-
ically stable (of attractor node type) if μ∈ 0, 1ð Þ, with eigenvalues λ1 ¼ μ< 1, λ2 ¼ 0,
and unstable (of hyperbolic type) if μ∈ 1, 4ð �. In that case its eigenvalues are λ1 ¼
μ> 1 and λ2 ¼ 0.

Observe that in both cases, there is an eigendirection, corresponding to the y-
axis, which is strongly attracting. As it often happens in many biological systems, its
change of stability coincides with the “birth” of the fixed point P ∗

2 .
Lemma 1.3 (Stability of the point P ∗

2 ). Let us consider in the parameter region
μ, βð Þ∈ 1, 4½ � � 0, 5ð �, the domain of existence of the fixed point P ∗

2 ∈ S, the curve

β ¼ μ

μ� 1
(2)

(defined and contained in the domain for μ≥ 5
4), and the vertical line μ ¼ 3.

The curve and the line divide this domain into four regions (as shown in Figure 2
(centre)). Then, the local stability of system (1) in a neighbourhood of the fixed
point P ∗

2 is as follows: In the bottom-left region (brown), it is locally asymptotically
stable (attractor of node type). In the top-right region (magenta), it is unstable
(repelling of node type). In the bottom-right and top-left regions (in light blue
colour), P ∗

2 is also unstable, but of hyperbolic type. In the bottom part, the eigen-
values satisfy ∣λ1∣> 1 and ∣λ2∣< 1, while in the top part, these inequalities are
reversed, ∣λ1∣< 1 and ∣λ2∣> 1. As usual, the curves and lines defining the border

Figure 2.
The left picture shows the regions of existence of the fixed points P ∗

1,2,3. The centre (respectively right) picture

specifies the regions of the parameter space (of course in its parametric domain of definition) where the fixed
point P ∗

2 (respectively P ∗
3 ) has different local dynamics, together with the type of local dynamics displayed in

each of the regions. The analogous picture for the point P ∗
1 has been omitted for simplicity. The codification for

the stability zones follows the next rules: Capital letters indicate stability—U indicates unstable, while AS
indicates asymptotic stability. The subscripts show the type of stability: hyp = hyperbolic, node, attracting-
spiral, and repelling-spiral.
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between these regions are characterised by a pass-through modulus 1 of some of the
eigenvalues. Indeed, on the curve (2) (in blue colour, solid and dashed), one has
λ2 ¼ 1, and on the vertical line μ ¼ 3 (in red and green colours), one gets λ1 ¼ �1.
On the black point at the intersection of both curves, which has coordinates
μ, βð Þ ¼ 3, 1:5ð Þ, the eigenvalues are λ1 ¼ �1 and λ2 ¼ 1.

And last but not least, the following lemma establishes the different regions of
stability for the point P ∗

3 , the coexistence equilibrium.
Lemma 1.4 (Stability of the point P ∗

3 ) Let us consider in the parameter region

μ, βð Þ∈ 5
4 , 4
� 	

� μ

μ�1 , 5
h i

, the domain of existence of the fixed point P ∗
3 ∈ S, the

above curve (2), and the following three curves:

β ¼ 2
μ

μ� 1
blackð Þ, (3)

β ¼ μ

2
ffiffiffi

μ
p � 1
� � redð Þ, (4)

β ¼ 3
μ

μþ 3
dashed magentað Þ: (5)

These curves divide this domain into four regions (see Figure 2 (right)):

1.The region at the top, coloured in pink and delimited by the curve (3), where
the point P ∗

3 is unstable of repeller spiral type (its Jacobian matrix has complex
eigenvalues with λ1,2j j> 1).

2.The green-coloured zone, delimited by the curves (3) and (4), where P ∗
3 is

asymptotically stable of attracting spiral type with complex eigenvalues
satisfying λ1,2j j< 1.

3.The region in brown colour, delimited by the curves (2), (4), and (5). Here the
Jacobian matrix of P ∗

3 has real eigenvalues with ∣λ1,2∣< 1, and P ∗
3 is locally

asymptotically stable of node type.

4.The bottom region, in light blue, where λ1j j< 1 and λ2 < � 1. Therefore, P ∗
3 is

unstable of hyperbolic type.

We present now the proofs of Lemma 1.3 and Lemma 1.4. The one of Lemma 1.2
has been omitted since it consists on straightforward computations.

Proof of Lemma 1.3: The Jacobian matrix of T at the point P ∗
2 is

DT P ∗
2

� �

¼
2� μ 1� μ

0 β 1� 1

μ

� �

0

@

1

A,

being triangular, so its eigenvalues are λ1 ¼ 2� μ and λ2 ¼ β 1� 1
μ

� �

. They are

both real and, since μ∈ 1, 4ð �, λ2 is positive, and concerning λ1, one has λ1j j< 1 when
μ∈ 1, 3ð Þ, λ1j j ¼ 1 when μ ¼ 3, and λ1j j> 1 when μ∈ 3, 4ð �: To determine more
precisely the local stability of P ∗

2 , we study the modulus of λ2 on each of these
intervals.

Case μ∈ 1, 3ð Þ. As we already said, in this case we have λ1j j< 1 and λ2 >0. The
curve λ2 ¼ 1 is the curve (2) (in solid blue colour in Figure 2 (centre)). This curve
intersects the line μ ¼ 3 at β ¼ 3=2 and the line β ¼ 5 at μ ¼ 5=4. On this curve the
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linearised system is stable but nothing can be said, a priori, about the nonlinear
system. For the parameters β and μ for which β >

μ

μ�1 , we have λ2 > 1 and, hence,

P ∗
2 is unstable of hyperbolic type. In a similar way, for those parameters verifying
β <

μ

μ�1 , we get that both eigenvalues λ1,2 have modulus strictly smaller than 1.

Hence, P ∗
2 is asymptotically stable of node type.

Case μ ¼ 3. Now the eigenvalues are λ1 ¼ �1 and λ2 ¼ 2 β
3 . When β ¼ 3

2, λ1 ¼ �1,

and λ2 ¼ 1, so P ∗
2 is stable for the linearised system. Notice that μ, βð Þ ¼ 3, 3=2ð Þ is

exactly the intersection point of the curve (2) with the line μ ¼ 3. If β >
3
2, then

λ1 ¼ �1 and λ2 > 1, so P ∗
2 is unstable. Finally, if β <

3
2, then λ1 ¼ �1 and λ2 < 1, and

therefore P ∗
2 is stable for the linearised system.

Case μ∈ 3,4ð �. Since λ1j j> 1, the point P ∗
2 is always unstable. Moreover, as in the

case μ∈ 1, 3ð Þ, the modulus of λ1 depends on the position of μ and β with respect
to the curve (2) (λ2 ¼ 1). Consequently, if β ¼ μ

μ�1, then λ2 ¼ 1 and P ∗
2 is unstable.

If β >
μ

μ�1, then λ2 > 1 and P ∗
2 is unstable (of node type). Finally, if β <

μ

μ�1, then

λ2j j< 1 and P ∗
2 is an (unstable) hyperbolic point.

Proof of Lemma 1.4: The Jacobian matrix of T at the point P ∗
3 is

DT P ∗
3

� �

¼
1� μ

β
� μ

β

β 1� 1

μ
� 1

β

� �

1

0

B

B

@

1

C

C

A

:

Then, the trace, the determinant of DT P ∗
3

� �

and the discriminant of the
characteristic polynomial of this matrix are

τ ¼ trDT P ∗
3

� �

¼ 2� μ

β
, D ¼ det DT P ∗

3

� �

¼ μ 1� 2

β

� �

, and (6)

Δ ¼ τ2 � 4D ¼ 2� μ

β

� �2

� 4μ 1� 2

β

� �

¼ μ

β
þ 2

� �2

� 4μ: (7)

The eigenvalues of DT P ∗
3

� �

are given by

λ1,2 ¼
τ �

ffiffiffiffi

Δ
p

2
: (8)

The curve determining whether the eigenvalues are real or complex is Δ ¼ 0,
that is,

Δ ¼ 0 ⇔
μ

β
þ 2

� �2

¼ 4μ ⇔
μ

β
¼ 2

ffiffiffi

μ
p � 1
� �

⇔ β ¼ μ

2
ffiffiffi

μ
p � 1
� � ,

which corresponds to the red curve (4).
Observe that in the region above the red curve (4), Δ<0: So, the stability of P ∗

3

in this region is determined by the modulus of

λ1,2 ¼
τ � i

ffiffiffiffiffiffiffiffi

�Δ
p

2
¼

2� μ

β

� �

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ� μ

β
þ 2

� �2
r

2
:

Precisely, we are interested on determining when λ1,2j j ¼ 1 or, equivalently,

when λ1,2j j2 ¼ 1: We have

6
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λ1,2j j2 ¼
2� μ

β

� �2
þ 4μ� 2þ μ

β

� �2

4
¼

4μ� 8 μ

β

4
¼ μ 1� 2

β

� �

:

Therefore, 1 ¼ λ1,2j j2 ¼ μ 1� 2
β

� �

is equivalent to β ¼ 2μ
μ�1, which is the black

curve (3). This implies that, in the pink-coloured region above the black curve (3),
displayed in Figure 2 (right), the point P ∗

3 has complex eigenvalues with modulus
greater than 1, and, consequently, it is unstable of repelling spiral type. Analo-
gously, the green region corresponds to complex eigenvalues λ1,2, with (both)
moduli smaller than 1. Here, P ∗

3 is asymptotically stable of attracting spiral type.
In the region below the red curve (4), where Δ>0, both eigenvalues are real.

They can be rewritten as

λ1,2 ¼ 1� μ

2 β

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

2 β
þ 1

� �2

� μ

s

,

being λ1 (respectively λ2) the eigenvalue corresponding to the + (respectively �)
sign.

First we will show that λ1 μ, βð Þj j< 1 in the region delimited by the curves (4)
and (2) (including the graph of the curve (4) and excluding the graph of the curve
(2)). Observe that, since μ

μ�1 ≤ β and μ≤4, we have

μ

2 β
� 2≤

μ� 1

2
� 2<0≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

2 β
þ 1

� �2

� μ

s

⇔ � 1< 1� μ

2 β

� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

2 β
þ 1

� �2

� μ

s

¼ λ1:

Furthermore,

1> λ1 ¼ 1� μ

2 β

� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

2 β
þ 1

� �2

� μ

s

⇔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

2 β
þ 1

� �2

� μ

s

<
μ

2 β
⇔

μ

2 β
þ 1

� �2

� μ<
μ

2 β

� �2

⇔ 1þ μ

β
< μ⇔ β >

μ

μ� 1
,

This proves that, indeed, λ1 μ, βð Þj j< 1 in the region delimited by the curves (4)
and (2), excluding the graph of the curve (2).

Now we study λ2j j: Observe that, clearly,

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

2 β
þ 1

� �2

� μ

s

≤0<
μ

2 β
⇔ λ2 ¼ 1� μ

2 β

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

2 β
þ 1

� �2

� μ

s

< 1:

Next, by using again that μ

2 β � 2<0, we have

�1 ¼ λ2 ¼ 1� μ

2 β

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

2 β
þ 1

� �2

� μ

s

⇔
μ

2 β
� 2

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

2 β
þ 1

� �2

� μ

s

⇔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

2 β
þ 1

� �2

� μ

s

¼ 2� μ

2 β
⇔

μ

2 β
þ 1

� �2

� μ

¼ 2� μ

2 β

� �2

⇔ 3
μ

β
¼ μþ 3⇔ β ¼ 3

μ

μþ 3
:
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The last equality is curve (5) and, as shown in Figure 2 (right), it intersects the
curve (2) at the point μ, βð Þ ¼ 3, 3=2ð Þ, it is strictly increasing in the interval
μ∈ 3, 4½ �, and intersects the line μ ¼ 4 at β ¼ 12=7< 2. By using the above chain of
equivalent equalities, it is easy to check that λ2 > � 1 if and only if β > 3 μ

μþ3 : Thus,

the assertions (3) and (4) of the lemma follow straightforwardly.

4. Invariant set: where dynamics live and remain

A first natural question is whether and when S is the domain of the dynamical
system associated with model (1). This amounts asking whether and when S is
T-invariant (i.e. T Sð Þ⊂ S). The complete answer to this question is given by the
following proposition and corollary.

In this section, at some point we will consider μ βð Þ as a function of β. So, for
consistency, instead of using the simple notation T for the map from model (1), we
will use the notation Tμ, β which emphasises the explicit dependence of T on the two
parameters μ and β.

Proposition 1.5 Tμ, β Sð Þ ¼ x, yð Þ∈
þ � 

þ
:
x
μ
þ y

β
≤ 1

4

n o

:

Remark 1.6 Indeed, we can say more: any point u, vð Þ∈
þ � 

þ such that

u

μ
þ v

β
<

1

4

admits, exactly, two Tμ, β preimages, and they belong to S. Moreover, if

u, vð Þ∈
þ � 

þ is such that u
μ
þ v

β
¼ 1

4 , then
1
2 ,

2v
β

� �

∈ S is the only Tμ, β preimage

of u, vð Þ:
The line x

μ
þ y

β
¼ 1

4 joins the point
μ

4 , 0
� �

with 0, β

4

� �

: So, when β ≤ 4, it is below

the line xþ y ¼ 1 and when β >4 it has points outside S. Consequently, from
Proposition 1.5 we get

Corollary 1.7 The simplex S is Tμ, β -invariant if and only if β ≤ 4:
Remark 1.8 In fact, it can be easily shown that β ≤4 implies Tμ, β Sð Þ⊈S except

when μ ¼ β ¼ 4:
Proof of Proposition 1.5:We start by proving that

Tμ, β Sð Þ⊂ x, yð Þ∈
þ � 

þ
:
x

μ
þ y

β
≤

1

4


 �

:

Let x, yð Þ∈ S: We have T x, yð Þ ¼ μx 1� x� yð Þ, β xyð Þ and,
μx 1� x� yð Þ, β xy≥0 because μ, β >0 and, since x, yð Þ∈ S, x, y≥0 and xþ y≤ 1:
So, we have proved that T x, yð Þ∈

þ � 
þ: To end the proof of the above inclusion,

we have to show that μx 1�x�yð Þ
μ

þ β xy
β

≤ 1
4 : We have

μx 1� x� yð Þ
μ

þ β xy

β
¼ x 1� x� yð Þ þ xy ¼ x 1� xð Þ≤ 1

4
:

Next we will show that for every u, vð Þ∈
þ � 

þ such that u
μ
þ v

β
≤ 1

4, there

exists x, yð Þ∈ S such that T x, yð Þ ¼ μx 1� x� yð Þ, β xyð Þ ¼ u, vð Þ (i.e. u ¼
μx 1� x� yð Þ and v ¼ β xy).

If v ¼ 0, it is enough to take y ¼ 0 and x such that μx 1� xð Þ ¼ u: Observe that
such point x exists because, in this case,

8
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0≤ u ¼ μ
u

μ
þ v

β

� �

≤
μ

4
:

Next we suppose that v>0: The fact that u∈
þ together with u

μ
þ v

β
≤ 1

4 implies

that 0< v≤ β

4 : So, there exist two points 0< y� ≤ 1
2 ≤ yþ < 1 such that

β y� 1� y�ð Þ ¼ β yþ 1� yþð Þ ¼ v:

Since β >0 and 0< y� ≤ yþ < 1, the function z yð Þ ¼ v
β y from the interval y�, yþ½ �

to 1� yþ, 1� y�½ � is a decreasing homeomorphism (observe that we have z yð Þ;
z y�ð Þ ¼ 1� y�). Moreover, since y� ≤ 1

2 ≤ yþ, we obtain 1� yþ ≤ 1
2 ≤ 1� y� (see

plot above). Consequently,

β x 1� xð Þ : x∈ 1� yþ, 1� y�½ �f g ¼ v,
β

4

� �

:

Hence, there exists a point x ¼ z yð Þ∈ 1� yþ, 1� y�½ � (of course with y∈ y�, yþ½ �)
such that β x 1� xð Þ ¼ β

μ
uþ v because v≤ β

μ
uþ v≤ β

4 : Then, for these particular

values of y and x ¼ z yð Þ, we have β yx ¼ v and

μx 1� y� xð Þ ¼ μx 1� xð Þ � μyx ¼ μ

β
β x 1� xð Þ � β yxð Þ ¼ μ

β

β

μ
uþ v� v

� �

¼ u:

Next we consider the case β >4: We want to find an invariant subset of S or,
equivalently, the domain of definition of Tμ, β as a dynamical system.

We define the one-step escaping set ɛμ, β as the set of points z∈ S such that
Tμ, β zð Þ ∉ S (see Figure 7 for an example). Obviously, ɛμ, β ⊂ S by definition.

The next proposition gives an estimate of the domain of definition of Tμ, β as a
dynamical system (i.e. a Tμ, β -invariant subdomain of S) when β >4 and μ is small
enough.

Proposition 1.9 For every β >4, there exists a unique value μ ∗ ¼ μ ∗ βð Þ∈ 0, 4ð Þ
for which the parabola y ¼ 1�μ ∗ x 1�xð Þ

β�μ ∗ð Þx and the line x
μ ∗ þ y

β
¼ 1

4 intersect at a unique point

(see Figure 3). Then, the set Snɛμ, β is Tμ, β -invariant for every β > 4 and μ≤ μ ∗ βð Þ:
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Proposition 1.9 together with Corollary 1.7 give the splitting of the parameter
space according to the shape of the invariant set. Figure 4 and its caption give a
graphical description of this splitting together with an account of some dynamical
aspects in the different regions (see also Figures 5 and 6).

It is well known that the recurrent dynamics of a dynamical system S,Tð Þ takes
place in the non-wandering set of T, Ω Tð Þ, and Ω Tð Þ⊂∩∞

i¼0T
i Sð Þ (see, for instance,

Figure 3.
Three examples of the domain Snɛμ, β (in blue) with the one-step escaping set ɛμ, β plotted in red for β ¼ 5 and
μ ¼ 1:5 (left picture), μ ¼ 2:340246528387⋯ (centre picture), and μ ¼ 3:525 (right picture). The black
region shows the set x, yð Þf ∈

þ � 
þ
:
x
μ
þ y

β
≤ 1

4g⊃Tμ, β Sð Þ⊃Tμ, β Snɛμ, β
� �

.

Figure 4.
The blue region is the one studied by Corollary 1.7: the set S is Tμ, β -invariant. The blue point ( β ¼ μ ¼ 4) is,
according to Remark 1.8, the unique point where Tμ, β Sð Þ ¼ S: The red curve is μ ∗ βð Þ, βð Þ for β ∈ 4, 5ð � (see
Remark 1.10). The green region union with the red curve corresponds to Proposition 1.9: Snɛμ, β is Tμ, β -
invariant. The region at the left of the brown vertical line (i.e. μ< 1) corresponds to the parameters for which
there exists global convergence to the fixed point P ∗

1 (Theorem 1.13). The region between the line μ ¼ 1 and the

magenta curve φ βð Þ, βð Þ with φ xð Þ≔
2 forx∈ 0, 2½ �,
x

x� 1
forx∈ 2, 5½ �,

(

corresponds to the parameters for which there

exists global convergence to P ∗
2 (except for the escaping points and the preimages of P ∗

1 —Theorem 1.14). The
purple dots mark the values of the parameters of the dynamical pictures from Figure 5, and the olive dots mark
the values of the parameters of the dynamical pictures from Figure 6.
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Lemma 4.1.7 from Ref. [13]). Moreover, both sets Ω Tð Þ and ∩∞
i¼0T

i Sð Þ are closed
and invariant. Then, in the situation of the above proposition (especially in the light

of the above remark), we have Ω Tð Þ⊂∩∞
i¼0T

i Sð Þ⊈S: To understand the recurrent
dynamics of S,Tð Þ, it is clearly interesting (and possible) to characterise the set

∩∞
i¼0T

i Sð Þ (see Figure 9 for some examples for different parameter values).
Of course, as we have already implicitly said, in the region at the left and below

the magenta curve (see Figure 4), one only can expect that ∩∞
i¼0T

i Sð Þ will be either

P ∗
1

� �

or P ∗
1 ,P

∗
2

� �

, and, hence, it does not draw much attention.

Figure 5.

Plots of the set ∩∞
i¼0T

i Sð Þ for β ¼ μ ¼ 3:412 (left picture), β ¼ μ ¼ 3:5485 (centre picture), and β ¼ μ ¼
3:895 (right picture). In Figure 4 we can see the location in the parameter space that corresponds to these three
dynamical pictures.

Figure 6.
(Top row) The invariant set Snsℛμ, β for several values of β > 4 and μ> μ ∗ βð Þ. In Figure 4 we can see the
location in the parameter space that corresponds to these three dynamical pictures. (Bottom row) Escaping
regions with the number of iterates needed to go out of the domain represented in a gradient from 1 (black),
2 (dark violet), 3 (light violet) to 50 (yellow) iterates. Note the fractal nature of the invariant set and of the
escaping regions (see movie1.mp4 for an animation of the invariant and escaping sets as a function of model
parameters).

11

On Dynamics and Invariant Sets in Predator-Prey Maps
DOI: http://dx.doi.org/10.5772/intechopen.89572



For β >4 and μ> μ ∗ βð Þ, we also want to characterise the invariant set where
the dynamics occur. To this end, we define the escaping set Rμ, β as the set of points
z∈ S such that Tn

μ, β zð Þ ∉ S for some n≥ 1: Clearly,

Rμ, β ¼ ∪
∞

n¼0
S∩T�n

μ, β ɛμ, β

� �

� �

¼ S∩ ∪
∞

n¼0
T�n
μ, β ɛμ, β

� �

� �

:

As Figure 6 shows, the set SnRμ, β is (not surprisingly) much more complicated
than the sets S and Snɛμ, β : This prevents obtaining an analytic characterisation of it,
as the one given in Proposition 1.11 for the set Snɛμ, β :However, it is always possible
(and easy) to obtain numerical approximations to this set for β >4 and μ> μ ∗ βð Þ
to gain insight about its shape and topology. Observe (see Figure 6) that the
invariant set SnRμ, β can be fractal.

Remark 1.10. From the proof of Proposition 1.9, it follows that μ ∗ βð Þ is the
unique root in the interval 0, 4ð Þ of the cubic equation:

μ3 þ α2 bð Þ
α3 bð Þ μ

2 þ α1 bð Þ
α3 bð Þ μþ

α0 bð Þ
α3 bð Þ ¼ 0

with b ¼ β � 4 and

α3 bð Þ ¼ b2

α2 bð Þ ¼ �2 b3 þ 8b2 þ 16bþ 32
� �

α1 bð Þ ¼ b4 þ 16b3 þ 96b2 þ 320bþ 512, and

α0 bð Þ ¼ �64 b2 þ 8bþ 16
� �

:

By means of the Tschirnhaus transformation

μ ¼ z� α2 bð Þ
3α3 bð Þ ¼ zþ 2

3b2
b3 þ 8b2 þ 16bþ 32
� �

,

the above equation can be transformed into the following equivalent reduced
form:

z3 � p

3b4
zþ 2q

27b6
¼ 0 (9)

with

p ¼ �3b4
α1 bð Þ
α3 bð Þ �

α2 bð Þ2

3α3 bð Þ2

 !

¼ b6 þ 16b5 þ 96b4 þ 320b3 þ 1536b2 þ 4096bþ 4096, and

q ¼ 27b6

2

α0 bð Þ
α3 bð Þ �

α2 bð Þα1 bð Þ
3α3 bð Þ2

þ 2α2 bð Þ3

27α3 bð Þ3

 !

¼ b9 þ 24b8 þ 240b7 þ 512b6 � 3840b5 � 26112b4 � 88064b3 � 245760b2 � 393216b� 262144:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

Since the linear coefficient of Eq. (9) is negative, it has three real roots, and, by
using the trigonometric solution formula for three real root cases, we obtain
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z ∗ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi

1

3

p

3b4

r

cos

arccos 3
2q

27b6

� �

� 1

2

3b4

p

 !
ffiffiffiffiffiffiffiffiffiffiffi

3
3b4

p

s
 !

3
� 4

3
π

0

B

B

B

B

@

1

C

C

C

C

A

¼ 2

3b2
ffiffiffi

p
p

cos

π � arccos
q

p
ffiffiffi

p
p

 !

3
� 4

3
π

0

B

B

B

B

@

1

C

C

C

C

A

¼ � 2

3b2
ffiffiffi

p
p

cos

arccos
q

p
ffiffiffi

p
p

 !

3

0

B

B

B

B

@

1

C

C

C

C

A

,

and

μ ∗ βð Þ ¼ z ∗ � α2 bð Þ
3α3 bð Þ ¼

2

3b2
� ffiffiffi

p
p

cos
arccos q

p
ffiffi

p
p

� �

3

0

@

1

Aþ b3 þ 8b2 þ 16bþ 32

0

@

1

A:

To prove Proposition 1.9, we need a full characterisation of the one-step escaping
set when β > 4: This will be obtained in the next proposition.

Proposition 1.11. For every β >4,

ɛμ, β ¼ x, yð Þ : x� 1

2

�

�

�

�

�

�

�

�

<

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
� 1

β

s

and
1� μx 1� xð Þ

β � μð Þx < y≤ 1� x

( )

6¼ 0

(see Figure 7).

Remark 1.12. Observe that x, yð Þ∈T�1
μ, β x, yð Þ∈

þ � 
þ
: xþ y ¼ 1f gð Þ if and

only if μx 1� x� yð Þ þ β xy ¼ 1 which, in turn, is equivalent to

y ¼ 1� μx 1� xð Þ
β � μð Þx :

Consequently,

x, yð Þ∈
þ � 

þ
: y ¼ 1� μx 1� xð Þ

β � μð Þx


 �

¼ T�1
μ, β x, yð Þ∈

þ � 
þ
: xþ y ¼ 1f gð Þ

Figure 7.
Two examples of the domain S in blue with the one-step escaping set ɛμ, β plotted in red for β ¼ 4:5 and μ ¼ 2
(left picture) and β ¼ 5 and μ ¼ 3:75 (right picture). The one-step escaping set ɛμ, β is vertically delimited by

the curves 1�μx 1�xð Þ
β�μð Þx < 1� x on the interval with endpoints x�≔ 1

2 �
ffiffiffiffiffiffiffiffiffiffiffi

1
4 � 1

β

q

:
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and, hence, ɛμ, β is the set of points x, yð Þ with x� 1
2

�

�

�

�<

ffiffiffiffiffiffiffiffiffiffiffi

1
4 � 1

β

q

which are

between the line uþ v ¼ 1 and its Tμ, β preimage (in particular they belong to S).
Proof of Proposition 1.11: By assumption we have β >4≥ μ: So, additionally,

we have β � μ>0: We denote

x�≔
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
� 1

β

s

and xþ≔
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
� 1

β

s

so that x� 1
2

�

�

�

�<

ffiffiffiffiffiffiffiffiffiffiffi

1
4 � 1

β

q

is equivalent to x∈ x�, xþð Þ: Thus, since

0<

ffiffiffi

5
p

� 1

2
ffiffiffi

5
p ≤ x� <

1

2
< xþ ≤

ffiffiffi

5
p

þ 1

2
ffiffiffi

5
p < 1,

x� 1
2

�

�

�

�<

ffiffiffiffiffiffiffiffiffiffiffi

1
4 � 1

β

q

implies x∈ 0, 1ð Þ: Hence, μx 1� xð Þ≤ 1 and 1�μx 1�xð Þ
β�μð Þx are well

defined and non-negative.
To simplify the notation and arguments in the proof, we denote

Eμ, β≔ x, yð Þ : x� 1

2

�

�

�

�

�

�

�

�

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
� 1

β

s

and
1� μx 1� xð Þ

β � μð Þx < y≤ 1� x

( )

¼ x, yð Þ : x∈ ðx�, xþÞ and
1� μx 1� xð Þ

β � μð Þx < y≤ 1� x


 �

:

Then, the proposition states that Eμ, β 6¼ Ø and ɛμ, β ¼ Eμ, β :
We start by proving that

1� μx 1� xð Þ
β � μð Þx < 1� x if and only if x∈ x�, xþð Þ, (10)

which implies that the set Eμ, β is a non-empty subset of S, because

x�, xþð Þ⊂ 0, 1ð Þ and 0≤ 1�μx 1�xð Þ
β�μð Þx . To prove (10) observe that

1� μx 1� xð Þ
β � μð Þx ¼ 1� x⇔

1� β x 1� xð Þ
β � μð Þx ¼ 0⇔ β x 1� xð Þ ¼ 1:

On the other hand, x� and xþ are the two solutions of the equation

β x 1� xð Þ ¼ 1: Hence, 1�μx 1�xð Þ
β�μð Þx ¼ 1� x if and only if x∈ x�, xþf g: Moreover,

1� μx 1� xð Þ
β � μð Þx

�

�

�

�

x¼1
2

¼ 4� μ

2 β � μð Þ <
1

2
¼ 1� 1

2

because β >4: So, (10) holds because 1
2 ∈ x�, xþð Þ:

Next we will show that Eμ, β ⊂ ɛμ, β : For every x, yð Þ∈Eμ, β ⊂ S, we have
Tμ, β x, yð Þ ¼ μx 1� yð Þ � xð Þ, β xyð Þ with μx 1� y� xð Þ, β xy≥0: So,

μx 1� y� xð Þ þ β xy ¼ μx 1� xð Þ þ β � μð Þxy> μx 1� xð Þ

þ β � μð Þx 1� μx 1� xð Þ
β � μð Þx ¼ 1 :

Consequently, Tμ, β x, yð Þ ∉ S, and hence x, yð Þ∈ ɛμ, β :
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To end the proof of the lemma, we show the other inclusion: ɛμ, β ⊂Eμ, β , which
is equivalent to SnEμ, β ⊂ Snɛμ, β : From above (see again Figure 7) and the fact that
for every point x, yð Þ∈ S we have μx 1� y� xð Þ, β xy≥0, the inclusion
SnEμ, β ⊂ Snɛμ, β can be written as

x, yð Þ : x∈ 0, 1½ �n x�, xþð Þ and 0≤ y≤ 1� xf g ⋃

x, yð Þ : x∈ x�, xþð Þ and 0≤ y≤
1� μx 1� xð Þ

β � μð Þx


 �

¼ SnEμ, β ⊂ Snɛμ, β ¼

z∈ S : Tμ, β zð Þ∈ S
� �

¼ x, yð Þ∈ S : μx 1� y� xð Þ þ β xy≤ 1f g:

Let us first consider a point x, yð Þ such that x∈ 0, 1½ �n x�, xþð Þ and y∈ 0, 1� x½ �:
Since x� and xþ are the two solutions of the equation β x 1� xð Þ ¼ 1, it follows that
x∈ 0, 1½ �n x�, xþð Þ is equivalent to β x 1� xð Þ≤ 1: Thus, β > μ gives

μx 1� y� xð Þ þ β xy≤ β x 1� y� xð Þ þ β xy ¼ β x 1� xð Þ≤ 1:

Now we consider a point x, yð Þ such that x∈ x�, xþð Þ and 0≤ y≤ 1�μx 1�xð Þ
β�μð Þx : In this

case, in a similar way as before, we have

μx 1� y� xð Þ þ β xy ¼ μx 1� xð Þ þ β � μð Þxy

≤ μx 1� xð Þ þ β � μð Þx 1� μx 1� xð Þ
β � μð Þx ¼ 1:

Proof of Proposition 1.9:We will use the characterisation of the set ɛμ, β given
by Proposition 1.11. We start by showing the existence of μ ∗ ¼ μ ∗ βð Þ:

Fix β >4: Clearly, the parabola y ¼ 1�μx 1�xð Þ
β�μð Þx and the line x

μ
þ y

β
¼ 1

4 intersect if

and only if

1� μx 1� xð Þ
β � μð Þx � β

4
� x

β

μ

� �

¼ 0

for some x∈
þ: This equation is equivalent to

4μ2 þ 4 β β � μð Þð Þx2 � 4μ2 þ β μ β � μð Þð Þxþ 4μ

4μ β � μð Þx ¼ 0

which, in turn, is equivalent to

4μ2 þ 4 β β � μð Þ
� �

x2 � 4μ2 þ β μ β � μð Þ
� �

xþ 4μ ¼ 0:

Thus, the parabola y ¼ 1�μx 1�xð Þ
β�μð Þx and the line x

μ
þ y

β
¼ 1

4 intersect at a unique point

if and only if the discriminant of the above quadratic equation is zero:

0 ¼ 4μ2 þ β μ β � μð Þ
� �2 � 16μ 4μ2 þ 4 β β � μð Þ

� �

¼ μ β β � 8ð Þ þ 16ð Þμ3 � 2 β 2 β � 4ð Þ þ 32
� �

μ2 þ β β 3 þ 64
� �

μ� 64 β 2
� �

:

We need to study the polynomial

~P0 μð Þ≔ β β � 8ð Þ þ 16ð Þμ3 � 2 β 2 β � 4ð Þ þ 32
� �

μ2 þ β β 3 þ 64
� �

μ� 64 β 2

¼ α3 bð Þμ3 þ α2 bð Þμ2 þ α1 bð Þμþ α0 bð Þ,
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where the coefficients αi bð Þ, with the change of variables β ¼ 4þ b with
b∈ 0, 1ð �, are

α3 bð Þ≔ β β � 8ð Þ þ 16 ¼ b2 >0

α2 bð Þ≔� 2 β 2 β � 4ð Þ þ 32
� �

¼ �2 b3 þ 8b2 þ 16bþ 32
� �

<0

α1 bð Þ≔ β β 3 þ 64
� �

¼ b4 þ 16b3 þ 96b2 þ 320bþ 512>0

α0 bð Þ≔� 64 β 2 ¼ �64 b2 þ 8bþ 16
� �

<0:

To do it we consider the following sequence of polynomials:

P0 μð Þ ≔
~P0 μð Þ
α3 bð Þ ¼ μ3 þ α2 bð Þ

α3 bð Þ μ
2 þ α1 bð Þ

α3 bð Þ μþ
α0 bð Þ
α3 bð Þ ,

P1 μð Þ ≔
1

3

∂P0 μð Þ
∂μ

¼ μ2 þ 2α2 bð Þ
3α3 bð Þ μþ

α1 bð Þ
3α3 bð Þ ,

P2 μð Þ ≔� 9α3 bð Þℜem P0 μð Þ,P1 μð Þð Þ
¼ � 6α1 bð Þα3 bð Þ � 2α2 bð Þ2

� �

μ� 9α0 bð Þα3 bð Þ þ α1 bð Þα2 bð Þ, and
P3 μð Þ ≔P3≔�ℜem P1 μð Þ,P2 μð Þð Þ ¼

�
81α0 bð Þ2α3 bð Þ2 þ 12α1 bð Þ3 � 54α0 bð Þα1 bð Þα2 bð Þ

� �

α3 bð Þ þ 12α0 bð Þα2 bð Þ3 � 3α1 bð Þ2α2 bð Þ2

36α1 bð Þ2α3 bð Þ2 � 24α1 bð Þα2 bð Þ2α3 bð Þ þ 4α2 bð Þ4
¼

192b10 þ 6912b9 þ 113664b8 þ 1069056b7 þ 6438912b6þ

b
27131904b5 þ 86507520b4 þ 214695936b3 þ 383778816b2 þ 415236096bþ 201326592

b12 þ 32b11 þ 448b10 þ 3712b9 þ 22528b8 þ 118784b7þ
>0

536576b6 þ 1900544b5 þ 5767168b4 þ 15204352b3 þ
29360128b2 þ 33554432bþ 16777216

whereℜem P,Qð Þ denotes the remainder of the division of P by Q (i.e. Pmodulo
Q). Since P3 μð Þ 6¼ 0 for every b, it follows that gcd P0 μð Þ,P1 μð Þð Þ ¼ 1, and hence
P0 μð Þ and P1 μð Þ do not have common roots. In other words, all roots of P0 μð Þ are
simple. Consequently, since α3 bð Þ>0 for every b, the equation ~P0 μð Þ ¼ 0 is equiv-
alent to P0 μð Þ ¼ 0, and the above sequence is a Sturm sequence for the polynomial
P0 μð Þ: The following formulae show this Sturm sequence evaluated at μ ¼ 0 and
μ ¼ 4, and the signs of these values:

P0 0ð Þ ¼ α0 bð Þ
α3 bð Þ <0,

P1 0ð Þ ¼ α1 bð Þ
3α3 bð Þ >0,

P2 0ð Þ ¼ �9α0 bð Þα3 bð Þ þ α1 bð Þα2 bð Þ ¼ �2 b7 þ 24b6 þ 240b5 þ 1088b4
�

þ2816b3 þ 7680b2 þ 18432bþ 16384Þ<0,

P0 4ð Þ ¼ 64þ 16
α2 bð Þ
α3 bð Þ þ 4

α1 bð Þ
α3 bð Þ þ

α0 bð Þ
α3 bð Þ ¼

64b2 þ 16α2 bð Þ þ 4α1 bð Þ þ α0 bð Þ
b2

¼ 4b3 þ 32b2 þ 128bþ 256

b
>0,

P1 4ð Þ ¼ 16þ 4
2α2 bð Þ
3α3 bð Þ þ

α1 bð Þ
3α3 bð Þ ¼

48b2 þ 8α2 bð Þ þ α1 bð Þ
3b2

¼ b3 þ 16bþ 64

3b
>0,
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P2 4ð Þ ¼ �4 6α1 bð Þα3 bð Þ � 2α2 bð Þ2
� �

� 9α0 bð Þα3 bð Þ þ α1 bð Þα2 bð Þ

¼ �b2 24α1 bð Þ þ 9α0 bð Þð Þ þ α2 bð Þ α1 bð Þ þ 8α2 bð Þð Þ

¼ �2b b6 þ 20b5 þ 176b4 þ 704b3 þ 1536b bþ 1ð Þ þ 2048
� �

<0, and

P3 4ð Þ ¼ P3 >0:

So, the sign sequences of the Sturm sequence evaluated at μ ¼ 0 and μ ¼ 4 are
P0 0ð Þ,P1 0ð Þ,P2 0ð Þ,P3 0ð Þf g ¼ �, þ , � ,þf g which has three changes of sign and
P0 4ð Þ,P1 4ð Þ,P2 4ð Þ,P3 4ð Þf g ¼ þ, þ , � ,þf g which has two changes of sign. Conse-

quently, the polynomial P0 μð Þ (and hence the polynomial ~P0 μð Þ and in turn the above
discriminant) has a unique root μ ∗ ¼ μ ∗ βð Þ∈ 0, 4ð Þ: Moreover, since P0 0ð Þ<0 and
P0 4ð Þ>0, the discriminant is negative for every μ∈ 0, μ ∗ð Þ and positive for every

μ∈ μ ∗ , 4ð �: This implies that the parabola y ¼ 1�μx 1�xð Þ
β�μð Þx and the line x

μ
þ y

β
¼ 1

4 do not

intersect whenever μ< μ ∗ and intersect at a unique point when μ ¼ μ ∗ (see Figure 3).
Moreover, for μ small enough and an arbitrary x∈ 0, 1ð �, we have

1� μx 1� xð Þ
β � μð Þx � β

4
� x

β

μ

� �

>0:

Consequently, since the parabola y ¼ 1�μx 1�xð Þ
β�μð Þx and the line x

μ
þ y

β
¼ 1

4 do not

intersect for μ< μ ∗ , it follows that

1� μx 1� xð Þ
β � μð Þx >

β

4
� x

β

μ

� �

and
1� μ ∗ x 1� xð Þ

β � μ ∗ð Þx ≥
β

4
� x

β

μ ∗

� �

for every β >4, μ< μ ∗ , and x∈ 0, 1ð �: On the other hand, by Proposition 1.11,

the one-step escaping set ɛμ, β is above the parabola y ¼ 1�μx 1�xð Þ
β�μð Þx and, by definition,

it is contained in S: Consequently, for every β >4 and μ≤ μ ∗ ,

x, yð Þ∈
þ � 

þ
:
x

μ
þ y

β
≤

1

4


 �

 ∩ ɛμ, β ¼ Ø,

which is equivalent to

S∩ x, yð Þ∈
þ � 

þ
:
x

μ
þ y

β
≤

1

4


 �

⊂ Snɛμ, β :

On the other hand, for every β > 4≥ μ, Tμ, β Snɛμ, β
� �

⊂Tμ, β Sð Þ and, by defini-

tion, Tμ, β Snɛμ, β
� �

⊂ S: Then, by Proposition 1.5, for every β > 4 and μ≤ μ ∗ ,

Tμ, β Snɛμ, β
� �

⊂ S∩Tμ, β Sð Þ ¼ S∩ x, yð Þ∈
þ � 

þ
:
x

μ
þ y

β
≤

1

4


 �

⊂ Snɛμ, β :

This proves that the set Snɛμ, β is Tμ, β -invariant for every β >4 and μ≤ μ ∗ βð Þ:

5. Global dynamics for low values of μ

In this section we investigate global dynamics of the fixed points for low prey’s
growth rates. This will be done in the next two theorems. In the first one, we show
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that the fixed point P ∗
1 is globally asymptotically stable when the intrinsic growth

rate of the preys is smaller than 1. See Figure 4 for a view of these results in the
parameter space.

Theorem 1.13 (Global asymptotic stability for μ< 1) We have

lim
n!∞

Tn x, yð Þ ¼ 0, 0ð Þ ¼ P ∗
1

for every x, yð Þ∈ SnRμ, β (the non-escaping set of T) and μ∈ 0, 1ð Þ.
The proof of this theorem goes “mutatis mutandis” along the same lines as the

proof of Theorem 15 from Ref. [14] by using that, by Lemmas 1.2, 1.3, and 1.4,
P ∗
1 ¼ 0, 0ð Þ is the unique fixed point of T in S when μ∈ 0, 1ð Þ:
We define

φ xð Þ≔
2 forx∈ 0, 2½ �,
x

x� 1
forx∈ 2, 5½ �,

(

a continuous non-increasing map from 0, 5½ � to 5
4 , 2
� 	

:

Theorem1.14 (Global asymptotic stability for 1< μ<φ βð Þ For every parameter
point β , μð Þ∈ 0, 5½ � � 1,φ βð Þð Þ and x, yð Þ∈ SnRμ, β , we have either

Tn x, yð Þ ¼ 0, 0ð Þ ¼ P ∗
1 for some n ≥0, or

lim
n!∞

Tn x, yð Þ ¼ 1� μ�1, 0
� �

¼ P ∗
2 :

Figure 8.
Bifurcation diagram for Eq. (1) using β as control parameter and μ ¼ 2:1. (a) Dynamics on the attractor for
predators at increasing β . The violet and orange lines show the values for fixed points P ∗

2 and P ∗
3 , respectively.

The vertical blue lines display bifurcations. (b) Spectrum of Lyapunov exponents Λ1,2, computed for the same
range of parameter β . Notice that a Neimark-Sacker bifurcation takes place and the fixed point P ∗

3 becomes

unstable, and after an ordered dynamics with invariant curves and periodic fixed points, the dynamics enters
into chaos. The chaotic region displays a wide range of hyperchaos, with two positive Lyapunov exponents.
(c) Two-parameter phase diagram displaying the ordered and chaotic dynamics by plotting the first Lyapunov
exponent, Λ1. Note that chaos is found for large values of μ and β (shown in dark yellow-orange-red colours).
See movie2.mp4 for an animation of the dynamics of Eq. (1) at increasing both parameters μ and β . The video
displays the bifurcation diagram for β and the corresponding attractors obtained numerically.
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As before, the proof of this theorem goes “mutatis mutandis” as the proof of
Theorem 19 from Ref. [14]) taking into account that, by Lemmas 1.2, 1.3, and 1.4,
P ∗
1 and P ∗

2 are the unique fixed points of T in S for every β , μð Þ∈ 0, 5½ � � 1,φ βð Þð Þ.
Moreover, P ∗

2 is the unique locally asymptotically stable fixed point of T in this
parameter region. The difference between this theorem and Theorem 19 from Ref.
[14] is that, in that paper, β was greater than or equal to 2.5. To recycle the proof of
Theorem 19 from Ref. [14] for Theorem 1.14 in the case β ≤ 2, the conditions

1< μ<
β

β�1 ≤ 2 and αμ≔
μ�1
μ

<
1
β
≤ 1

2 , used in that proof, must be replaced, respec-

tively, by 1< μ<φ βð Þ ¼ 2 and αμ <
1
2 ≤

1
β
, which play the same role.

6. Chaos

Discrete-time systems can display chaotic behaviour at low dimensions. One
example is the well-known logistic model which describes the dynamics of a single
species with nonoverlapping generations and intraspecific competition [6]. This
system is known to undergo the so-called Feigenbaum (period-doubling) route to
chaos [15]. In order to identify the chaotic regions in map (1), we compute the full
spectrum of Lyapunov exponents using the algorithm described in Ref. [16],
pp. 74–80. Figure 8(a) displays a bifurcation diagram obtained by iteration for
increasing values of β . Notice that the fixed point P ∗

3 becomes unstable and a

Figure 9.
(A) Enlarged view of the framed region in grey colour in Figure 8(c) displaying the first Lyapunov exponent,
Λ1, in the parameter region (μ, β ∈ 2:5, 4½ �). In the orange-red regions, the dynamics are chaotic with Λ1 >0:
(B) Second Lyapunov exponent, Λ2, within the range μ∈ 2:8, 4½ � and β ∈ 3, 4½ �. The orange-red regions
correspond to the hyperchaotic regimes since Λ1,2 > 0. Lower row of pictures: four plots of the set ∩∞

i¼0T
i Sð Þ found

in the regions labelled with the white numbers in panel (A), period-6 fixed point (a), using μ ¼ 3:25, β ¼
3:25, and three examples of strange chaotic attractors, (b) μ ¼ 3:7, β ¼ 3:2, (c) μ ¼ 3:8, β ¼ 3:5, and
(d) μ ¼ 3:7, β ¼ 3:95. In all of the phase portraits, we plot the fixed points P ∗

1 (red), P ∗
2 (blue), and P ∗

3

(orange). See movie3.mp4 to visualise the dynamics of Eq. (1) for increasing parameter μ and setting β ¼ 3:9.
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Neimark-Sacker bifurcation takes place. This bifurcation has been detected with the
Lyapunov exponents shown in Figure 8(b), with Λ1,2 ¼ 0 at the bifurcation value.
After this bifurcation the first Lyapunov exponent is 0 and the second one is
negative. Then the dynamics are governed by attracting invariant curves; further
increase of β involves the entry into the chaotic regime, where the first Lyapunov
exponent, Λ1 (in black), becomes positive. Notice the presence of hyperchaotic
attractors, with Λ1,2 >0.

Enlarged views of the Lyapunov exponents in the parameter space μ, βð Þ are
represented in Figure 9, as well as four examples of the sets ∩∞

i¼0T
i Sð Þ found in the

regions labelled with letters in Figure 9(A).

7. Conclusions

In this chapter we have analysed the dynamics of a predator-prey dynamical
system in discrete time (see also [12]). We have provided conditions for the global
stability of the fixed points corresponding the co-extinctions of the predator-prey as
well as for the extinction of predators and survival of preys. For some parameter
regions, we have identified hyperchaos (i.e. more than one positive Lyapunov
exponent; see [17]). A deep analysis of the existence and properties of the invariant
set has been provided for a wide region of the parameter space containing the most
biologically relevant dynamics. We have identified the presence of escaping zones
in the phase space at which species populations go out of the domain (e.g. they
overcome the carrying capacity) and then the iterates become negative, meaning
that populations go to extinction. By means of iteration, we have characterised a
very complicated shape of the escaping regions, presumably with a highly
entangled, fractal topology. These escaping regions could be responsible for species
extinctions evolving in discrete time. Although early experimental research allowed
to identify deterministic chaos in insect populations [3], as far as we know, no
empirical proofs about this phenomenon have been described.

Acknowledgements

We want to thank Ricard Solé, Sergi Valverde, and Tomás Alarcón for useful
comments. LlA has been supported by the by Spain’s “Agencia Estatal de
Investigación” (AEI) grant MTM2017-86795-C3-1-P. JTL has been partially
supported by the Catalan grant 2017SGR1049 and the MINECO grant
MTM2015-65715-P and PGC2018-098676-B-100 (AEI/FEDER/UE). BV was funded
by the PR01018-EC-H2020-FET-Open MADONNA project. This work has been
also partially funded by the CERCA Program of the Generalitat de Catalunya and by
the MINECO grant MDM-2014-0445 within the “María de Maeztu” Program. JS has
been funded by a “Ramón y Cajal” contract RYC-2017-22243 and by the MINECO
grant MTM2015-71509-C2-1-R and AEI grant RTI-2018-098322-B100.

20

Dynamical Systems Theory



Author details

Blai Vidiella1,2†, J. Tomás Lázaro3,4†, Lluís Alsedà5,6,4* and Josep Sardanyés6,4*

1 ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Barcelona, Spain

2 Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain

3 Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona,
Spain

4 Barcelona Graduate School of Mathematics (BGSMath), Bellaterra, Spain

5 Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra,
Spain

6 Centre de Recerca Matemàtica, Bellaterra, Spain

*Address all correspondence to: llalseda@crm.cat and jsardanyes@crm.cat

†Equal contribution.

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

21

On Dynamics and Invariant Sets in Predator-Prey Maps
DOI: http://dx.doi.org/10.5772/intechopen.89572



References

[1]Dennis B, Desharnais RA,
Cushing JM, Henson SM,
Constantino RF. Estimating chaos
and complex dynamics in an insect
population. Ecological Monographs.
2001;7(12):277-303

[2] Elton CS. Fluctuations in the
numbers of animals: their causes and
effects. British Journal of Experimental
Biology. 1924;2:119-163

[3] Constantino RF, Desharnais RA,
Cushing JM, Dennis B. Chaotic
dynamics in an insect population.
Science. 1997;275:389-339

[4]Dennis B, Desharnais RA,
Cushings JM, Constantino RF.
Estimating chaos and complex dynamics
in an insect population. The Journal of
Animal Ecology. 1997;66:704-729

[5]May RM. Biological populations with
nonoverlapping generations: Stable
points, stable cycles and chaos. Science.
1974;186:645-647

[6]May RM. Simple mathematical
models with very complicated
dynamics. Nature. 1976;261:459-467

[7] Allen JC, Schaffer WM, Rosko D.
Chaos reduces species extinction by
amplifying local population noise.
Nature. 1993;364:229-232

[8]Davies ZG, Wilson RJ, Brereton TM,
Thomas CD. The re-expansion and
improving status of the silver-spotted
skipper butterfly (Hesperia comma) in
Britain: a metapopulation success story.
Biological Conservation. 2005;124:
189-198

[9] Krafsur ES. Gene flow between
univoltine and semivoltine northern
corn rootworm (Coleoptera:
Chrysomelidae) populations. Annals of
Enthomological Society of America.
1995;88:699-704

[10] Saulich AK, Musolin DL. Seasonal
cycles in stink bugs (Heteroptera,
Pentatomidae) from the temperate zone:
Diversity and control. Entomological
Review. 2014;94:785-814

[11] Aalberg Haugen IM, Berger D,
Gotthard K. The evolution of alternative
developmental pathways: Footprints of
selection on life-history traits in a
butterfly. Journal of Evolutionary
Biology. 2012;25:1388-1388

[12] Lauwerier HA. Two-dimensional
iterative maps. In: Arun V, editor.
Chaos. Holden: Princeton University
Press; 1986. pp. 58-95

[13] Alsedà L, Llibre J, Misiurewicz M.
Combinatorial dynamics and entropy
in dimension one. In: Volume 5 of
Advanced Series in Nonlinear
Dynamics. 2nd ed. River Edge, NJ:
World Scientific Publishing Co., Inc.;
1989

[14] Alsedà Ll, Vidiella B, Solé R,
Lázaro JT, Sardanyés J. Dynamics
in a time-discrete food-chain model
with strong pressure on preys.
Communications in Nonlinear Science
and Numerical Simulation. 2020;
84:105187

[15] Feigenbaum MJ. Universality in
complex discrete dynamics. Los Alamos
Theoretical Division Annual Report
1975–1976

[16] Parker T, Chua LO. Practical
Numerical Algorithms for Chaotic
Systems. Berlin: Springer-Verlag; 1989

[17] Li P, Min L, Yu H, Zhao G, Li X.
Novel two dimensional discrete chaotic
maps and simulations. In: IEEE 6th
International Conference on
Information and Automation for
Sustainability (ICIAFS). 2012

22

Dynamical Systems Theory


